CN1413311A - 高强度光到低熔点光纤的耦合 - Google Patents

高强度光到低熔点光纤的耦合 Download PDF

Info

Publication number
CN1413311A
CN1413311A CN00817471A CN00817471A CN1413311A CN 1413311 A CN1413311 A CN 1413311A CN 00817471 A CN00817471 A CN 00817471A CN 00817471 A CN00817471 A CN 00817471A CN 1413311 A CN1413311 A CN 1413311A
Authority
CN
China
Prior art keywords
optical fiber
waveguide
output
light
optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN00817471A
Other languages
English (en)
Inventor
罗纳德·A·弗兰特
肯尼思·K·利
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cogent Light Technologues Inc
Original Assignee
Cogent Light Technologues Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cogent Light Technologues Inc filed Critical Cogent Light Technologues Inc
Publication of CN1413311A publication Critical patent/CN1413311A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4298Coupling light guides with opto-electronic elements coupling with non-coherent light sources and/or radiation detectors, e.g. lamps, incandescent bulbs, scintillation chambers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0005Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being of the fibre type
    • G02B6/0006Coupling light into the fibre
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4296Coupling light guides with opto-electronic elements coupling with sources of high radiant energy, e.g. high power lasers, high temperature light sources
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4204Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms
    • G02B6/4206Optical features

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Couplings Of Light Guides (AREA)
  • Light Guides In General And Applications Therefor (AREA)
  • Mechanical Coupling Of Light Guides (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)

Abstract

一种用于低熔点光纤(24)的具有增强的功率使用能力的光纤照明系统,其使用一光均化器(29)。本发明的均化器最好包括一具有多边形横截面的棒。该光均化器(29)的输出强度基本上是均匀的从而该输出光纤(24)不会被由非均匀强度光(26)产生的热点所破坏。

Description

高强度光到低熔点光纤的耦合
发明领域
本发明涉及光纤系统。特别是,本发明提供了一种使用均化器将高强度光耦合到低熔点光纤中以提供更均匀的强度分布的方法和装置。
背景技术
在光纤光学照明系统领域中,从诸如氙气灯和金属卤化物灯的弧光灯发出的光能量能够达到上百瓦特。从这些光源向应用部分发射光的光纤由用石英、玻璃或塑料制成的单光纤或光纤束组成。塑料光纤从本质上说不能在高温下操作。尽管单玻璃和石英光纤能够操作在相对高的温度,包含这样光纤的光纤束在各个光纤之间由于环氧而具有固定的温度敏感性。
从弧光灯发出的光通常通过单独或组合使用镜子和透镜耦合到光纤中。为了尽可能保持弧光的亮度,优化的光学系统将在光纤上以尽可能小的点和固定的放大率在光纤上产生弧光的成像。由于弧光本身的固有特性,亮度是不均匀的,结果在光纤上的弧光成像也将是不均匀的,从而产生“热点”。这些热点可能在穿过光纤的平均亮度达到极限值之前在定位点产生比个别的光纤的材料破坏极限值更高的亮度。这对光纤产生很大的破坏。因此,能够通过光纤传递的总能量对非均匀图象比对均匀图象小是必要的。因此,具有尽可能均匀的输入亮度面,从而全部能量能够在破坏极限值达到任一单个点之前被增加。这将允许更多的光无破坏地耦合到光纤中。
为了向低熔点光纤中耦合更多的能量已经使用了几种方法。美国专利号5,898,802公开了一种使用有保险丝的光纤束传播光束的强度剖面的方法,从而减少了峰值亮度并允许更多的光耦合到聚合物光纤,该文件的说明书在这里引用作为参考。尽管使用装有保险丝的光纤束传播强度剖面,但是它还有限制并不能全部产生平面的剖面。美国专利号5,761,356公开了使用空间滤波器滤除输入光束向低熔点光纤的输出中任意不能控制的模式。尽管该方法减少了在光纤的输入端从不能控制的模式中热量的散失,但光的剖面仍然是非均匀的,因此不能产生最优化的结果。
发明内容
因此,本发明的一个目的是提供一种向光纤提供均匀强度剖面光束的方法和装置。
而且,本发明的另一个目的在于提供一种将高强度光有效地耦合进低熔点光纤的方法和装置。
本发明提供一种使用均化器将高强度光耦合进低熔点光纤的方法和装置,该均化器是具有多边形横截面的光波导管的一部分。该均化器允许低熔点光纤位于远离该耦合系统的焦点的位置,并同时提供了一种混合装置,其中,该输入光的非均匀强度剖面将在输出端基本上成为均匀的。本发明使得在光纤的任意部分达到破坏极限值之前允许更多的光耦合到光纤中。最好是,该均化器是具有至少局部为多边形横截面的光波导管的一部分。
附图说明
图1是现有技术中具有抛物面反射镜的光纤照明器的示意图。
图2是现有技术中具有椭圆反射镜的光纤照明器的示意图。
图3是现有技术中具有离轴环形反射镜的光纤照明器的示意图。
图4是表示在照明系统的目标点处呈高斯形分布的输出光的典型的强度剖面的图。
图5A和5B是本发明实施例中使用的具有正方形横截面的均化器的示意图。
图6为来自正方形均化器的输出光的强度剖面的标绘图,比如图5所示出的那样,该图示出该输出强度剖面基本上是均匀的。
图7为来自圆柱形均化器的输出光的强度剖面的标绘图,该图示出该输出强度剖面是有尖顶的。
图8A-8F是多种多边形横截面的示意图,它们可用于本发明的实施例中提供均匀的强度剖面输出。
图9A和9B是本发明的均化器的示意图,其包括一个输入端正方形棒和一输出端圆形棒。
图10是本发明的均化器的示意图,其具有用光滑过渡连接的正方形输入端和圆形输出端。
图11是本发明的正方形横截面均化器的示意图,其从较小的入口横截面逐渐过渡至更大的出口横截面。
图12是本发明具有正方形横截面输入的均化器的示意图,该正方形横界面输入逐渐过渡至具有更大面积的圆形横截面输出。
图13A和13B是用于本发明实施例中的八角形均化器的示意图,它通过用一外接多边形来接近圆形光纤的横截面积来与圆形输出光纤高效匹配。
图14是本发明的具有离轴结构和包括单波导管的均化器的光纤照明系统的示意图。
图15是本发明具有一离轴结构和一均化器的光纤照明系统的示意图,该均化器包括一多边形棒和一圆形棒。
图16示出了从正方形均化器测量的强度剖面。
具体实施方式
图1示出了本技术领域公知的普通光纤照明器的内部部件。其包括弧光灯1,抛物面反射镜2,聚焦镜头3和输出光纤4。根据不同的应用,灯可以具有多种类型,包括氙气弧光灯、金属卤化物弧光灯或卤素灯。灯的辐射面放在抛物面反射镜2的焦点上,反射镜2沿着反射镜的光轴5放置。然后该灯的输出被抛物面反射镜2收集并被平行导向透镜3。抛物面反射镜可被涂覆以择优地反射某些波长的光。例如,对于可视应用而言,使用冷涂覆,其中,不反射所发射的UV和红外线,从而只有光谱中的可见光部分被导向输出。来自反射镜2的平行光输出再由聚焦透镜3聚焦成更小的点到输出光纤4的末端上。
图2示出了使用椭圆反射镜6的该照明器的另一种结构。灯1的辐射面位于反射镜6的一个焦点处,且输出光纤4位于反射镜6的另一个焦点处。
图1和图2的结构都具有一共同的缺点,即系统的放大倍数大于1并且随着角度的改变而改变,因此会降低输出聚焦点的亮度。图3描述了一个离轴系统,其中光由一次反射器7成像在输出光纤4上。如美国专利4,757,431和5,430,634中所论述,这里参考引用其说明书,这样的离轴结构产生近似1∶1的放大倍数,且其在所有的角度上均基本上保持不变,从而保持从灯1射来的原始光的亮度。适用于这样的离轴结构的一次镜可以是几种已知的几何形状,包括球形、椭圆形和环形。该结构使系统的输出高于具有同一灯1的其他系统。在该结构中,通过使用后向反射镜8可进一步增加输出,使用该反射镜8,在一次镜的相对侧发出的光被反射回输出的方向。与前一例类似,该反射镜也可以为了特殊的应用而被涂覆。
图4示出了在图1-3中描述的系统中在焦点、输出光纤的输入端形成的光成像的典型的强度剖面。它通常是圆形对称或“高斯型”的,其中中心的强度高于两边的强度。尽管中心强度高,由于所占有的面积小,因此在该尖峰内的整个能量还是比较小并且大部分能量实际上位于远离中心的具有较低强度的位置。光纤通常容易在它们的输入表面受到热破坏。该破坏开始的温度与构成光纤的材料类型有关。例如,对单塑料光纤,典型的操作温度是小于85℃。由于塑料的低的热传导性,焦点的高峰强度会在输出光纤的中心产生局部加热,从而破坏光纤。对于这些低熔点光纤的高输出操作,本发明在聚焦点建有均匀剖面,这使得在没有局部加热的危险的情况下,将最大量的光耦合进光纤。这改进了耦合效率并防止了对光纤过早的破坏。
图5A和5B示出本发明的实施例,其中均化器是具有正方形横截面的光传导棒。图5A示出一均化器,它是没有涂层的棒9,其中在玻璃到空气界面处产生全内反射。对于高功率的应用该棒可由石英制成。对低功率的应用,则可使用玻璃和塑料。该棒包括光轴5,基本上垂直于光轴的输入面10和输出面11。选择长度使得输出强度剖面基本上是均匀的。图5B示出了一种均化器,它是具有芯部12和涂层13的棒9,这对于常见光纤是常用的,反射将发生在芯部和涂层的界面14。进入输入表面10的光将沿着该正方形棒被引导到输出面11,且在界面14进行多次反射。这些多次反射的最终结果是将混合光且在这种情况下将其强度剖面改变为基本上均匀的剖面。
可使用输入面处的点光源在该正方形棒形均化器上进行计算机模拟。对于模拟来说,棒的尺寸是横截面为4mm×4mm,长为30mm。记录输出面的强度剖面。图6示出了模拟的结果。如图所示,强度剖面基本上是均匀的。相反,当使用常用的直径为4mm和长为30mm的圆形棒进行模拟时,产生非均匀的输出。如图7所示(对应于图6)输出剖面在中心具有顶点。该比较显示正方形棒适用于产生均匀的强度剖面,而圆形棒则不适合。
使用从模拟点光源的小光纤的光输出作为均化器的输入进行试验且扫描输出强度剖面。结果证实了计算机模拟。图16示出了试验结果,测量了4mm×5mm×3.5mm的熔融石英棒的输出能量分布。除了在(4.4)角的结果,该分布证实了计算机模型。由于制作过程中的倒角,因此角处的结果可能会失真。
进一步的研究继续表明包括图8A-8F所描述的那些形状的多种多边形横截面形状都能够用来产生均匀的强度剖面。很明显,对本领域技术人员来说本发明不限于具有图中所示的形状的均化波导管。在本发明的宗旨内可有无数的多边形横截面供使用,包括具有很多边和不等长边的多边形。为了生产的简化和有效地耦合进通常是圆形的输出光纤,较佳的是使用具有多至十边形的规则多边形横截面的波导管。
可将来自诸如那些由本发明的均化器产生的基本均匀的强度剖面点的最大量的光耦合进输出光纤依赖于该光纤的破坏临界强度及该光纤的横截面积是否与均化器的输出横截面积紧密配合。为了向圆形光纤耦合最大量的光,全部输入表面都应当被充分利用,这要求混合光元件的光输出接近相同直径的圆形物体。在本发明的宗旨内,这能够用多种方法实现。图9A示出本发明的一个实施例,它包括一个均化器,其中,为了适当的光混合,输入表面横截面是正方形的。来自正方形棒16的具有均匀强度剖面的输出被耦合进圆形棒15,其进一步将来自正方形输入的光混合成一圆形输出。如图9B所示,圆内配合的正方形的面积仅占64%,在圆内配合正方形是发射全部光所必需的。
进行计算机模拟所使用的是具有3mm×3mm横截面和10mm长的正方形棒装进直径4.4mm,长10mm的圆形棒中。在正方形棒与圆形棒界面的强度剖面的计算机模拟显示在圆形棒的输出端的强度剖面基本上是均匀并且填满了该整个圆形横截面。这样的剖面尤其适于被用作一输出光纤的输入,因为它基本上消除了热点。
本发明的另一个实施例在图10中示出,其中一单一光学元件包括棒9,其从横截面为正方形的输入面10到横截面为圆形的输出面11具有光滑的过渡。
对于需要输出数值孔径与输入数值孔径不同的应用,均化器可以是一锥形的光学元件。另外,如图10中所示的实施例,正方形横截面可以被转换为椭圆形、矩形或其他多边形横截面以改变焦点的强度剖面,以便与输出的目标形状相匹配或改变发射光的角度分布。
图11示出了一个实施例,其中输入横截面是矩形且小于输出横截面面积。在这种情况下,从输出面11出来的光的数值孔径小于进入输入面10的光的数值孔径。图12示出了本发明的另一个实施例,它具有横截面为矩形的输入面10和更大的圆形横截面输出面11。尽管上述两个例子都是输出横截面积大于输入横截面积,但是反过来,当较大的输入横截面积适合于某种应用时,也可使用较大的输入横截面积,比如图象投影系统。
尽管图9和10所示的均化器产生了期望的结果,但是制造这样结构的方法可能是昂贵的。图13A示出一八角形均化器,其中它与其他形状一样具有基本上相同优势的混和特性。但是当使用以外接圆形输出光纤16时,图13B所描述的重叠面积是90%,该面积在许多应用是足够的。
图14描述了本发明的另一个较佳实施例。它包括在离轴结构中和作为一次反射器的环形凹面镜27排列在一起的灯21。可以使用不同类型的灯,包括金属卤化物、氙气、汞或氙化汞(mercury-xenon)。这种离轴结构在美国专利号5,430,643中进行了详细论述,其在之前已经被引用作为参考。对于某些应用,还可使用圆形凹面或椭圆凹面一次反射器27。该凹面反射镜27可选择被涂覆多层电介质薄膜,该薄膜只反射可见光并且使UV和IR穿过。因此,只有可见光被聚焦在均化器输入面29a上。后向反射镜28用来通过将来自灯另一侧的光反射回一次反射器27反射光来增加系统的输出。该结构对所有角度的光辐射均产生近似1∶1的放大倍数,从而保持了成像到均化器上时的弧光的亮度。灯21的弧光和来自后向反射镜28的图象被聚焦在均化器29的输入面29a上,如由光线26所示的那样,均化器29为一锥形的多边形棒,比如正方形棒。
通过描述,在成像点放置一包括一锥形正方形棒的均化器29,输入面29a的边长为2mm。在这种情况下,一次反射器27的数值孔径为0.7,且使用350W的金属卤化物灯。输出光纤24是直径为5mm和操作数值孔径为0.5的熔融光纤束。均化器29的正方形输出面23的边长为3.5mm,并且锥形正方形棒从输入到输出的总长度是35mm。该锥度比给出了近似0.41的输出数值孔径,它稍稍小于光纤束的数值孔径,因此为有效耦合并降低光纤内的传播损耗提供了一些容限。当然,也可改变均化器的长度或输入/输出面积以对任意输出光纤24的数值孔径的最佳匹配。在这种情况下,输出的强度未达到输出光纤的破坏极限值。结果,从正方形输出面向输出光纤束24的圆形输入端的耦合就不再是一个问题。
对以上的实施例能够作出各种改变以使它适应系统的特殊需要。例如,输出光纤24可以是单塑料光纤、塑料光纤束、玻璃光纤或玻璃光纤束中的任意一种。同样,根据灯21的功率,对高功率应用均化器可由石英制成,对低功率应用其可由低温玻璃乃至塑料制成,并且可以涂覆或不涂覆。
在图15所述的本发明的另一个实施例中,当使用具有更高功率输出的灯21时,可将圆形棒22插于均化器29的输出面23和输出光纤24之间以通过扩散从正方形横截面进入圆形横截面的输出来降低强度尖峰。如图9C和9D所示,这有助于更均匀地分布光强度。
尽管已经尽可能详细地举例并描述了本发明,但是本发明并不限于已经提出的细节,而由权利要求限定的范围确定。虽然本发明是被如此描述的,但是对本领域技术人员来说很显然本发明的实施例可以在不脱离本发明的宗旨和范围的条件下以很多方式被改变和修改。因此,任何以及所有的这种修改都被应包含在所附权利要求的范围内。

Claims (39)

1.一种从光源发射光以增加光纤的功率使用能力的方法,包括以下步骤:
辐射具有非均匀光强度剖面的光;
均化所述强度剖面以再分布该光,使得该剖面基本上均匀;以及
将该再分布后的光发射到至少一个光纤中。
2.根据权利要求1的方法,其中该非均匀强度剖面呈高斯型分布。
3.根据权利要求1的方法,其中所述强度剖面的再分布使用具有一光轴且具有沿所述光轴至少一部分的多边形横截面的光波导管来执行。
4.根据权利要求3的方法,其中所述多边形横截面可具有多至十条边。
5.根据权利要求3的方法,其中所述光波导管还包含沿所述光轴至少一部分的基本上为圆形的横截面。
6.根据权利要求3的方法,其中沿所述光波导管的光轴,该多边形横截面平滑地过渡为基本上为圆形的横截面。
7.根据权利要求3的方法,其中该波导管具有
沿该光轴的长度;
第一和第二表面,每个表面位于该长度的相对两端,且每个表面具有一面积;
所述第一和第二表面具有不同的面积。
8.根据权利要求7的方法,其中沿着所述光波导管的长度,该多边形横截面光滑地过渡为基本上为圆形的横截面,且该第一表面的面积光滑地过渡为该第二表面的面积。
9.根据权利要求1的方法,其中所述辐射光的步骤包括聚集来自点光源的光。
10.据权利要求1的方法,其中所述均化由一波导管来完成,所述波导管包括:
用于混合在该波导管的输入端收到的所述光强度剖面的均化器;和
至少一个对温度敏感的光纤,其紧靠地连接至所述均化器的输出;且
其中所述发射还包括从所述光源发射光穿过所述波导管,以便产生基本上均匀的剖面引入至所述至少一个光纤,其中所述至少一个光纤不会受到所述光地破坏。
11.根据权利要求10的方法,其中所述光源提供基本上具有非均匀强度剖面的光。
12.根据权利要求11的方法,其中非均匀强度剖面呈高斯型分布。
13.根据权利要求10的方法,其中该波导管具有一光轴和沿所述光轴至少一部分的多边形横截面。
14.根据权利要求13的方法,其中所述多边形横截面具有多至十条边。
15.根据权利要求13的方法,其中所述光波导管还包括沿所述光轴至少一部分的基本上为圆形的横截面。
16.根据权利要求13的方法,其中沿着所述光波导管的光轴,该多边形横截面光滑地过渡到基本上为圆形的横截面。
17.根据权利要求13的方法,其中该波导管具有
沿着该光轴的长度;
第一和第二表面,每个表面位于该长度的相对两端,且每个表面具有一面积;且
所述第一和第二表面具有不同的面积。
18.根据权利要求17的方法,其中沿着所述光波导管的长度方向,该多边形横截面光滑地过渡为基本上为圆形的横截面,且该第一表面的面积光滑地过渡为第二表面的面积。
19.根据权利要求13的方法,其中所述辐射光的步骤包括聚集来自点光源的光。
20.一种用于执行权利要求1的方法的光纤照明系统,包括:
一个光源;
一个波导管,其具有一输入端,一输出端和一光轴,其中所述输入端的位置紧靠所述光源,使得绝大部分的光被耦合进该波导管中,沿该光轴传播,并通过该输出端输出,所述输出光在输出端具有基本上均匀的强度剖面,并且其中所述波导管具有沿所述光轴至少一部分的多边形横截面;
至少一个输出光纤的位置紧靠所述输出端,使得可将从所述输出端出来的光高效率地耦合到所述至少一个输出光纤中。
21.根据权利要求20的光纤照明系统,其中所述波导管由从包括石英、玻璃和塑料的组中选择的材料构成。
22.据权利要求20的光纤照明系统,其中所述多边形横截面是规则的,且可包括多至十条边。
23.用于执行权利要求1的方法的光纤均化器,包括:
第一波导管,具有对应于第一输入面积的第一输入端,对应于第一输出面积的第一输出端,和具有基本上为多边形形状的横截面的第一光轴,并且其中所述第一输入端和所述第一输出端基本上垂直于所述第一光轴;
第二波导管,具有对应于第二输入面积的第二输入端,对应于第二输出面积的第二输出端,和具有基本上为圆形的横截面形状的第二光轴,并且其中所述第二光轴基本上与所述第一光轴在一条直线上,并且所述第二波导管的所述第二输入端被置于紧靠所述第一波导管的第一输出端的位置。
24.根据权利要求23的光纤均化器,其中所述第一波导管的第一输出面积完全包含在所述第二波导管的所述第二输入面积内。
25.根据权利要求23的光纤均化器,其中所述第一输入面积等于所述第一输出面积。
26.根据权利要求23的光纤均化器,其中所述第二输入面积等于所述第二输出面积。
27.根据权利要求23的光纤均化器,其中所述第一输入面积小于所述第一输出面积。
28.根据权利要求23的光纤均化器,其中所述第一输入面积大于所述第一输出面积。
29.根据权利要求23的光纤均化器,其中所述第二输入面积小于所述第二输出面积。
30.权利要求23的光纤均化器,其中所述第二输入面积大于所述第二输出面积。
31.权利要求23的光纤均化器,其中所述第一波导管的所述第一输出端和所述第二波导管的所述第二输入端用光滑的过渡物理连接在一起以便形成一整体的波导管。
32.根据权利要求23的光纤均化器,其中所述第一波导管具有基本上为规则多边形的横截面形状,该多边形包括多至十条边。
33.用于执行权利要求1的方法的光纤照明系统,包括:
一个弧光灯;
用于收集来自所述弧光灯的光并将所收集的光聚焦至一焦点的一次反射器;
具有第一输入端和第一输出端的多边形棒,所述多边形棒被放置为使得该输入端与所述焦点重合,以便接收由所述一次反射器收集的最佳的光数量;
具有第二输入端和第二输出端的输出光纤,所述第二输入端耦合至所述多边形棒的所述第一输出端,从而基本上所有从多边形棒的第一输出端出来的光都被耦合进所述输出光纤。
34.根据权利要求33的光纤照明系统,其中所述一次反射器包括选自包括球面反射镜、椭圆形反射镜和环形反射镜的组中的一反射器。
35.根据权利要求33的光纤照明系统,其中该多边形棒可由从包括石英、玻璃和塑料的组中选择的材料制成。
36.根据权利要求33的光纤照明系统,其中该输出光纤可从包括塑料光纤、塑料光纤束、单玻璃光纤和玻璃光纤束的组中选择。
37.根据权利要求33的光纤照明系统,其中该多边形棒是锥形的。
38.根据权利要求33的光纤照明系统,其中该多边形棒具有一正方形横截面,所述第一输入端的横截面的边长大约为2mm,所述第一输出端的横截面的边长大约为3.5mm,且其中所述多边形棒的轴向长度从所述第一输入端向所述第一输出端延伸,且所述轴向长度大约为3.5mm。
39.根据权利要求33的光纤照明系统,还包括具有第三输入端和第三输出端的圆形棒,所述圆形棒位于所述多边形棒的所述第一输出端和所述输出光纤的第二输入端之间,使得来自所述多边形棒的第一输出端的光耦合进所述圆形棒的所述第三输入端,且使得来自所述圆形棒的所述第三输出端的光耦合到所述输出光纤的所述第二输入端。
CN00817471A 1999-12-20 2000-12-12 高强度光到低熔点光纤的耦合 Pending CN1413311A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US09/468,410 US6595673B1 (en) 1999-12-20 1999-12-20 Coupling of high intensity light into low melting point fiber optics using polygonal homogenizers
US09/468,410 1999-12-20

Publications (1)

Publication Number Publication Date
CN1413311A true CN1413311A (zh) 2003-04-23

Family

ID=23859703

Family Applications (1)

Application Number Title Priority Date Filing Date
CN00817471A Pending CN1413311A (zh) 1999-12-20 2000-12-12 高强度光到低熔点光纤的耦合

Country Status (11)

Country Link
US (1) US6595673B1 (zh)
EP (1) EP1247126A1 (zh)
JP (1) JP2003518272A (zh)
KR (1) KR20020059765A (zh)
CN (1) CN1413311A (zh)
AU (1) AU2083301A (zh)
BR (1) BR0016514A (zh)
CA (1) CA2394772A1 (zh)
MX (1) MXPA02006043A (zh)
TW (1) TW594079B (zh)
WO (1) WO2001046734A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103477257A (zh) * 2011-03-15 2013-12-25 高通Mems科技公司 用于光导的光转向特征图案
CN104344353A (zh) * 2014-11-05 2015-02-11 苏州思莱特电子科技有限公司 一种导光装置
CN105700156A (zh) * 2014-12-16 2016-06-22 赛洛米克斯股份有限公司 光学均化器
CN106066001A (zh) * 2015-04-21 2016-11-02 肖特股份有限公司 具有光导侧面发光的光纤束的照明装置

Families Citing this family (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6856727B2 (en) * 2001-03-02 2005-02-15 Wavien, Inc. Coupling of light from a non-circular light source
AT411403B (de) * 2001-12-05 2003-12-29 Photonic Optische Geraete Gmbh System zur abbildung einer kleinen lichtquelle
JP3661688B2 (ja) * 2002-03-26 2005-06-15 セイコーエプソン株式会社 照明装置
JP3979168B2 (ja) * 2002-04-26 2007-09-19 ヤマハ株式会社 鍵盤楽器の押鍵検出装置における発光部構造
FR2850616B1 (fr) * 2003-01-30 2006-02-17 Valeo Vision Procede d'eclairage module d'une route et projecteur de vehicule mettant en oeuvre ce procede
US20090185392A1 (en) * 2003-03-26 2009-07-23 Optim, Inc. Detachable illumination system
JP2005070443A (ja) * 2003-08-25 2005-03-17 Olympus Corp 光学装置、照明装置及びプロジェクタ
US7684668B2 (en) * 2003-12-23 2010-03-23 The Boeing Company Directional light homogenizer assembly
US6966685B2 (en) * 2004-02-26 2005-11-22 World Hint Limited Distributed light illumination system
US7155106B2 (en) * 2004-05-28 2006-12-26 The Boeing Company High efficiency multi-spectral optical splitter
WO2006092320A2 (de) * 2005-03-03 2006-09-08 Schott Ag Strahlformungseinrichtung eines optischen systems, insbesondere eines optischen signalaufnehmers und optisches system, insbesondere optischer signalaufnehmer mit strahlformungseinrichtung
US7182495B2 (en) * 2005-05-03 2007-02-27 The Boeing Company Light mixing and homogenizing apparatus and method
US7173775B2 (en) * 2005-05-11 2007-02-06 The Boeing Company Light mixing homogenizer apparatus and method
US7113684B1 (en) * 2005-06-15 2006-09-26 The Boeing Company Hex tube light homogenizer splitter
US7265906B2 (en) * 2005-07-12 2007-09-04 The Boeing Company Tri-to-hex light mixing and homogenizing apparatus and method
US7324731B2 (en) * 2005-08-09 2008-01-29 The Boeing Company Systems and methods for distributing signals communicated on fiber optic transmission lines
US7973996B2 (en) * 2005-12-09 2011-07-05 Scram Technologies, Inc. Optical system for a digital light projection system including a 3-channel LED array light engine
US7508590B2 (en) * 2005-12-09 2009-03-24 Scram Technologies, Inc. Optical system for a digital light projection system including 3-channel and 4-channel LED array light engines
US7657147B2 (en) * 2006-03-02 2010-02-02 Solar Light Company, Inc. Sunlight simulator apparatus
DE102006039074B4 (de) * 2006-08-09 2009-04-02 Jenoptik Laser, Optik, Systeme Gmbh Optische Anordnung zum Pumpen von Festkörperlasern
US7603017B2 (en) * 2007-02-01 2009-10-13 The Boeing Company Multi-color curved multi-light generating apparatus
US8540409B2 (en) * 2010-05-27 2013-09-24 Osram Opto Semiconductors Gmbh Light guide and semiconductor luminaire
FR2968745B1 (fr) 2010-12-14 2012-12-07 Valeo Systemes Thermiques Temoin lumineux
US8831396B1 (en) * 2011-10-31 2014-09-09 Nlight Photonics Corporation Homogenizing optical fiber apparatus and systems employing the same
JP5589007B2 (ja) * 2012-01-18 2014-09-10 シャープ株式会社 発光装置、照明装置および車両用前照灯
US9709811B2 (en) * 2013-08-14 2017-07-18 Kla-Tencor Corporation System and method for separation of pump light and collected light in a laser pumped light source
JPWO2017002267A1 (ja) * 2015-07-02 2018-04-05 パイオニア株式会社 光反射装置及び発光装置
WO2017080564A1 (en) 2015-11-10 2017-05-18 Nkt Photonics A/S An element for a preform, a fiber production method and an optical fiber drawn from the preform
KR20180089513A (ko) 2015-12-23 2018-08-08 엔케이티 포토닉스 에이/에스 중공 코어 광섬유 및 레이저 시스템
EP4009087A1 (en) 2015-12-23 2022-06-08 NKT Photonics A/S Photonic crystal fiber assembly
DE102017213466A1 (de) * 2017-08-03 2019-02-07 Zumtobel Lighting Gmbh Lichtmischleiter
DE102017213462A1 (de) * 2017-08-03 2019-02-07 Zumtobel Lighting Gmbh Lichtmischleiter
US11474288B2 (en) 2017-05-04 2022-10-18 Nkt Photonics A/S Light system for supplying light
CN112856272A (zh) * 2019-11-12 2021-05-28 深圳市绎立锐光科技开发有限公司 匀光元件、光源系统以及照明设备

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1504490A (en) * 1975-11-28 1978-03-22 Bowthorpe Hellerman Ltd Optical fibre connector
US4744615A (en) * 1986-01-29 1988-05-17 International Business Machines Corporation Laser beam homogenizer
US4757431A (en) 1986-07-01 1988-07-12 Laser Media Off-axis application of concave spherical reflectors as condensing and collecting optics
JPS6314108A (ja) * 1986-07-07 1988-01-21 Fujikura Ltd 光機器結合用フアイバ
US4958263A (en) * 1988-11-02 1990-09-18 General Electric Company Centralized lighting system employing a high brightness light source
US4932747A (en) * 1989-09-07 1990-06-12 The United States Of America As Represented By The Secretary Of The Navy Fiber bundle homogenizer and method utilizing same
JPH04326306A (ja) * 1991-04-26 1992-11-16 Mitsubishi Rayon Co Ltd 光ファイバーライトガイド
US5224200A (en) * 1991-11-27 1993-06-29 The United States Of America As Represented By The Department Of Energy Coherence delay augmented laser beam homogenizer
US5341445A (en) * 1992-03-27 1994-08-23 General Electric Company Polygonal-shaped optical coupling member for use with a high brightness light source
US5430634A (en) * 1992-08-03 1995-07-04 Cogent Light Technologies, Inc. Concentrating and collecting optical system using concave toroidal reflectors
US5615008A (en) * 1994-12-21 1997-03-25 Beckman Instruments, Inc. Optical waveguide integrated spectrometer
FR2738082B1 (fr) * 1995-08-21 1997-10-17 Quantel Dispositif pour la conformation avec homogeneisation de la repartition spatiale transverse d'intensite, d'un faisceau laser
US5761356A (en) 1996-08-19 1998-06-02 Cogent Light Technologies, Inc. Apparatus and method for coupling high intensity light into low temperature optical fiber
US5898802A (en) * 1997-03-27 1999-04-27 Cogent Light Technologies, Inc. Coupling method and apparatus for coupling polymer fibers to a light source for improving power handling capabilities of the polymer fibers
DE19719728A1 (de) * 1997-05-09 1998-11-12 Nath Guenther Beleuchtungsgerät mit einem Bündel aus Flüssigkeitslichtleitern und einem Strahlungshomogenisator
US6272269B1 (en) * 1999-11-16 2001-08-07 Dn Labs Inc. Optical fiber/waveguide illumination system

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103477257A (zh) * 2011-03-15 2013-12-25 高通Mems科技公司 用于光导的光转向特征图案
CN104344353A (zh) * 2014-11-05 2015-02-11 苏州思莱特电子科技有限公司 一种导光装置
CN105700156A (zh) * 2014-12-16 2016-06-22 赛洛米克斯股份有限公司 光学均化器
US10353130B2 (en) 2014-12-16 2019-07-16 Cellomics, Inc. Optic homogenizer
CN106066001A (zh) * 2015-04-21 2016-11-02 肖特股份有限公司 具有光导侧面发光的光纤束的照明装置

Also Published As

Publication number Publication date
TW594079B (en) 2004-06-21
WO2001046734A1 (en) 2001-06-28
JP2003518272A (ja) 2003-06-03
MXPA02006043A (es) 2004-10-15
EP1247126A1 (en) 2002-10-09
BR0016514A (pt) 2002-09-17
AU2083301A (en) 2001-07-03
KR20020059765A (ko) 2002-07-13
CA2394772A1 (en) 2001-06-28
US6595673B1 (en) 2003-07-22

Similar Documents

Publication Publication Date Title
CN1413311A (zh) 高强度光到低熔点光纤的耦合
CN1208649C (zh) 使用双椭球反射镜将光源的光耦合到目标
CN1287178C (zh) 有透镜的锥形光波导管
US7400805B2 (en) Compact light collection system and method
US7618158B2 (en) Illumination system using filament lamps
CN103026125B (zh) 环形灯照明器、射束成形器及用于照明的方法
US6312144B1 (en) Optical system having retro-reflectors
CN1418323A (zh) 用抛物面反射器为投影系统耦合来自小光源的光
CN1179224C (zh) 改善聚合物光导纤维功率处理能力的方法及装置
CN1160527C (zh) 用于收集和会聚电磁辐射的光学系统
KR20030068132A (ko) 렌즈가 갖춰진 광 파이프를 사용하는 광 집속 및 수집시스템
CN1355893A (zh) 改善从小弧光灯到更大目标的光的耦合
US6554456B1 (en) Efficient directional lighting system
KR20020033112A (ko) 광을 수집 및 집속시키기 위한 시스템
JP2002542507A (ja) ポリマーファイバのパワーハンドリング能力を向上させるための方法および装置
US6318885B1 (en) Method and apparatus for coupling light and producing magnified images using an asymmetrical ellipsoid reflective surface
JP2002517014A (ja) 光ガイドの放物線状及び球形マルチポート照明装置
JPH09178946A (ja) 光伝送体
TW455697B (en) System for collecting and condensing light
Cheng Doubling energy feed efficiency with a new reflector system

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication