CN1549286A - Niobium oxide electrolytic capacitor cathode and producing method thereof - Google Patents

Niobium oxide electrolytic capacitor cathode and producing method thereof Download PDF

Info

Publication number
CN1549286A
CN1549286A CN 03124295 CN03124295A CN1549286A CN 1549286 A CN1549286 A CN 1549286A CN 03124295 CN03124295 CN 03124295 CN 03124295 A CN03124295 A CN 03124295A CN 1549286 A CN1549286 A CN 1549286A
Authority
CN
Grant status
Application
Patent type
Prior art keywords
electrolytic capacitor
niobium oxide
forming
niobium
anode
Prior art date
Application number
CN 03124295
Other languages
Chinese (zh)
Inventor
晖 钟
钟晖
李荐
钟海云
杨建文
戴艳阳
岳忠
Original Assignee
中南大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date

Links

Abstract

The present invention relates to an electrode of electrolytic capacitor, in particular, it is an positive electrode of the electrolytic capacitor which is prepared by using columbium monoxide or doped columbium monoxide and its making method. It is characterized by that using columbium monoxide or doped columbium monoxide whose average grain size is 0.1 micrometer-20 micrometers as raw materials, and making it undergo the processes of pressing to make blank, vacuum sintering and energizing positive electrode block so as to obtain the invented columbium monoxide electrolytic capacitor positive electrode. Its energizing liquor is 0.01%-0.1% H3PO4, energizing voltage Vf is 10V-80V, energizing temp. is 10-90 deg.C, energizing current density is 10 mA.g(-1)-120 mA.g(-1), and time for constant voltage is greater than or equal to 0.5h. Said obtained positive electrode of electrolytic capacitor is stable in performance, high in specific capacity and small in leakage current.

Description

一氧化铌电解电容器阳极及其制造方法 A niobium oxide capacitor anode and a manufacturing method of an electrolytic

技术领域 FIELD

:本发明涉及电解电容器的电极,尤其是用一氧化铌或掺杂一氧化铌制备的电解电容器阳极及其制造方法。 : The electrode of the present invention relates to an electrolytic capacitor, in particular a niobium oxide using a niobium oxide or doped preparing an anode of an electrolytic capacitor and its manufacturing method.

背景技术 Background technique

:钽电解电容器的性能优良,但价格高,而普通的铝电解电容器的性能限制了应用范围,不能满足手机、电脑等电器的小型化、高速化和大容量化的要求。 : Tantalum electrolytic capacitor excellent performance, but the price is high, while the average performance of aluminum electrolytic capacitors limit the scope of application, can not meet the requirements of small, high-speed and large-capacity mobile phones, computers and other electrical appliances. 由于铌电解电容器的介电膜(Nb2O5)的介电常数为41,钽电解电容器的介电膜(Ta2O5)的介电常数为27,所以铌电解电容器比钽电解电容器的比容高,更有利于元件的小型化、轻型化。 Since the dielectric constant of the dielectric film is a niobium electrolytic capacitor (of Nb2O5) was 41, the dielectric constant of the dielectric film of tantalum electrolytic capacitors (Ta205) is 27, the ratio of niobium electrolytic capacitor with a high capacity tantalum electrolytic capacitor, and more conducive to miniaturization of elements, in weight.

发明内容 SUMMARY

:本发明的目的在于提供一种用一氧化铌或掺杂一氧化铌制造的电解电容器阳极及其制造方法。 : Object of the present invention is to provide a niobium oxide or doped with an electrolytic capacitor anode and a manufacturing method of manufacturing a niobium oxide. 按本发明制造的一氧化铌电解电容器阳极具有40000μF·V·g-1~200000μF·V·g-1的高比容、K<5.0×10-4μA·μF-1·V-1的低漏电流,满足电器的大容量化、小型化的要求。 A niobium oxide electrolytic capacitor according to the present invention for producing an anode having 40000μF · V · g-1 ~ 200000μF · V · g-1 high specific volume, K <5.0 × 10-4μA · μF-1 · V-1 low leakage current, large capacity to meet the electrical, miniaturization requirements.

本发明为达到上述目的采用的技术方案是:合理设计电解电容器阳极成分,以平均粒度为0.1μm~20μm的一氧化铌或掺杂一氧化铌为原料,制造电解电容器阳极。 To achieve the aspect of the present invention the above object is that: the rational design of an electrolytic capacitor anode component, an average particle size of 0.1μm ~ 20μm of a niobium oxide or niobium oxide as a doping material, for producing an electrolytic capacitor anode.

掺杂物是阀金属、阀金属低价氧化物中的一种或几种,包括其合金及混合物,其掺杂范围大于0,小于80wt%。 Dopant is a valve metal valve metal suboxides of one or more, including alloys and mixtures, doped range greater than 0, less than 80wt%.

阀金属是铌、钽、钛、钒、铝、锆等。 Valve metal is niobium, tantalum, titanium, vanadium, aluminum, zirconium and the like.

一氧化铌电解电容器阳极制备方法,首先将一氧化铌或掺杂的一氧化铌压制成坯,其压制密度为2.7g·cm-3~3.8g·cm-3。 Niobium electrolytic capacitor prepared anodic oxide, niobium oxide or a first doped niobium oxide was compressed into a billet, which is a pressing density 2.7g · cm-3 ~ 3.8g · cm-3.

然后放入真空烧结炉中,真空压力<0.1Pa,以烧结温度:1100℃~1500℃,烧结10min~120min,得到电解电容器阳极烧结块;再将阳极块赋能,其赋能液为0.01%~0.1%H3PO4,赋能电压Vf:10V~80V,赋能温度:10℃~90℃,赋能电流密度:10mA·g-1~120mA·g-1,恒压时间:≥0.5h,得到一氧化铌电解电容器阳极。 Was then placed in a vacuum sintering furnace, the vacuum pressure <0.1Pa, sintering temperature: 1100 ℃ ~ 1500 ℃, sintering 10min ~ 120min, an electrolytic capacitor anode obtained sintered compact; then forming the anode block, forming a liquid which 0.01% ~ 0.1% H3PO4, forming voltage Vf: 10V ~ 80V, enabling temperature: 10 ℃ ~ 90 ℃, enabling current density: 10mA · g-1 ~ 120mA · g-1, the constant pressure time: ≥0.5h, to give a niobium oxide electrolytic capacitor anode.

发明的优点和积极效果本发明的优点在于,以一氧化铌为基体原料,显著抑制了阳极氧化膜中的氧向基体扩散,使阳极氧化膜性能更稳定,从而制造的电解电容器阳极性能稳定,比容高达到40000μF·V·g-1~200000μF·V·g-1;漏电流小,达到K<5.0×10-4μA·μF-1·V-1。 Advantages of the Invention, and advantages of the advantages of the present invention is that, with a niobium oxide as base material, significantly inhibited the anodized film in the diffusion of oxygen into the substrate, the anodic oxide film is more stable, thereby stabilizing electrolytic capacitor anode properties produced, high hematocrit reached 40000μF · V · g-1 ~ 200000μF · V · g-1; low leakage current reaches K <5.0 × 10-4μA · μF-1 · V-1. 从表1的测试结果也得到了佐证。 From the test results in Table 1 has also been corroborated.

表1实施例赋能阳极测试结果 Table 1 Example Test Results forming an anode

表1赋能阳极性能测试条件参照国家标准GB/T 3137-1995进行。 Table 1 Performance Test Conditions anode forming the national standard GB / T 3137-1995 performed.

测试方法:容量(C):2V直流偏置+0.5V交流(100Hz)38%H2SO4溶液(20℃)比容=C·Vf·m-1(μF·V·g-1)其中:C-测试容量/μFVf-赋能电压/Vm-阳极重量/g直流漏电流(IL):70%Vf(即赋能电压的70%)0.01%H3PO4溶液(20℃)180秒充电时间K=IL&CenterDot;C-1&CenterDot;Vf-1(&mu;A&CenterDot;&mu;F-1&CenterDot;V-1)]]>其中:IL-直流漏电流/μAC-测试容量/μFVf-赋能电压/V Test Method: Capacity (C): 2V DC bias + 0.5V AC (100Hz) 38% H2SO4 solution (20 ℃) ​​hematocrit = C · Vf · m-1 (μF · V · g-1) wherein: C- test capacity / μFVf- forming voltage / Vm- anodic weight / g DC leakage current (IL): 70% Vf (i.e., 70% of the forming voltage) 0.01% H3PO4 solution (20 ℃) ​​180 second charging time K = IL & CenterDot; C-1 & CenterDot; Vf-1 (& mu; A & CenterDot; & mu; F-1 & CenterDot; V-1)]]> wherein: IL- DC leakage current / μAC- test capacity / μFVf- forming voltage / V

具体实施方式 detailed description

:实施例1制造一氧化铌电解电容器阳极,首先称取200g粒度1.0μm的一氧化铌,按每只200mg压制成坯,其压制密度为3.4g·cm-3;然后放入真空炉中,真空压力<0.02Pa,烧结温度为1300℃,烧结20min,得到电解电容器阳极烧结块;再将阳极块赋能,其赋能液为0.1%H3PO4,赋能电压Vf为50V,赋能温度为90℃,赋能电流密度为60mA·g-1,恒压时间为2h,得到一氧化铌电解电容器阳极,其测试结果列于表1。 : Manufacturing a niobium electrolytic capacitor anode oxide in Example 1, is first weighed 200g of a niobium oxide particle size 1.0μm per 200mg only compressed into blanks, which pressing density of 3.4g · cm-3; and then placed in a vacuum oven, vacuum pressure <0.02Pa, the sintering temperature is 1300 ℃, sintering 20min, to obtain an electrolytic capacitor anode sintered compact; then forming the anode block, forming a liquid which is 0.1% H3PO4, forming voltage Vf of 50V, the forming temperature was 90 ℃, forming a current density of 60mA · g-1, a constant voltage time of 2h, to give a niobium oxide electrolytic capacitor anode, the test results are shown in table 1.

实施例2制造掺杂一氧化铌制造电解电容器阳极,首先称取一氧化铌79wt%、铌21wt%混合成平均粒度1.3μm的掺杂一氧化铌粉末200g,按每只200mg压制成坯,其压制密度为3.4g·cm-3;然后放入真空炉中,真空压力<0.02Pa,烧结温度为1300℃,烧结20min,得到电解电容器阳极烧结块;再将阳极块赋能,其赋能液为0.1%H3PO4,赋能电压Vf为50V,赋能温度为90℃,赋能电流密度为60mA·g-1,恒压时间为2h,得到一氧化铌电解电容器阳极,其测试结果列于表1。 Example 2 for producing a niobium oxide doped manufacturing an electrolytic capacitor anode, a niobium oxide is first weighed 79wt%, 21wt% niobium-doped mixed to 1.3μm average particle size of niobium monoxide powder 200g, per 200mg only pressed into a billet, which pressing density of 3.4g · cm-3; and then placed in a vacuum oven, vacuum pressure <0.02Pa, the sintering temperature is 1300 ℃, sintering 20min, to obtain an electrolytic capacitor anode sintered compact; then forming the anode block, forming a liquid which was 0.1% H3PO4, forming voltage Vf of 50V, the forming temperature is 90 ℃, forming a current density of 60mA · g-1, a constant voltage time of 2h, to give a niobium oxide electrolytic capacitor anode, the test results are shown in table 1.

实施例3制造掺杂一氧化铌电解电容器阳极,首先称取一氧化铌79wt%、钽21wt%混合成平均粒度1.8μm的掺杂一氧化铌粉末200g,按每只200mg压制成坯,其压制密度为3.4g·cm-3;然后放入真空炉中,真空压力<0.02Pa,烧结温度为1300℃,烧结20min,得到电解电容器阳极烧结块;再将阳极块赋能,其赋能液为0.1%H3PO4,赋能电压Vf为50V,赋能温度为90℃,赋能电流密度为60mA·g-1,恒压时间为2h,得到一氧化铌电解电容器阳极,其测试结果列于表1。 Example 3 A doped niobium monoxide embodiment electrolytic capacitor anode, a niobium oxide is first weighed 79wt%, 21wt% tantalum doped mixed to 1.8μm average particle size of niobium monoxide powder 200g, per 200mg only pressed into a billet, which is pressed a density of 3.4g · cm-3; and then placed in a vacuum oven, vacuum pressure <0.02Pa, the sintering temperature is 1300 ℃, sintering 20min, to obtain an electrolytic capacitor anode sintered compact; then forming the anode block, forming a liquid which is 0.1% H3PO4, forming voltage Vf of 50V, the forming temperature is 90 ℃, forming a current density of 60mA · g-1, a constant voltage time of 2h, to give a niobium oxide electrolytic capacitor anode, the test results are shown in table 1 .

实施例4制造掺杂一氧化铌电解电容器阳极,首先称取一氧化铌80wt%、铌10wt%、钽10wt%混合成平均粒度1.5μm的掺杂一氧化铌粉末200g;按每只200mg压制成坯,其压制密度为3.4g·cm-3;然后放入真空炉中,真空压力<0.02Pa,烧结温度为1300℃,烧结20min,得到电解电容器阳极烧结块;再将阳极块赋能,其赋能液为0.1%H3PO4,赋能电压Vf为50V,赋能温度为90℃,赋能电流密度为60mA·g-1,恒压时间为2h,得到一氧化铌电解电容器阳极,其测试结果列于表1。 Example 4 for producing a niobium oxide doped electrolytic capacitor anode, a niobium oxide is first weighed 80wt%, 10wt% niobium, tantalum mixed to 10wt% average particle size of 1.5μm doping 200 g of niobium monoxide powder; compressed into 200mg per only blank, which is pressed density of 3.4g · cm-3; and then placed in a vacuum oven, vacuum pressure <0.02Pa, the sintering temperature is 1300 ℃, sintering 20min, to obtain an electrolytic capacitor anode sintered compact; then forming the anode block, which forming liquid was 0.1% H3PO4, forming voltage Vf of 50V, the forming temperature is 90 ℃, forming a current density of 60mA · g-1, a constant voltage time of 2h, to give a niobium oxide electrolytic capacitor anode, the test results listed in table 1.

实施例5制造掺杂一氧化铌电解电容器阳极,首先称取一氧化铌70wt%、铌20wt%、二氧化铌10wt%混合成平均粒度1.3μm的掺杂一氧化铌粉末200g;按每只200mg压制成坯,其压制密度为3.4g·cm-3;然后放入真空炉中,真空压力<0.02Pa,烧结温度为1300℃,烧结20min,得到电解电容器阳极烧结块;再将阳极块赋能,其赋能液为0.1%H3PO4,赋能电压Vf为50V,赋能温度为90℃,赋能电流密度为60mA·g-1,恒压时间为2h,得到一氧化铌电解电容器阳极,其测试结果列于表1。 Manufacturing Example 5 embodiments a niobium oxide doped electrolytic capacitor anode, a niobium oxide is first weighed 70wt%, niobium 20wt%, 10wt% niobium dioxide dopant mixed to 1.3μm average particle size of 200 g of niobium monoxide powder; only 200mg per pressed into a billet, which is a pressing density 3.4g · cm-3; and then placed in a vacuum oven, vacuum pressure <0.02Pa, the sintering temperature is 1300 ℃, sintering 20min, to obtain an electrolytic capacitor anode sintered compact; then forming the anode block that forming fluid is 0.1% H3PO4, forming voltage Vf of 50V, the forming temperature is 90 ℃, forming a current density of 60mA · g-1, a constant voltage time of 2h, to give a niobium oxide electrolytic capacitor anode which The test results are shown in table 1.

实施例6制造掺杂一氧化铌电解电容器阳极,首先称取一氧化铌80wt%、钽10wt%、二氧化铌10wt%混合成平均粒度1.5μm的掺杂一氧化铌粉末200g;按每只200mg压制成坯,其压制密度为3.4g·cm-3;然后放入真空炉中,真空压力<0.02Pa,烧结温度为1300℃,烧结20min,得到电解电容器阳极烧结块;再将阳极块赋能,其赋能液为0.1%H3PO4,赋能电压Vf为50V,赋能温度为90℃,赋能电流密度为60mA·g-1,恒压时间为2h,得到一氧化铌电解电容器阳极,其测试结果列于表1。 Example 6 for producing a niobium oxide doped electrolytic capacitor anode, a niobium oxide is first weighed 80wt%, 10wt% tantalum, 10wt% niobium dioxide dopant mixed to 1.5μm average particle size of 200 g of niobium monoxide powder; only 200mg per pressed into a billet, which is a pressing density 3.4g · cm-3; and then placed in a vacuum oven, vacuum pressure <0.02Pa, the sintering temperature is 1300 ℃, sintering 20min, to obtain an electrolytic capacitor anode sintered compact; then forming the anode block that forming fluid is 0.1% H3PO4, forming voltage Vf of 50V, the forming temperature is 90 ℃, forming a current density of 60mA · g-1, a constant voltage time of 2h, to give a niobium oxide electrolytic capacitor anode which The test results are shown in table 1.

实施例7制造掺杂一氧化铌电解电容器阳极,首先称取一氧化铌80wt%、铌19.9wt%、钛0.1wt%混合成平均粒度1.5μm的掺杂一氧化铌粉末200g;按每只200mg压制成坯,其压制密度为3.4g·cm-3;然后放入真空炉中,真空压力<0.02Pa,烧结温度为1300℃,烧结20min,得到电解电容器阳极烧结块;再将阳极块赋能,其赋能液为0.1%H3PO4,赋能电压Vf为50V,赋能温度为90℃,赋能电流密度为60mA·g-1,恒压时间为2h,得到一氧化铌电解电容器阳极,其测试结果列于表1。 Example 7 for producing a niobium oxide doped electrolytic capacitor anode, a niobium oxide is first weighed 80wt%, niobium 19.9wt%, 0.1wt% titanium doped mixed to 1.5μm average particle size of 200 g of niobium monoxide powder; only 200mg per pressed into a billet, which is a pressing density 3.4g · cm-3; and then placed in a vacuum oven, vacuum pressure <0.02Pa, the sintering temperature is 1300 ℃, sintering 20min, to obtain an electrolytic capacitor anode sintered compact; then forming the anode block that forming fluid is 0.1% H3PO4, forming voltage Vf of 50V, the forming temperature is 90 ℃, forming a current density of 60mA · g-1, a constant voltage time of 2h, to give a niobium oxide electrolytic capacitor anode which The test results are shown in table 1.

实施例8制造掺杂一氧化铌电解电容器阳极,首先称取一氧化铌80wt%、铌-钽合金(1∶1)20wt%混合成平均粒度1.7μm的掺杂一氧化铌粉末200g;按每只200mg压制成坯,其压制密度为3.4g·cm-3;然后放入真空炉中,真空压力<0.02Pa,烧结温度为1300℃,烧结20min,得到电解电容器阳极烧结块;再将阳极块赋能,其赋能液为0.1%H3PO4,赋能电压Vf为50V,赋能温度为90℃,赋能电流密度为60mA·g-1,恒压时间为2h,得到一氧化铌电解电容器阳极,其测试结果列于表1。 Example 8 for producing a niobium oxide doped electrolytic capacitor anode, a niobium oxide is first weighed 80wt%, Nb - Ta alloy (1:1) 20wt% mixed to form a mean particle size of 1.7μm doped niobium oxide 200 g of powder; per 200mg only compressed into blanks, which pressing density of 3.4g · cm-3; and then placed in a vacuum oven, vacuum pressure <0.02Pa, the sintering temperature is 1300 ℃, sintering 20min, to obtain an electrolytic capacitor anode sintered compact; then the anode block forming, forming a liquid which is 0.1% H3PO4, forming voltage Vf of 50V, the forming temperature is 90 ℃, forming a current density of 60mA · g-1, a constant voltage time of 2h, to give a niobium oxide capacitor anode electrolytic , the test results are shown in table 1.

实施例9制造一氧化铌电解电容器阳极,首先称取200g平均粒度1.0μm的一氧化铌粉末,按每只200mg压制成坯,其压制密度为3.4g·cm-3;然后放入真空炉中,真空压力<0.02Pa,烧结温度为1300℃,烧结20min,得到电解电容器阳极烧结块;再将阳极块赋能,其赋能液为0.1%H3PO4,赋能电压Vf为30V,赋能温度为90℃,赋能电流密度为60mA·g-1,恒压时间为2h,得到一氧化铌电解电容器阳极,其测试结果列于表1。 Example 9 for producing a niobium oxide electrolytic capacitor anode, the first average particle size of 1.0μm was weighed 200g of a niobium oxide powder, compressed into 200mg per blank only, which is a pressing density 3.4g · cm-3; and then placed in a vacuum oven , vacuum pressure <0.02Pa, the sintering temperature is 1300 ℃, sintering 20min, to obtain an electrolytic capacitor anode sintered compact; then forming the anode block, forming a liquid which is 0.1% H3PO4, forming voltage Vf of 30V, temperature of forming 90 ℃, forming a current density of 60mA · g-1, a constant voltage time of 2h, to give a niobium oxide electrolytic capacitor anode, the test results are shown in table 1.

实施例10制造掺杂一氧化铌电解电容器阳极,首先称取一氧化铌79wt%、铌21wt%混合成平均粒度1.3μm的掺杂一氧化铌粉末200g,按每只200mg压制成坯,其压制密度为3.4g·cm-3;然后放入真空炉中,真空压力<0.02Pa,烧结温度为1300℃,烧结20min,得到电解电容器阳极烧结块;再将阳极块赋能,其赋能液为0.1%H3PO4,赋能电压Vf为30V,赋能温度为90℃,赋能电流密度为60mA·g-1,恒压时间为2h,得到一氧化铌电解电容器阳极,其测试结果列于表1。 Example 10 Production Example doped niobium monoxide electrolytic capacitor anode, a niobium oxide is first weighed 79wt%, 21wt% niobium-doped mixed to 1.3μm average particle size of niobium monoxide powder 200g, per 200mg only pressed into a billet, which is pressed a density of 3.4g · cm-3; and then placed in a vacuum oven, vacuum pressure <0.02Pa, the sintering temperature is 1300 ℃, sintering 20min, to obtain an electrolytic capacitor anode sintered compact; then forming the anode block, forming a liquid which is 0.1% H3PO4, forming voltage Vf of 30V, the forming temperature is 90 ℃, forming a current density of 60mA · g-1, a constant voltage time of 2h, to give a niobium oxide electrolytic capacitor anode, the test results are shown in table 1 .

Claims (4)

  1. 1.一氧化铌电解电容器阳极,其特征在于:以平均粒度为0.1μm~20μm的一氧化铌或掺杂一氧化铌为原料制造;其掺杂物是阀金属、阀金属低价氧化物中的一种或几种,包括其合金及混合物,其掺杂范围大于0,小于80wt%;其阀金属是铌、钽、钛、钒、铝、锆。 1. A niobium oxide electrolytic capacitor anode, characterized in that: an average particle size of 0.1μm ~ 20μm of a doped or niobium oxide as a raw material for producing a niobium oxide; the dopant is a valve metal, the valve metal suboxides one or several, including alloys and mixtures, doped range greater than 0, less than 80wt%; which the valve metal is niobium, tantalum, titanium, vanadium, aluminum, zirconium.
  2. 2.根据权利要求1一氧化铌电解电容器阳极,其特征在于:掺杂一氧化铌电解电容器阳极由一氧化铌70wt%、铌20wt%、二氧化铌10wt%混合而成,平均粒度1.3μm。 According to claim 1 niobium monoxide electrolytic capacitor anode, characterized by: a doped niobium oxide by an electrolytic capacitor anode niobium oxide 70wt%, niobium 20wt%, 10wt% niobium dioxide are mixed, the average particle size of 1.3μm.
  3. 3.一氧化铌电解电容器阳极制备方法,其特征在于:首先将一氧化铌或按成分配比掺杂的一氧化铌压制成坯,其压制密度为2.7g·cm-3~3.8g·cm-3。 3. a method of preparing a niobium oxide electrolytic capacitor anode, characterized in that: a first niobium oxide or by the composition ratio of niobium oxide doped compressed into a blank, which is pressed density of 2.7g · cm-3 ~ 3.8g · cm -3. 然后放入真空烧结炉中,真空压力<0.1Pa,以烧结温度:1100℃~1500℃,烧结10min~120min,得到电解电容器阳极烧结块;再将阳极赋能,其赋能液为0.01%~0.1%H3PO4,赋能电压Vf:10V~80V,赋能温度:10℃~90℃,赋能电流密度:10mA·g-1~120mA·g-1,恒压时间:≥0.5h,得到一氧化铌电解电容器阳极。 Was then placed in a vacuum sintering furnace, the vacuum pressure <0.1Pa, sintering temperature: 1100 ℃ ~ 1500 ℃, sintering 10min ~ 120min, an electrolytic capacitor anode obtained sintered compact; then forming an anode, forming a liquid which is 0.01% 0.1% H3PO4, forming voltage Vf: 10V ~ 80V, enabling temperature: 10 ℃ ~ 90 ℃, enabling current density: 10mA · g-1 ~ 120mA · g-1, the constant pressure time: ≥0.5h, to give a niobium oxide electrolytic capacitor anode.
  4. 4.根据权利要求3一氧化铌电解电容器阳极制备方法,其特征在于:首先称取200g平均粒度1.0μm的一氧化铌粉末,按每只200mg压制成坯,其压制密度为3.4g·cm-3;然后放入真空炉中,真空压力<0.02Pa,烧结温度为1300℃,烧结20min,得到电解电容器阳极烧结块;再将阳极块赋能,其赋能液为0.1%H3PO4,赋能电压Vf为30V,赋能温度为90℃,赋能电流密度为60mA·g-1,恒压时间为2h,得到一氧化铌电解电容器阳极。 4.3 Preparation of a niobium oxide anodic electrolytic capacitor according to claim, characterized in that: first average particle size of 1.0μm was weighed 200g of a niobium oxide powder, compressed into 200mg per blank only, which is a pressing density 3.4g · cm- 3; then placed in a vacuum oven, vacuum pressure <0.02Pa, the sintering temperature is 1300 ℃, sintering 20min, to obtain an electrolytic capacitor anode sintered compact; then forming the anode block, forming a liquid which is 0.1% H3PO4, forming voltage Vf is 30V, the forming temperature was 90 ℃, forming a current density of 60mA · g-1, a constant voltage time of 2h, to give a niobium oxide electrolytic capacitor anode.
CN 03124295 2003-05-08 2003-05-08 Niobium oxide electrolytic capacitor cathode and producing method thereof CN1549286A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 03124295 CN1549286A (en) 2003-05-08 2003-05-08 Niobium oxide electrolytic capacitor cathode and producing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 03124295 CN1549286A (en) 2003-05-08 2003-05-08 Niobium oxide electrolytic capacitor cathode and producing method thereof

Publications (1)

Publication Number Publication Date
CN1549286A true true CN1549286A (en) 2004-11-24

Family

ID=34321636

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 03124295 CN1549286A (en) 2003-05-08 2003-05-08 Niobium oxide electrolytic capacitor cathode and producing method thereof

Country Status (1)

Country Link
CN (1) CN1549286A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7649730B2 (en) 2007-03-20 2010-01-19 Avx Corporation Wet electrolytic capacitor containing a plurality of thin powder-formed anodes
US7760487B2 (en) 2007-10-22 2010-07-20 Avx Corporation Doped ceramic powder for use in forming capacitor anodes
US7760488B2 (en) 2008-01-22 2010-07-20 Avx Corporation Sintered anode pellet treated with a surfactant for use in an electrolytic capacitor
US7768773B2 (en) 2008-01-22 2010-08-03 Avx Corporation Sintered anode pellet etched with an organic acid for use in an electrolytic capacitor
CN101859649A (en) * 2010-04-16 2010-10-13 株洲宏达电子有限公司 Solid electrolyte tantalum-niobium composite capacitor and preparation method thereof
US7852615B2 (en) 2008-01-22 2010-12-14 Avx Corporation Electrolytic capacitor anode treated with an organometallic compound
CN1577659B (en) 2003-07-22 2011-08-17 H.C.施塔克股份有限公司 Method of making capacitors
CN101404212B (en) 2008-11-13 2011-09-21 北京七一八友益电子有限责任公司 Sheet type niobium oxide solid electrolyte capacitor and its manufacturing method
CN101258572B (en) 2005-09-02 2012-01-04 Avx有限公司 Method of forming anode bodies for solid state capacitors
US8203827B2 (en) 2009-02-20 2012-06-19 Avx Corporation Anode for a solid electrolytic capacitor containing a non-metallic surface treatment
US8264819B2 (en) 2005-08-19 2012-09-11 Avx Corporation Polymer based solid state capacitors and a method of manufacturing them
CN104025221A (en) * 2011-10-26 2014-09-03 H.C. 施塔克股份有限公司 Distortion-free screen-printed anodes on ta/nb sheet
CN104495929A (en) * 2014-12-26 2015-04-08 宁夏东方钽业股份有限公司 Low-valent niobium oxide powder and preparation method thereof

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1577659B (en) 2003-07-22 2011-08-17 H.C.施塔克股份有限公司 Method of making capacitors
US8264819B2 (en) 2005-08-19 2012-09-11 Avx Corporation Polymer based solid state capacitors and a method of manufacturing them
US8114340B2 (en) 2005-09-02 2012-02-14 Avx Corporation Method of forming anode bodies for solid state capacitors
CN101258572B (en) 2005-09-02 2012-01-04 Avx有限公司 Method of forming anode bodies for solid state capacitors
US7649730B2 (en) 2007-03-20 2010-01-19 Avx Corporation Wet electrolytic capacitor containing a plurality of thin powder-formed anodes
US7760487B2 (en) 2007-10-22 2010-07-20 Avx Corporation Doped ceramic powder for use in forming capacitor anodes
US7852615B2 (en) 2008-01-22 2010-12-14 Avx Corporation Electrolytic capacitor anode treated with an organometallic compound
US7768773B2 (en) 2008-01-22 2010-08-03 Avx Corporation Sintered anode pellet etched with an organic acid for use in an electrolytic capacitor
US7760488B2 (en) 2008-01-22 2010-07-20 Avx Corporation Sintered anode pellet treated with a surfactant for use in an electrolytic capacitor
CN101404212B (en) 2008-11-13 2011-09-21 北京七一八友益电子有限责任公司 Sheet type niobium oxide solid electrolyte capacitor and its manufacturing method
US8203827B2 (en) 2009-02-20 2012-06-19 Avx Corporation Anode for a solid electrolytic capacitor containing a non-metallic surface treatment
CN101859649B (en) 2010-04-16 2012-02-08 株洲宏达电子有限公司 Solid electrolyte tantalum-niobium composite capacitor and preparation method thereof
CN101859649A (en) * 2010-04-16 2010-10-13 株洲宏达电子有限公司 Solid electrolyte tantalum-niobium composite capacitor and preparation method thereof
CN104025221A (en) * 2011-10-26 2014-09-03 H.C. 施塔克股份有限公司 Distortion-free screen-printed anodes on ta/nb sheet
CN104025221B (en) * 2011-10-26 2017-03-01 H.C.施塔克股份有限公司 No deformation of the stencil printing anode Ta- / Nb- sheet
CN104495929A (en) * 2014-12-26 2015-04-08 宁夏东方钽业股份有限公司 Low-valent niobium oxide powder and preparation method thereof

Similar Documents

Publication Publication Date Title
US6322912B1 (en) Electrolytic capacitor anode of valve metal oxide
US6416730B1 (en) Methods to partially reduce a niobium metal oxide oxygen reduced niobium oxides
US6527937B2 (en) Method of making a capacitor anode of a pellet of niobium oxide
US3867129A (en) Anodically oxidizable metal powder
US3564348A (en) Titanium-antimony alloy electrode electrical capacitor
Broughton et al. Investigation of thin sputtered Mn films for electrochemical capacitors
US20040238848A1 (en) Composite titanium oxide film and method for formation thereof and titanium electrolytic capacitor
JP2008098279A (en) Electrode material for aluminum electrolytic capacitor, and its manufacturing method
US3302073A (en) Electrical capacitors and electrode material therefor
US6876083B2 (en) Electrolytic capacitor and a fabrication method therefor
JP2004349658A (en) Electrolytic capacitor
US20010036056A1 (en) Methods to partially reduce a niobium metal oxide and oxygen reduced niobium oxides
JP2003229330A (en) Solid electrolytic capacitor and manufacturing method thereof
US3599053A (en) Improved titanium alloy capacitor
US6835225B2 (en) Niobium sintered body, production method therefor, and capacitor using the same
US20070211412A1 (en) Wet electrolytic capacitor
US5184286A (en) Process for manufacturing tantalum capacitors
US2960642A (en) Dielectric films and capacitors employing the same
CN101651046A (en) Preparation method of Al2O3/TiO2 compound dielectric film aluminum electrode foil
CN1545713A (en) Method of manufacturing solid electrolytic capacitor
US20020104404A1 (en) Niobium powder, sintered body thereof and capacitor using the same
CN1635592A (en) High dielectric and reduction resistant ceramic material and prepared ceramic capacitor
CN101226827A (en) Ultra-high dielectric constant multilayer ceramic capacitor medium and preparation method thereof
US3321677A (en) Electrolytic capacitor having electrode containing niobium-zirconium-titanium
JP2005325448A (en) Tantalum powder, and solid electrolyte capacitor using it

Legal Events

Date Code Title Description
C06 Publication
C10 Entry into substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)