CN1396138A - Fast anchor type inorganic viscose grouting matenial and its preparing process - Google Patents

Fast anchor type inorganic viscose grouting matenial and its preparing process Download PDF

Info

Publication number
CN1396138A
CN1396138A CN 02138777 CN02138777A CN1396138A CN 1396138 A CN1396138 A CN 1396138A CN 02138777 CN02138777 CN 02138777 CN 02138777 A CN02138777 A CN 02138777A CN 1396138 A CN1396138 A CN 1396138A
Authority
CN
China
Prior art keywords
cement
fast
agent
pouring material
portland cement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN 02138777
Other languages
Chinese (zh)
Other versions
CN1182065C (en
Inventor
李北星
陈明祥
高作平
陈幼康
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wuda-Jucheng Reinforcing Industry Co Ltd Wuhan
Original Assignee
Wuda-Jucheng Reinforcing Industry Co Ltd Wuhan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wuda-Jucheng Reinforcing Industry Co Ltd Wuhan filed Critical Wuda-Jucheng Reinforcing Industry Co Ltd Wuhan
Priority to CNB02138777XA priority Critical patent/CN1182065C/en
Publication of CN1396138A publication Critical patent/CN1396138A/en
Application granted granted Critical
Publication of CN1182065C publication Critical patent/CN1182065C/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • C04B28/06Aluminous cements
    • C04B28/065Calcium aluminosulfate cements, e.g. cements hydrating into ettringite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2103/00Function or property of ingredients for mortars, concrete or artificial stone
    • C04B2103/20Retarders
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2103/00Function or property of ingredients for mortars, concrete or artificial stone
    • C04B2103/40Surface-active agents, dispersants
    • C04B2103/408Dispersants
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/70Grouts, e.g. injection mixtures for cables for prestressed concrete

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)
  • Piles And Underground Anchors (AREA)

Abstract

An adhesive inorganic pouring material for fast anchor rod or prestressed anchor rope is prepared from thioaluminate cement and silicate cement as main components) blanding with fine gypsum, anti-cracking agent, disperser, and setting retarder through uniformly mixing, on using, it is mixed with proper amount of water to form a slurry for pouring. Its advantages are high self-compacting performance, high strength and bonding, and no poison and environmental pollution.

Description

A kind of inorganic pouring material for fast anchor rod and preparation technology thereof
Technical field the present invention relates to a kind of anchoring bond pouring material and preparation technology thereof, carries out anchor bolt grouting material and the preparation technology thereof of quick anchoring construction mainly as the binding material of anchor pole, prestress anchorage cable.
Background technology uses anchorage technology to start from the world the twenties in 20th century in Geotechnical Engineering. Facts have proved in a large number that both at home and abroad anchorage technology is for earth's surface, underground various large, medium and small type rock-reinforcing engineering, really a kind of efficient, economic reinforcement measure. In recent years, along with going deep into of ground anchorage theoretical research, anchorage technology has obtained developing rapidly and has used widely, almost touch each corner in the fields such as civil construction, water conservancy and hydropower, such as aspects such as the reinforcement of the suspension roof support of the underground engineerings such as mine working, Tunnel Engineering and underground chamber and bridge strengthening of foundation, the reinforcing of firm, the large-scale arc door of high gradient slope gate pier, stabilization of dam foundation and various existing structures and reinforcings. The development of anchorage technology, make anchorage style more and more, the various ways such as mechanical type anchoring, bonded anchoring, friction-type anchoring, prestress anchoraging are arranged at present, wherein to use the shared ratio of bonded anchoring maximum, the bonded anchoring material that uses in the present engineering of China mainly contains cement mortar, quick-hardening cement powder stick and resin explosive roll three types.
The cement mortar anchoring material is take Portland cement as main material, mixes in case of necessity a certain amount of additive, such as early strength agent, water reducer, set retarder, swelling agent with anti-ly secrete agent etc. Be characterized in adopting the slip casting method construction, cost is low, but its early strength is low, can not in time produce cohesive force and bond stress, also is difficult to provide enough pulling capacities even be mixed with the cement mortar of the additives such as early strength agent, water reducer in 3~6 hours. Simultaneously, temperature is larger to ordinary cement hydration reaction rate, and construction quality is difficult for guaranteeing. In general, the conventional cement mortar anchor pole need to through satisfying the withdrawal resistance requirement of design more than 7 days, have a strong impact on the construction speed of next process. During conventional cement mortar slip casting, the impact of the ratio of mud is very large, and the ratio of mud is too small, and the property annotated is poor, and also easily plugging affects the carrying out of slip casting operation; The ratio of mud is excessive, and after the body of rod inserted, mortar is outward trickling easily, and mortar is not full in the hole, affects anchoring effect. Also cause easily mortar cavity, slurry leakiness during anchor rod with cement mortar slip casting, early strong intensity is low, anchor force provides slowly, generally can not apply prestressed problem.
The powder stick formula anchoring material that the quick-hardening cement powder stick generally is fast solidifying, fast hard, early strong, the microdilatancy of having of adding early strength agent or add in Portland cement that accelerator, swelling agent etc. make in fluoroaluminate cement, quick hardening sulphoaluminate cement, the initial stage anchor force is large, it both can be used for end anchorage, also can be used for the bonding-type full-length anchoring. Fast hard general 1~3 hour compression strength of powder stick of Portland cement is 4~20MPa, 1 day compression strength 25~35MPa, and the general 0.5~1h compression strength of quick hardening sulphoaluminate cement powder stick is 20~25MPa, more than the 2h compression strength 30MPa. These two kinds of general presetting periods of quick-hardening cement powder stick, final set was less than 10min less than 5min, and 0.5~1h anchor force is according to the unusual 40~120KN that reaches in rock stratum, and the pulling capacity of 1d generally can surpass the pull-off force of anchor rod body. In use still there is some problems in the quick-hardening cement powder stick, and such as its complex structure, manufacture craft requires high; Diameter needs to have made to order according to on-the-spot needs; Cost of manufacture is higher, the problems such as transportation, storage inconvenience. Require cement and water to mix during use, the ratio of mud is suitable, therefore very strict to the control of powder stick soaking time, because when the cement-roll soaking time surpasses the cement final setting time, cement-roll can generate heat, hardening, can only scrap, at the bottom of so the powder stick after the immersion should be immediately sent into the hole with the body of rod, any delay can not be arranged, and rockbolt installation also requires mechanical continuous stirring, so the installation of quick-hardening cement powder stick anchor pole exists, and operable time is short, poor operability, require very strict to construction and management, in case a certain link is made mistakes, not only anchoring was lost efficacy, and destroyed hole and waste powder stick.
Resin explosive roll is with compositions such as unsaturated polyester resin and curing agent, be characterized in hardening time short (by tens seconds to a few minutes), gain in strength fast (half an hour compression strength can reach 28d intensity 65%~96%), intensity is high, and (final compression strength reaches 60~120MPa), therefore can in time provide support capacity, because its cost is high, so general only as end anchorage. The same comparison with cement-roll of resin explosive roll is complicated, the stirring facility of installing resin anchor rod need be with rotary roof-bolter or pneumatic stirrer, to push away rapidly anchor pole hand-hole position and resin and curing agent stirred, the construction environment temperature and humidity is large on resin solidification speed and anchoring effect impact, also exist poisonously, the storage life is long easily lost efficacy, easy aging problem.
For this reason, provide a kind of can be the mortar depositing construction of anchor rod with cement mortar the easy and high advantages of quick-hardening cement (resin) powder stick anchor pole initial stage anchor force, can adopt slip casting method to carry out convenient construction, the inorganic pouring material for fast anchor rod that can produce again larger early strength is particularly necessary.
Summary of the invention the objective of the invention is for existing anchor rod with cement mortar, quick-hardening cement powder stick anchor pole and the existing problem and shortage of resin explosive roll anchor pole, aim to provide a kind ofly fill with, fast hard, early strength increases fast after the sclerosis, 1 day, later strength height, microdilatancy, water-fast, good endurance, easy construction, cheap makes anchor pole or anchor cable that inorganic pouring material for fast anchor rod fast, that carrying is fast, safe and reliable is installed.
The implementation of the object of the invention is, a kind of inorganic pouring material for fast anchor rod, it is characterized in that it is is key component by sulphate aluminium cement and portland cement, mix the even powder that an amount of fine gypsum, antimitotic agent, dispersant, set retarder mix in mixer jointly, the weight proportion % scope of each composition is:
Sulphate aluminium cement: 60%~85% portland cement: 10%~30%
Gypsum: 1.5%~5% antimitotic agent: 1.5%~5%
Dispersant: 0.6%~1.6% set retarder: 0%~0.6% wherein:
Antimitotic agent is alumite plumping agent, UEA swelling agent or lime swelling agent,
Dispersant is naphthalenesulfonate formaldehyde condensation compound series high-efficiency water-reducing agent pulvis, melamine resin pulvis or sulfonation ancient marlon resin pulvis,
Set retarder is boric acid, borax, tartaric acid, citric acid or calcium lignosulfonate.
A kind of production technology of inorganic pouring material for fast anchor rod is, with weight proportion be: 60%~85% sulphate aluminium cement, 10%~30% portland cement, 1.5%~5% fine gypsum, 1.5%~5% antimitotic agent, 0.6%~1.6% dispersant, 0%~0.6% set retarder powder are in adding first the large material of ratio, after add the little material of ratio feeding sequence join in mixer or the ball mill, at normal temperatures and pressures, mix 10min~30min, to even, its fineness is: the 0.08mm square hole screen tails over and is not more than 10%, and Blain specific surface is not less than 325m2/kg。
Sulphate aluminium cement of the present invention is fast hard sulfate cement, fast hard iron aluminate cement, expansion sulphate aluminium cement or expansion ferrous aluminate cement, requires label to be not less than No. 425. Sulphate aluminium cement is mainly the intensity that inorganic pouring material for fast anchor rod provides early stage adhesive property and sclerosis initial stage, and generally its volume is many, and the setting and harden time is short, and the sclerosis early strength produces fast.
Portland cement is Portland cement or neat portland cement, and the desired strength grade is not less than 42.5MPa. The Ca (OH) that silicate cement hydration produces2For the aquation of sulphate aluminium cement provides alkaline environment, can accelerate the latter's aquation process, so the effect of portland cement is not only later strength is provided, the more important thing is the generation that can add the rapid hardening early strength. The portland cement volume not only affects setting time, and also to intensity, particularly early strength produces material impact. Along with the portland cement volume increases, be to shorten the setting and harden time at the beginning, 3~6h strength increase, after its volume was increased to a certain degree, the increase of portland cement volume was condensed and is prolonged, 3~6h strength decreased. This is clearly visible from table 1. The relative volume with portland cement of table 1 sulphate aluminium cement is on condense impact with strength character of inorganic pouring material for fast anchor rod
(adopting 525 quick hardening sulphoaluminate cements and 42.5 Portland cements)
Volume (%) Setting time (min) Compression strength (MPa)
Sulphate aluminium cement Portland cement Initial set Final set     3h     6h
    90     10     85     110     14.5     26.3
    75     25     50     75     21.2     45.8
    60     40     40     60     18.8     38.5
    50     50     20     30     15.6     31.6
    25     75     35     50     6.0     12.1
    15     85     125     170     2.5     6.9
Mix relative populations and the expansion character of gypsum major effect hydrated product, namely intensity and crack resistance are produced to a certain degree impact.
The Main Function that adds antimitotic agent is the contraction of compensation inorganic pouring material for fast anchor rod hardenite, prevents cracking.
Dispersant comprises naphthalenesulfonate formaldehyde condensation compound series high-efficiency water-reducing agent pulvis (the home products code name has UNF, NNO, FDN, NF, build 1, JN, ZB-1, AF, SN etc.), melamine resin pulvis (code name SM), sulfonation ancient marlon resin pulvis (code name CRS) etc. The effect that adds dispersant is the fluidity that improves inorganic pouring material for fast anchor rod, reduces the pouring material ratio of water to material, improves pouring material uniformity and slurry pore structure, thereby improves concrete castability and the intensity of pouring material.
The set retarder volume is used for regulating the setting and harden time of pouring material, thereby satisfies pouring construction and requirement of strength according to the actual needs admixture of engineering. General volume is larger, and it is longer to condense, and the sclerosis early strength is lower, and later stage intensity increases to some extent.
Each component raw material of the present invention all can buy from manufacturer or market.
The construction method of inorganic pouring material for fast anchor rod and ordinary cement slurries or grouting rock bolt are similar. Ratio of water to material is 0.29~0.32 during use, and cement-sand ratio is 1: (0~0.8), adopt mortar mixer to stir, mixing time is no less than 2min, and grouting equipment is identical with ordinary cement slurries or cement mortar.
The present invention carries out quick anchoring construction mainly as the binding material of anchor pole, prestress anchorage cable, anchor rod anchored, the bolt-spary supports and the planting reinforced bar into concrete that comprise the Geotechnical Engineering in the fields such as water power, mine, building, national defence are reinforced, and the construction of concrete works rush repair etc. This inorganic pouring material for fast anchor rod and the bond-anchorage materials such as traditional cement mortar and quick-hardening cement powder stick, resin explosive roll relatively, major advantage shows:
(1) slurry condense front gravity flow, not bleeding, can pour into hand-hole, self-compacting ability is good, setting time is adjustable between 1 hour to 4 hours, easy to use, quick construction, grasps easily.
(2) produce immediately intensity after the slurry sclerosis, 1 day intensity and intermediary and later stages intensity are high, solved existing cement-roll because of improve early strength lose in, the problem of rear intensity, and hardenite has a certain amount of microdilatancy, improved the cohesive force of hardenite and anchor rod body, hole wall, made that rockbolt installation is fast, carrying is fast, withdrawal resistance is high. 3h compression strength is greater than 20MPa, and 6h compression strength is greater than 35MPa; 1d compression strength is greater than 50MPa, and 28d compression strength is greater than 60MPa. The withdrawal resistance of 3h~6h is greater than 80KN, and the pulling capacity behind the 1d can surpass the pull-off force of anchor rod body basically.
(3) because tiny, the good fluidity of serous granule, fixed ability are strong, therefore good penetrability under certain grouting pressure can play the effect of fixed fragmented rock body or consolidating stratum simultaneously.
(4) hardenite is under lower temperature (such as 10~15 ℃), and strength development is influenced little, is particularly suitable for constructing under cavern's lower temperature.
(5) manufacture of materials preparation technology is simple, nontoxic, harmless, and is free from environmental pollution, is easy to store, transport, and integrated cost is lower than the quick-hardening cement powder stick, and is more lower than resin explosive roll.
The specific embodiment sees Table 2 take 525 label quick hardening sulphoaluminate cements, 42.5 strength grade Portland cements, levigate dihydrate gypsum, UEA-I swelling agent, FDN high concentration and high efficiency water reducer, boric acid as the specific embodiment that raw material prepare this inorganic pouring material for fast anchor rod.
The weight proportion embodiment of table 2 inorganic pouring material for fast anchor rod
Production technology and parameter are: various raw material are by after the accurate weighing of predetermined ratio, in add first the large material of ratio, after add the little material of ratio feeding sequence add successively a VSH-0.5m3Carry out mix and blend in the type cantilever double helix cone-type mixer, mix 20min and namely obtain uniform product.
Table 3 lists 5#Proportion specimen and 8#Proportion specimen Main physical mechanics performance determining result.
Table 3 inorganic pouring material for fast anchor rod Main physical mechanical property result
Performance indications Sample 5# Sample 8#
Ratio of water to material                     0.31                     0.30
From mobility (mm)                     320                     305
Unit weight (kg/m3)                     1895                     1987
Setting time (min) Initial set Final set Initial set Final set
           55            80         175          210
Can fill with the time (min)                     30~35                    90~100
Compression strength (MPa)     3h     6h     1d     28d     3h     6h     1d     28d
    25.3     41.8     54.0     66.3     /     40.6     57.9     70.3
Rupture strength (MPa)     3h     6h     1d     28d     3h     6h     1d     28d
    4.6     6.1     8.3     10.6     /     5.6     9.1     11.3
Anti-pulling of anchor bar (KN) The laboratory anchor rod experiment     3h     1d The building-site anchor rod experiment     6h     1d
φ 20 screw-thread steels, aperture 48mm, hole depth 500mm, rock stratum C30 concrete.     80~     97.7 180~break φ 28 screw-thread steels, aperture 52mm, hole depth 5m, Grades of Surrounding Rock II level.    >85   >124
Linear expansivity (%)           1d           3d          1d           3d
          0.14           0.32          0.22           0.35
As can be seen from Table 3: of the present invention 5#Proportion specimen can be filled with time 30min~35min setting time between 55min~80min, this provides the relatively more sufficient time for site operation, can avoid stifled pump plugging. In addition, its self drainage and cohesiveness are fine, therefore can accelerate injection speed, improve the adhesive property of slurries and hole wall and reinforcing bar. Experimental result shows that its compression strength can reach 25MPa behind perfusion hand-hole 3h, and the 3h withdrawal resistance is greater than 80MPa, and most of reinforcing bars are broken during the 24h resistance to plucking, and minimum withdrawal resistance also reaches 180KN. Therefore, from results of property, 5#The prescription sample can satisfy the anchoring engineering of 3h resistance to plucking requirement.
With 5#Proportion specimen adds particle diameter less than the river sand of 2.5mm, carries out equally mechanical test and anchor rod experiment, cement-sand ratio 1: 0.50, the ratio of mud 0.32. Result of the test is: slightly prolong setting time, initial set 78min, and final set 115min, 3h compression strength is reduced to 15.4MPa, and 6h compression strength is reduced to 31.6MPa, and 1d and later strength impact are little, and 6h anti-pulling of anchor bar measurement result is more than the 125KN.
As can be seen from Table 3: 8#Proportion specimen is than 5#Proportion specimen has longer setting time and can fill with the time, therefore more is conducive to on-the-spot calm construction. Although 8#Proportion specimen 3h fails to produce intensity, but its 6h compression strength is very high, reaches more than the 40MPa. Carry out pilot production because anchor rod experiment is the access tunnel in a certain hydroelectric project, reach design withdrawal resistance (design load 120KN, 6h require to reach final withdrawal resistance 70%) and namely stop drawing. As can be seen from Table 3, the 6h withdrawal resistance more than the 1d withdrawal resistance 124MPa, can satisfy the requirement of 6h resistance to plucking fully more than 85MPa. Such result adopts in conventional cement mortar slip casting 3~7d and just may satisfy.
With 8#Proportion specimen adds particle diameter less than the river sand of 2.5mm, carries out equally mechanical test and on-the-spot anchor rod experiment, cement-sand ratio 1: 0.5, the ratio of mud 0.31. Experimental result is: the initial condensation time lengthening is to 190min, and final set extends to 240min, and 6h compression strength is 34.4MPa, and 1d and later strength impact are little, and the 6h withdrawal resistance reaches more than the 85MPa equally, meets design requirement.

Claims (5)

1, a kind of inorganic pouring material for fast anchor rod, it is characterized in that it is is key component by sulphate aluminium cement and portland cement, mix the even powder that an amount of fine gypsum, antimitotic agent, dispersant, set retarder mix in mixer jointly, the weight proportion scope of each composition is:
Sulphate aluminium cement: 60%~85% portland cement: 10%~30%
Gypsum: 1.5%~5% antimitotic agent: 1.5%~5%
Dispersant: 0.6%~1.6% set retarder: 0%~0.6% wherein:
Antimitotic agent is alumite plumping agent, UEA swelling agent or lime swelling agent,
Dispersant is naphthalenesulfonate formaldehyde condensation compound series high-efficiency water-reducing agent pulvis, melamine resin pulvis or sulfonation ancient marlon resin pulvis,
Set retarder is boric acid, borax, tartaric acid, citric acid or calcium lignosulfonate.
2, pouring material according to claim 1 is characterized in that sulphate aluminium cement is fast hard sulfate cement, fast hard iron aluminate cement, expansion sulphate aluminium cement or expansion ferrous aluminate cement.
3, pouring material according to claim 1 is characterized in that portland cement is Portland cement or neat portland cement.
4, pouring material according to claim 1 is characterized in that gypsum is levigate natural dihydrate gypsum or anhydrite, and its specific area is not less than 300m2/ kg, sulfur trioxide content is not less than 35%.
5, a kind of production technology of inorganic pouring material for fast anchor rod, it is characterized in that with weight proportion being: 60%~85% sulphate aluminium cement, 10%~30% portland cement, 1.5%~5% fine gypsum, 1.5%~5% antimitotic agent, 0.6%~1.6% dispersant, 0%~0.6% set retarder powder are in adding first the large material of ratio, after add the little material of ratio feeding sequence join in mixer or the ball mill, at normal temperatures and pressures, mix 10min~30min, to even, its fineness is: the 0.08mm square hole screen tails over and is not more than 10%, and Blain specific surface is not less than 325m2/kg。
CNB02138777XA 2002-07-11 2002-07-11 Fast anchor type inorganic viscose grouting matenial and its preparing process Expired - Fee Related CN1182065C (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CNB02138777XA CN1182065C (en) 2002-07-11 2002-07-11 Fast anchor type inorganic viscose grouting matenial and its preparing process

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CNB02138777XA CN1182065C (en) 2002-07-11 2002-07-11 Fast anchor type inorganic viscose grouting matenial and its preparing process

Publications (2)

Publication Number Publication Date
CN1396138A true CN1396138A (en) 2003-02-12
CN1182065C CN1182065C (en) 2004-12-29

Family

ID=4749700

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB02138777XA Expired - Fee Related CN1182065C (en) 2002-07-11 2002-07-11 Fast anchor type inorganic viscose grouting matenial and its preparing process

Country Status (1)

Country Link
CN (1) CN1182065C (en)

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100381389C (en) * 2006-07-13 2008-04-16 内蒙古科技大学 No-shrinkage grouting filler with adjustable performance
WO2009015520A1 (en) * 2007-08-02 2009-02-05 Basf Construction Chemicals (Shanghai) Co. Ltd Cement-based grout composition
CN101450849B (en) * 2007-11-30 2011-08-24 中国京冶工程技术有限公司 Expansion agent for composite high performance grouting
EP1866260A4 (en) * 2005-03-24 2012-01-25 Jacques Bertrand Dry grout composition and capsule for anchoring reinforcing member, dowel or anchor elements
CN102606180A (en) * 2011-12-21 2012-07-25 西北矿冶研究院 Method for supporting layered soft rock roadway by using steel wire rope anchor rod
CN102603259A (en) * 2011-12-21 2012-07-25 西北矿冶研究院 Anchor rod binder
US8323785B2 (en) 2011-02-25 2012-12-04 United States Gypsum Company Lightweight, reduced density fire rated gypsum panels
USRE44070E1 (en) 2005-06-09 2013-03-12 United States Gypsum Company Composite light weight gypsum wallboard
US8470461B2 (en) 2005-06-09 2013-06-25 United States Gypsum Company Light weight gypsum board
CN103193449A (en) * 2013-04-03 2013-07-10 巴斯夫浩珂矿业化学(中国)有限公司 Rapid-hardening micro-expansion hole sealing material
CN104033169A (en) * 2014-06-03 2014-09-10 尤洛卡矿业安全工程股份有限公司 Impact-resistant constant-resistance anchor cable
CN106396604A (en) * 2016-08-31 2017-02-15 武汉理工大学 Aluminophosphate cement-based steel bar-embedded material and preparation method thereof
CN108033752A (en) * 2017-12-12 2018-05-15 甘肃智通科技工程检测咨询有限公司 A kind of superpower compound Anchor Agent
CN108726960A (en) * 2018-06-15 2018-11-02 北京中煤矿山工程有限公司 A kind of hollow accelerated cement powder stick and preparation method for bolthole water blockoff
CN108863262A (en) * 2018-07-06 2018-11-23 青岛理工大学 The preparation method of high-strength quick anchoring agent and its slurries
CN108975833A (en) * 2018-09-10 2018-12-11 冯丽霞 A kind of bridge pad anchorage mortar material and preparation method thereof
CN109578021A (en) * 2018-11-29 2019-04-05 长安大学 A kind of economical high-strength fast grouting strengthening method of injecting paste material and soft rock tunnel firmly
CN109761556A (en) * 2019-01-25 2019-05-17 北京瑞威世纪铁道工程有限公司 Early high-strength quick tunnel anchor shaft anchor cable construction adhesive
US10377108B2 (en) 2012-02-17 2019-08-13 United States Gypsum Company Gypsum products with high efficiency heat sink additives
US10407344B2 (en) 2015-10-01 2019-09-10 United States Gypsum Company Foam modifiers for gypsum slurries, methods, and products
US10407345B2 (en) 2005-06-09 2019-09-10 United States Gypsum Company Light weight gypsum board
US10421251B2 (en) 2015-06-24 2019-09-24 United States Gypsum Company Composite gypsum board and methods related thereto
CN110818371A (en) * 2019-10-24 2020-02-21 山西澳华工矿山支护科技有限公司 Inorganic reinforcing material for overspeed mine and preparation method thereof
US10662112B2 (en) 2015-10-01 2020-05-26 United States Gypsum Company Method and system for on-line blending of foaming agent with foam modifier for addition to cementitious slurries
CN111848064A (en) * 2020-07-15 2020-10-30 中国水利水电第五工程局有限公司 Quick-hardening waterproof anchoring agent and preparation method thereof
US11225046B2 (en) 2016-09-08 2022-01-18 United States Gypsum Company Gypsum board with perforated cover sheet and system and method for manufacturing same
US11306028B2 (en) 2005-06-09 2022-04-19 United States Gypsum Company Light weight gypsum board

Cited By (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1866260A4 (en) * 2005-03-24 2012-01-25 Jacques Bertrand Dry grout composition and capsule for anchoring reinforcing member, dowel or anchor elements
US8470461B2 (en) 2005-06-09 2013-06-25 United States Gypsum Company Light weight gypsum board
US11306028B2 (en) 2005-06-09 2022-04-19 United States Gypsum Company Light weight gypsum board
US10407345B2 (en) 2005-06-09 2019-09-10 United States Gypsum Company Light weight gypsum board
USRE44070E1 (en) 2005-06-09 2013-03-12 United States Gypsum Company Composite light weight gypsum wallboard
CN100381389C (en) * 2006-07-13 2008-04-16 内蒙古科技大学 No-shrinkage grouting filler with adjustable performance
WO2009015520A1 (en) * 2007-08-02 2009-02-05 Basf Construction Chemicals (Shanghai) Co. Ltd Cement-based grout composition
WO2009016230A3 (en) * 2007-08-02 2009-05-22 Constr Res & Tech Gmbh Cement-based grout composition
CN101450849B (en) * 2007-11-30 2011-08-24 中国京冶工程技术有限公司 Expansion agent for composite high performance grouting
US11780113B2 (en) 2011-02-25 2023-10-10 United States Gypsum Company Lightweight, reduced density fire rated gypsum panels
US8323785B2 (en) 2011-02-25 2012-12-04 United States Gypsum Company Lightweight, reduced density fire rated gypsum panels
US9623586B2 (en) 2011-02-25 2017-04-18 United States Gypsum Company Lightweight, reduced density fire rated gypsum panels
US10850425B2 (en) 2011-02-25 2020-12-01 United States Gypsum Company Lightweight, reduced density fire rated gypsum panels
US8702881B2 (en) 2011-02-25 2014-04-22 United States Gypsum Company Method of making lightweight, reduced density fire rated gypsum panels
US10245755B2 (en) 2011-02-25 2019-04-02 United States Gypsum Company Lightweight, reduced density fire rated gypsum panels
CN102603259B (en) * 2011-12-21 2014-01-15 西北矿冶研究院 Anchor rod binder
CN102606180A (en) * 2011-12-21 2012-07-25 西北矿冶研究院 Method for supporting layered soft rock roadway by using steel wire rope anchor rod
CN102603259A (en) * 2011-12-21 2012-07-25 西北矿冶研究院 Anchor rod binder
CN102606180B (en) * 2011-12-21 2014-08-20 西北矿冶研究院 Method for supporting layered soft rock roadway by using steel wire rope anchor rod
US10377108B2 (en) 2012-02-17 2019-08-13 United States Gypsum Company Gypsum products with high efficiency heat sink additives
CN103193449B (en) * 2013-04-03 2015-02-18 巴斯夫浩珂矿业化学(中国)有限公司 Rapid-hardening micro-expansion hole sealing material
CN103193449A (en) * 2013-04-03 2013-07-10 巴斯夫浩珂矿业化学(中国)有限公司 Rapid-hardening micro-expansion hole sealing material
CN104033169A (en) * 2014-06-03 2014-09-10 尤洛卡矿业安全工程股份有限公司 Impact-resistant constant-resistance anchor cable
US10421250B2 (en) 2015-06-24 2019-09-24 United States Gypsum Company Composite gypsum board and methods related thereto
US10421251B2 (en) 2015-06-24 2019-09-24 United States Gypsum Company Composite gypsum board and methods related thereto
US11040513B2 (en) 2015-06-24 2021-06-22 United States Gypsum Company Composite gypsum board and methods related thereto
US10662112B2 (en) 2015-10-01 2020-05-26 United States Gypsum Company Method and system for on-line blending of foaming agent with foam modifier for addition to cementitious slurries
US10407344B2 (en) 2015-10-01 2019-09-10 United States Gypsum Company Foam modifiers for gypsum slurries, methods, and products
US11267759B2 (en) 2015-10-01 2022-03-08 United States Gypsum Company Method and system for on-line blending of foaming agent with foam modifier for addition to cementitious slurries
CN106396604A (en) * 2016-08-31 2017-02-15 武汉理工大学 Aluminophosphate cement-based steel bar-embedded material and preparation method thereof
US11225046B2 (en) 2016-09-08 2022-01-18 United States Gypsum Company Gypsum board with perforated cover sheet and system and method for manufacturing same
CN108033752A (en) * 2017-12-12 2018-05-15 甘肃智通科技工程检测咨询有限公司 A kind of superpower compound Anchor Agent
CN108033752B (en) * 2017-12-12 2020-07-28 甘肃智通科技工程检测咨询有限公司 Superstrong composite anchoring agent
CN108726960A (en) * 2018-06-15 2018-11-02 北京中煤矿山工程有限公司 A kind of hollow accelerated cement powder stick and preparation method for bolthole water blockoff
CN108863262B (en) * 2018-07-06 2019-12-17 青岛理工大学 High-strength quick anchoring agent and preparation method of slurry thereof
CN108863262A (en) * 2018-07-06 2018-11-23 青岛理工大学 The preparation method of high-strength quick anchoring agent and its slurries
CN108975833A (en) * 2018-09-10 2018-12-11 冯丽霞 A kind of bridge pad anchorage mortar material and preparation method thereof
CN108975833B (en) * 2018-09-10 2019-04-05 冯丽霞 A kind of bridge pad anchorage mortar material and preparation method thereof
WO2020107862A1 (en) * 2018-11-29 2020-06-04 长安大学 Economical high-strength fast-cured grouting material and grouting reinforcement method for soft rock tunnel
CN109578021A (en) * 2018-11-29 2019-04-05 长安大学 A kind of economical high-strength fast grouting strengthening method of injecting paste material and soft rock tunnel firmly
CN109761556B (en) * 2019-01-25 2022-12-23 北京瑞威世纪铁道工程有限公司 Adhesive for construction of early high-strength rapid tunnel anchor rod and anchor cable
CN109761556A (en) * 2019-01-25 2019-05-17 北京瑞威世纪铁道工程有限公司 Early high-strength quick tunnel anchor shaft anchor cable construction adhesive
CN110818371B (en) * 2019-10-24 2021-11-30 山西澳华工矿山支护科技有限公司 Inorganic reinforcing material for overspeed mine and preparation method thereof
CN110818371A (en) * 2019-10-24 2020-02-21 山西澳华工矿山支护科技有限公司 Inorganic reinforcing material for overspeed mine and preparation method thereof
CN111848064A (en) * 2020-07-15 2020-10-30 中国水利水电第五工程局有限公司 Quick-hardening waterproof anchoring agent and preparation method thereof
CN111848064B (en) * 2020-07-15 2022-05-17 中国水利水电第五工程局有限公司 Quick-hardening waterproof anchoring agent and preparation method thereof

Also Published As

Publication number Publication date
CN1182065C (en) 2004-12-29

Similar Documents

Publication Publication Date Title
CN1182065C (en) Fast anchor type inorganic viscose grouting matenial and its preparing process
CN104478371B (en) A kind of energy-saving concrete crack repairing agent
CN104310918B (en) For the cement-base composite material and its production and use of 3D printing technique
CN101817656B (en) Post stressed concrete beam pipe mudjacking agent
CN106007550B (en) A kind of big fluidised form ungauged regions anti-crack concrete grouting material
CN102924019B (en) High-strength micro-expansive grouting material and its preparation method
CN111689752A (en) Multi-source solid waste base grouting cementing material and preparation method and application thereof
CN103979901B (en) A kind of cement based shrinking-free grouting material and using method being mixed with phosphorus slag powder
CN104844122A (en) Cement grouting material
CN104609814A (en) Anti-aqueous dispersion synchronous grouting material with large specific gravity and low consistence
CN106220126A (en) A kind of grouting material of foundation stabilization
CN101913840A (en) Rapid hardening high-strength grouting material
Barbero-Barrera et al. Influence of the addition of waste graphite powder on the physical and microstructural performance of hydraulic lime pastes
CN101445342B (en) Concrete material for reinforcing high-performance structure project, preparation method and use thereof
CN111574099A (en) Hollow anchor rod grouting material additive, preparation method and application
CN112500056A (en) Superfine solid waste base grouting material and preparation method thereof
CN111848067B (en) Grouting material for large bridge support and preparation method thereof
CN112299797A (en) Impervious reinforced grouting material for fractured rock mass under flowing water condition and slurry production method
CN111606619A (en) Corrosion-resistant concrete for tunnel lining
Liu et al. Experimental behaviors of prefabricated members made of ferronickel slag concrete
CN110642570A (en) Special mortar for pouring miniature pile and preparation method and application thereof
CN108863262B (en) High-strength quick anchoring agent and preparation method of slurry thereof
CN106478018A (en) A kind of ecological environment-friendly type nano cement based composites
CN111792871A (en) Composite additive for grouting material and grouting material
CN109553367A (en) A kind of winter construction reinforcing bar sleeve for connection grouting material

Legal Events

Date Code Title Description
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C19 Lapse of patent right due to non-payment of the annual fee
CF01 Termination of patent right due to non-payment of annual fee