CN1397815A - Microphotoelectric machinery for regulatable light delay line - Google Patents
Microphotoelectric machinery for regulatable light delay line Download PDFInfo
- Publication number
- CN1397815A CN1397815A CN02121483A CN02121483A CN1397815A CN 1397815 A CN1397815 A CN 1397815A CN 02121483 A CN02121483 A CN 02121483A CN 02121483 A CN02121483 A CN 02121483A CN 1397815 A CN1397815 A CN 1397815A
- Authority
- CN
- China
- Prior art keywords
- silicon
- optical
- shaped groove
- mirror array
- micro
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000003287 optical effect Effects 0.000 claims abstract description 53
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims abstract description 39
- 229910052710 silicon Inorganic materials 0.000 claims abstract description 39
- 239000010703 silicon Substances 0.000 claims abstract description 39
- 239000013307 optical fiber Substances 0.000 claims abstract description 15
- 230000005540 biological transmission Effects 0.000 abstract description 14
- 238000005516 engineering process Methods 0.000 abstract description 14
- 230000008878 coupling Effects 0.000 abstract description 7
- 238000010168 coupling process Methods 0.000 abstract description 7
- 238000005859 coupling reaction Methods 0.000 abstract description 7
- 230000002457 bidirectional effect Effects 0.000 abstract description 2
- 239000000835 fiber Substances 0.000 description 4
- 238000000034 method Methods 0.000 description 4
- 238000010586 diagram Methods 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 238000001312 dry etching Methods 0.000 description 2
- 238000009616 inductively coupled plasma Methods 0.000 description 2
- 238000002310 reflectometry Methods 0.000 description 2
- 230000009471 action Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 230000001934 delay Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 230000008054 signal transmission Effects 0.000 description 1
Images
Landscapes
- Optical Communication System (AREA)
- Mechanical Light Control Or Optical Switches (AREA)
Abstract
本发明在固定直角反射镜阵列的前方设置有横向调节的移动轴,移动轴上设置有移动直角反射镜阵列;固定直角反射镜阵列的入射口设置有准直透镜A,准直透镜A处设置有硅V形槽A,硅V形槽A内设置有入射光纤;固定直角反射镜阵列的出射口设置有准直透镜B,准直透镜B处设置有硅V形槽B,硅V形槽B内设置有出射光纤。具有:1.采用多次反射技术,对光信号相位进行连续微调,操作方便,使可调光延迟线高度集成和进行大规模生产,并提高性能和降低成本。2.采用硅的V形槽和微透镜,实现光信号和光纤间的高效耦合,减小了耦合损耗。3.可用于高速光传输、光交换、微波数据传输与处理等系统以及相控阵雷达,并实现光信号的双向连续相位微调。
In the present invention, a moving shaft for lateral adjustment is arranged in front of the fixed right-angle mirror array, and a moving right-angle mirror array is arranged on the moving shaft; a collimator lens A is arranged at the entrance of the fixed right-angle mirror array, and a There is a silicon V-shaped groove A, and the incident optical fiber is arranged in the silicon V-shaped groove A; the exit port of the fixed right-angle mirror array is provided with a collimating lens B, and the collimating lens B is provided with a silicon V-shaped groove B, and the silicon V-shaped groove B is provided with outgoing optical fiber. Features: 1. Using multiple reflection technology to continuously fine-tune the optical signal phase, easy to operate, highly integrated and mass-produced adjustable optical delay lines, and improve performance and reduce costs. 2. Silicon V-groove and micro-lens are used to achieve high-efficiency coupling between optical signals and optical fibers, reducing coupling loss. 3. It can be used in systems such as high-speed optical transmission, optical switching, microwave data transmission and processing, and phased array radar, and realizes bidirectional continuous phase fine-tuning of optical signals.
Description
技术领域Technical field
本发明属于光学仪器类,尤其涉及光学微光传输的装置。The invention belongs to the category of optical instruments, in particular to an optical low-light transmission device.
背景技术 Background technique
目前,具有固定延迟或固定延迟间隔的可调光延迟线,已经用于相控阵雷达系统。美国专利6351587 B1,和欧洲专利EP1099965 A2、EP1030534 A2公开了采用多光纤阵列产生固定延迟间隔的可调光延迟线的技术,该技术虽在全光数据传输系统中得到了应用。但是,这种结构的可调光延迟线对信号的相位不能进行连续微调。Currently, tunable optical delay lines with fixed delay or fixed delay intervals have been used in phased array radar systems. U.S. Patent 6351587 B1, and European Patents EP1099965 A2 and EP1030534 A2 disclose the technology of using a multi-fiber array to generate an adjustable optical delay line with a fixed delay interval, although this technology has been applied in an all-optical data transmission system. However, the adjustable optical delay line with this structure cannot continuously fine-tune the phase of the signal.
发明内容Contents of Invention
本发明的目的是提供一种可调光延迟线的微光电机械,解决上述难题,以实现对光信号连续相位微调的需要。The object of the present invention is to provide a micro-optoelectronic mechanism for an adjustable optical delay line, which solves the above-mentioned problems and realizes the need for fine-tuning the continuous phase of the optical signal.
本发明的目的是这样实现的:一种可调光延迟线的微光电机械,其固定直角反射镜阵列的前方设置有横向调节的移动轴,移动轴上设置有移动直角反射镜阵列;固定直角反射镜阵列的入射口设置有准直透镜A,准直透镜A处设置有硅V形槽A,硅V形槽A内设置有入射光纤;固定直角反射镜阵列的出射口设置有准直透镜B,准直透镜B处设置有硅V形槽B,硅V形槽B内设置有出射光纤。The purpose of the present invention is achieved in this way: a micro-optoelectronic machine with an adjustable optical delay line, the front of the fixed right-angle mirror array is provided with a horizontally adjustable moving shaft, and the moving shaft is provided with a moving right-angle mirror array; The entrance of the mirror array is provided with a collimating lens A, and the place of the collimating lens A is provided with a silicon V-shaped groove A, and the incident optical fiber is arranged in the silicon V-shaped groove A; the exit port of the fixed right-angle mirror array is provided with a collimating lens B, the collimating lens B is provided with a silicon V-shaped groove B, and an outgoing optical fiber is arranged in the silicon V-shaped groove B.
由于本发明采用了以上的技术方案,因而具有以下的优点:Since the present invention adopts the above technical scheme, it has the following advantages:
1,采用微光电机械技术(MOEMS),设计可对光信号相位连续微调的可调光延迟线,解决了固定延迟光延迟线不能对信号相位连续微调的缺点;同时,采用目前成熟的硅微加工工艺,使该结构的可调光延迟线高度集成和进行大规模生产,并提高性能和降低成本。1. Using micro-opto-mechanical technology (MOEMS), design an adjustable optical delay line that can continuously fine-tune the phase of the optical signal, which solves the shortcomings of the fixed-delay optical delay line that cannot continuously fine-tune the signal phase; at the same time, adopts the current mature silicon micro The processing technology enables the highly integrated and mass-produced dimmable delay line of this structure, and improves the performance and reduces the cost.
2,采用微光电机械技术,设计可调光延迟线,采用多次反射技术,实现对延迟光程范围的扩展,从而实现时域上对信号延迟时间的扩展。2. Using micro-opto-mechanical technology to design an adjustable optical delay line, using multiple reflection technology to realize the extension of the delay optical path range, so as to realize the extension of the signal delay time in the time domain.
3,采用硅的V形槽和微透镜,实现光信号和光纤间的高效耦合,减小了耦合损耗。尤其采用直角形反射镜技术,实现反射信号相对于入射信号的平行传输,当轴向移动的反射镜产生离轴运动时,保障信号的平行传输和出射光纤的正确耦合。3. Silicon V-groove and micro-lens are used to realize efficient coupling between optical signal and optical fiber, reducing coupling loss. In particular, the right-angle mirror technology is used to realize the parallel transmission of the reflected signal relative to the incident signal. When the axially moving mirror moves off-axis, the parallel transmission of the signal and the correct coupling of the outgoing fiber are guaranteed.
4,本发明可广泛应用于高速光传输与光交换系统、微波数据传输与处理系统以及相控阵雷达。此外,该技术还可用于扫描型光学微干涉系统中,如光学微型Michelson干涉仪等。4. The present invention can be widely used in high-speed optical transmission and optical switching systems, microwave data transmission and processing systems, and phased array radars. In addition, this technology can also be used in scanning optical micro-interference systems, such as optical micro-Michelson interferometers.
5,本发明构造极为简单,制造容易,操作方便,可实现对光信号的单向或双向的连续相位微调。5. The structure of the present invention is extremely simple, easy to manufacture, convenient to operate, and can realize one-way or two-way continuous phase fine-tuning of optical signals.
附图说明Description of drawings
图1是本发明的一种可调光延迟线的微光电机械的型状结构示意图;Fig. 1 is a schematic diagram of the shape and structure of a micro-opto-mechanical micro-optical delay line of the present invention;
图2是图1中沿A-A线放大剖视的型状结构示意图;Fig. 2 is the schematic diagram of the shape structure enlarged along the A-A line in Fig. 1;
图3是图1中沿B-B线放大剖视的型状结构示意图。Fig. 3 is a schematic diagram of the shape and structure of the enlarged section along the line B-B in Fig. 1 .
图中:In the picture:
1,固定直角反射镜阵列 2,移动直角反射镜阵列 3,准直透镜A1. Fixed right-angle mirror array 2. Moving right-angle mirror array 3. Collimating lens A
4,准直透镜B 5,入射光纤 6,出射光纤4. Collimating lens B 5. Incident fiber 6. Outgoing fiber
7,输入光信号 8,输出光信号 9,移动轴7. Input optical signal 8. Output optical signal 9. Moving axis
10,硅V形槽A 11,硅V形槽B 12,硅V形槽10. Silicon V-groove A 11. Silicon V-
具体实施方式 Detailed ways
以下结合附图对本发明的实施作如下详述:Below in conjunction with accompanying drawing, the implementation of the present invention is described in detail as follows:
在图1、图2、图3中,固定直角反射镜阵列1的前方设置有横向调节的移动轴9,移动轴9上设置有移动直角反射镜阵列2。固定直角反射镜阵列1上设置有数只硅V形槽12,移动直角反射镜阵列2上设置有数只硅V形槽12;硅V形槽12的夹角设置为90度。固定直角反射镜阵列1的入射口设置有准直透镜A3,准直透镜A3处设置有硅V形槽A10,硅V形槽A10内设置有入射光纤5。固定直角反射镜阵列1的出射口设置有准直透镜B4,准直透镜B4处设置有硅V形槽B11,硅V形槽B11内设置有出射光纤6。硅V形槽A10、硅V形槽B11的硅板上采用电感耦合等离子体(ICP)干法刻蚀技术,制成夹角为60度的反射镜,并在反射镜阵列上镀有高反射膜以提高反射率。In FIG. 1 , FIG. 2 , and FIG. 3 , a moving axis 9 for lateral adjustment is arranged in front of the fixed right-angle mirror array 1 , and a moving right-angle mirror array 2 is arranged on the moving axis 9 . The fixed right-angle mirror array 1 is provided with several silicon V-
其中,固定直角反射镜阵列1和移动直角反射镜阵列2,采用电感耦合等离子体(ICP)干法刻蚀技术,在硅V形槽12上制有数只相同且相配的直角形反射镜,并在反射镜阵列上镀有高反射膜以提高反射率。移动轴9可采用硅动作器,在驱动电压作用下,其轴向移动距离可实现连续微调,从而通过采用直角反射镜阵列来实现对光信号相位的连续微调。当移动轴9在调节过程中产生离轴偏差时,能保障反射信号相对于入射信号的平行传输。为了减小光信号的传输和耦合损耗,采用准直微透镜A3把输入光信号准直为平行光;采用准直微透镜B4把输出的平行光信号聚焦耦合传至出射光纤6。Among them, the fixed right-angle mirror array 1 and the moving right-angle mirror array 2 adopt inductively coupled plasma (ICP) dry etching technology to form several identical and matching right-angle mirrors on the silicon V-
在实际操作使用中,采用微光电机械技术,以多次反射结构可实现可调光延迟线。当输入光信号7经V形槽12内的入射光纤5,透过微形聚光的准直透镜A3时,在固定直角反射镜阵列1和移动直角反射镜阵列2的硅V形槽12之间形成多路直线形传输,反射信号相对于入射信号的平行传输。最后在固定直角反射镜阵列1的出射口,经微形聚光的准直透镜B4,及设置于V形槽12内的出射光纤6,向外传递输出光信号8。尤其采用硅V形槽12和微透镜的准直透镜A3、准直透镜B4,可实现对入射光信号7的准直,和光信号对出射光纤6的耦合。In actual operation and use, the adjustable optical delay line can be realized with a multi-reflection structure by using micro-opto-mechanical technology. When the input optical signal 7 passes through the incident optical fiber 5 in the V-
为了实现对光信号相位的连续调整,可通过移动轴9调节固定直角反射镜阵列1和移动直角反射镜阵列2之间的距离,其调节关系为:当光信号的反射次数为n=2,6,10,14,……时,实现的可调光程变化范围(OPD)为:In order to realize the continuous adjustment of the phase of the optical signal, the distance between the fixed right-angle mirror array 1 and the moving right-angle mirror array 2 can be adjusted through the moving shaft 9, and the adjustment relationship is: when the number of reflections of the optical signal is n=2, 6, 10, 14, ..., the realized adjustable optical path change range (OPD) is:
OPD=2s+(n-2)·s/2,OPD=2s+(n-2)·s/2,
其中,s为可移动直角反射镜阵列的最大轴向移动距离。移动轴9可采用硅动作器,在电压信号驱动下可实现连续轴向移动。Among them, s is the maximum axial moving distance of the movable rectangular mirror array. The moving shaft 9 can adopt a silicon actuator, which can realize continuous axial movement under the drive of a voltage signal.
在上述过程中,输入光信号7也可经出射光纤6,重复上述光信号传输的逆向过程,由入射光纤5向外传递输出光信号8,从而可对光信号实现双向传输相位的连续调整。In the above process, the input optical signal 7 can also pass through the output optical fiber 6, repeat the above-mentioned reverse process of optical signal transmission, and transmit the output optical signal 8 from the input optical fiber 5, so that the continuous adjustment of the bidirectional transmission phase of the optical signal can be realized.
本发明的可调光延迟线技术的微光电机械技术,可用于光时分复用(OTDM)系统、光波分复用(WDM)系统,用来实现对光信号的相位进行调整,实现多路复用。也可用于光数字信号处理系统,实现数据信号和时钟信号的相位匹配;还可用于微波数据传输系统或相控阵雷达,产生对高速微波数据信号的精确延迟。The micro-opto-mechanical technology of the adjustable optical delay line technology of the present invention can be used in optical time division multiplexing (OTDM) systems and optical wavelength division multiplexing (WDM) systems, and is used to adjust the phase of optical signals and realize multiplexing use. It can also be used in optical digital signal processing systems to achieve phase matching between data signals and clock signals; it can also be used in microwave data transmission systems or phased array radars to generate precise delays for high-speed microwave data signals.
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNB021214832A CN1156716C (en) | 2002-06-26 | 2002-06-26 | A Micro-Opto-Mechanical Dimmable Delay Line |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNB021214832A CN1156716C (en) | 2002-06-26 | 2002-06-26 | A Micro-Opto-Mechanical Dimmable Delay Line |
Publications (2)
Publication Number | Publication Date |
---|---|
CN1397815A true CN1397815A (en) | 2003-02-19 |
CN1156716C CN1156716C (en) | 2004-07-07 |
Family
ID=4744988
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CNB021214832A Expired - Fee Related CN1156716C (en) | 2002-06-26 | 2002-06-26 | A Micro-Opto-Mechanical Dimmable Delay Line |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN1156716C (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1320401C (en) * | 2003-12-11 | 2007-06-06 | 上海大学 | Decimal programmable light time delay device |
CN100383551C (en) * | 2005-09-08 | 2008-04-23 | 上海交通大学 | Loop Control Method of Radar Fiber Delay Line |
CN102353520A (en) * | 2011-06-10 | 2012-02-15 | 北京航空航天大学 | Delay amount measuring method applied for fiber delay line measuring system and realization apparatus thereof |
CN105891958A (en) * | 2016-06-15 | 2016-08-24 | 中国工程物理研究院流体物理研究所 | Large-stroke high-scanning frequency optical fiber delay line |
CN106764600A (en) * | 2016-11-25 | 2017-05-31 | 沈阳师范大学 | Using light as curtain wall space structure design |
CN108227079A (en) * | 2016-12-09 | 2018-06-29 | 上海信及光子集成技术有限公司 | A kind of high-precision N-bit adjustable light delays |
CN108398780A (en) * | 2018-04-26 | 2018-08-14 | 中国工程物理研究院计量测试中心 | A kind of high speed optical delay line |
CN112014348A (en) * | 2020-05-09 | 2020-12-01 | 中国航空工业集团公司北京长城航空测控技术研究所 | Optical delay line structure for time delay |
-
2002
- 2002-06-26 CN CNB021214832A patent/CN1156716C/en not_active Expired - Fee Related
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1320401C (en) * | 2003-12-11 | 2007-06-06 | 上海大学 | Decimal programmable light time delay device |
CN100383551C (en) * | 2005-09-08 | 2008-04-23 | 上海交通大学 | Loop Control Method of Radar Fiber Delay Line |
CN102353520A (en) * | 2011-06-10 | 2012-02-15 | 北京航空航天大学 | Delay amount measuring method applied for fiber delay line measuring system and realization apparatus thereof |
CN102353520B (en) * | 2011-06-10 | 2013-06-19 | 北京航空航天大学 | Delay amount measuring method applied for fiber delay line measuring system and realization apparatus thereof |
CN105891958A (en) * | 2016-06-15 | 2016-08-24 | 中国工程物理研究院流体物理研究所 | Large-stroke high-scanning frequency optical fiber delay line |
CN106764600A (en) * | 2016-11-25 | 2017-05-31 | 沈阳师范大学 | Using light as curtain wall space structure design |
CN106764600B (en) * | 2016-11-25 | 2018-06-19 | 沈阳师范大学 | Using space structure design of the light as curtain wall |
CN108227079A (en) * | 2016-12-09 | 2018-06-29 | 上海信及光子集成技术有限公司 | A kind of high-precision N-bit adjustable light delays |
CN108398780A (en) * | 2018-04-26 | 2018-08-14 | 中国工程物理研究院计量测试中心 | A kind of high speed optical delay line |
CN112014348A (en) * | 2020-05-09 | 2020-12-01 | 中国航空工业集团公司北京长城航空测控技术研究所 | Optical delay line structure for time delay |
Also Published As
Publication number | Publication date |
---|---|
CN1156716C (en) | 2004-07-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN109491010B (en) | Silicon-based integrated optical adjustable delay line based on optical phased array | |
US6934431B2 (en) | Variable optical delay lines and methods for making same | |
KR100422037B1 (en) | Variable optical attenuator of optical path conversion | |
US20050008285A1 (en) | Multi-channel optical switch | |
CN108008487B (en) | Wavelength division multiplexer | |
CN1156716C (en) | A Micro-Opto-Mechanical Dimmable Delay Line | |
WO2023138026A1 (en) | Tunable optical filter and light channel monitoring module | |
US6956700B1 (en) | Wavelength dispersion compensating apparatus | |
US11199665B2 (en) | Optical device for redirecting optical signals | |
CN1193246C (en) | optical converter | |
TW503330B (en) | Optical switch and method for alignment thereof | |
CN1451991A (en) | Tunable light filter | |
TWM573438U (en) | Wavelength division multiplexing module | |
CN1929344A (en) | High dynamic range integrated receiver | |
CN1253737C (en) | Optical switch | |
CN1273847C (en) | Multipurpose full gloss optical shaper based on sagnac ring | |
CN211061729U (en) | MEMS photoswitch with filtering function | |
CN2557967Y (en) | Mechanical type light switch | |
CN2543084Y (en) | Multi-path photoswitch device | |
CN100368840C (en) | Optical fiber switch | |
CN2537019Y (en) | Optical switch | |
CN118655658B (en) | Optical signal transmitter based on vertical coupling platform of thin film lithium niobate photonic integrated circuit | |
CN1180465A (en) | Multiple reflection multiplexer and demultiplexer | |
CN1420375A (en) | Multi-light path photoswitch | |
CN209417414U (en) | A Cascaded F-P Cavity Optical Filter Based on Movable Mirrors |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
C19 | Lapse of patent right due to non-payment of the annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |