CN1367858A - 确定地层中流体接触面的方法 - Google Patents

确定地层中流体接触面的方法 Download PDF

Info

Publication number
CN1367858A
CN1367858A CN00811075A CN00811075A CN1367858A CN 1367858 A CN1367858 A CN 1367858A CN 00811075 A CN00811075 A CN 00811075A CN 00811075 A CN00811075 A CN 00811075A CN 1367858 A CN1367858 A CN 1367858A
Authority
CN
China
Prior art keywords
fluid
pressure
depth
oil
sniffer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN00811075A
Other languages
English (en)
Other versions
CN1224775C (zh
Inventor
威廉·谢尔彭尼西
约翰尼斯·尼古拉斯·玛丽亚·范伍尼克
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shell Internationale Research Maatschappij BV
Original Assignee
Shell Internationale Research Maatschappij BV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shell Internationale Research Maatschappij BV filed Critical Shell Internationale Research Maatschappij BV
Publication of CN1367858A publication Critical patent/CN1367858A/zh
Application granted granted Critical
Publication of CN1224775C publication Critical patent/CN1224775C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B47/00Survey of boreholes or wells
    • E21B47/06Measuring temperature or pressure
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B47/00Survey of boreholes or wells
    • E21B47/04Measuring depth or liquid level
    • E21B47/047Liquid level
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B49/00Testing the nature of borehole walls; Formation testing; Methods or apparatus for obtaining samples of soil or well fluids, specially adapted to earth drilling or wells
    • E21B49/08Obtaining fluid samples or testing fluids, in boreholes or wells
    • E21B49/10Obtaining fluid samples or testing fluids, in boreholes or wells using side-wall fluid samplers or testers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B21/00Tying-up; Shifting, towing, or pushing equipment; Anchoring
    • B63B21/50Anchoring arrangements or methods for special vessels, e.g. for floating drilling platforms or dredgers
    • B63B21/502Anchoring arrangements or methods for special vessels, e.g. for floating drilling platforms or dredgers by means of tension legs
    • B63B2021/504Anchoring arrangements or methods for special vessels, e.g. for floating drilling platforms or dredgers by means of tension legs comprising suppressors for vortex induced vibrations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B21/00Tying-up; Shifting, towing, or pushing equipment; Anchoring
    • B63B21/50Anchoring arrangements or methods for special vessels, e.g. for floating drilling platforms or dredgers
    • B63B21/502Anchoring arrangements or methods for special vessels, e.g. for floating drilling platforms or dredgers by means of tension legs

Landscapes

  • Geology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mining & Mineral Resources (AREA)
  • Physics & Mathematics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Fluid Mechanics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Geophysics (AREA)
  • Geophysics And Detection Of Objects (AREA)
  • Investigation Of Foundation Soil And Reinforcement Of Foundation Soil By Compacting Or Drainage (AREA)
  • Measuring Arrangements Characterized By The Use Of Fluids (AREA)
  • Sampling And Sample Adjustment (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
  • Measuring Fluid Pressure (AREA)
  • Measurement Of Levels Of Liquids Or Fluent Solid Materials (AREA)

Abstract

确定钻孔周围含油层和/或含气层孔隙中诸如水这样的第一流体(F1)与诸如原油或天然气这样的第二流体(F2)之间流体接触面深度(DL)的方法,包括使用下降到高于所述接触面深度(DL)的某一深度(DP)的压力探测装置测量所述孔隙内流体的相位压力PF1和PF2以及根据公式(I)确定所述分界面的深度。

Description

确定地层中流体接触面的方法
技术领域
本发明涉及确定地下钻孔周围和/或下面的含烃流体层(hydrocarbonfluid bearing formation)中的流体接触面的方法。
背景技术
在许多情况下,向含油层和/或含气层打一口或几口勘探井,使井够不到所述地层中油-水、油-气和/或气-水分界面。
从第5,621,169号美国专利得知,根据钻井记录中记载的测量数据和岩芯分析信息,并根据世界范围的渗透性和孔隙率与毛细管压力的函数的关系,而不用进行实际毛细管压力(cappillary pressure)测量,就可以预测油井和气井的烃/水接触面。
第586001号欧洲专利申请公开了通过对岩芯试样进行试验测试生成多孔介质(porous medium)中产生毛细管压力曲线的方法。
第4,903,207号美国专利公开了从油层孔隙率和离根据钻井数据以及对岩芯数据的毛细管压力分析确定的油-水接触面的距离确定油层中烃总储量的方法。
第4,282,750号美国专利公开了原地测量含油层中部分水压(partialwater pressure)的工具,而部分油压则使用先前知道的地层抽样技术来测量,该抽样技术涉及采集岩芯试样和确定孔隙中存在的原油的局部压力和密度。
已知方法的缺点是,这些方法需要复杂的和耗时的岩芯试样分析和对比技术。
本发明旨在提供一种方法,以更简单、准确和直接的方法确定含烃流体层中的流体接触面,而不需要耗时的岩芯取样和岩芯试样分析过程。
发明内容
根据本发明,提供一种方法,用来确定有一个流体密度(ρF1)的第一流体(F1)与有另一个流体密度(ρF2)的第二流体(F2)之间流体接触面的深度(DL),这些流体存在于地下钻孔周围或下面的含烃流体层的孔隙之中。所述方法包括:
——把压力探测装置降到进入钻孔内的某一深度(DP),把一对压力探测器压靠在钻孔壁上,所述压力探测器中的一个用来单独测量钻孔周围的地层孔隙中的第一流体(F1)的相位压力(phase pressure)(PF1),另一个压力探测器用来单独测量钻孔周围的地层孔隙中的第二流体(F2)的相位压力(PF2),以及
——根据下列公式确定所述流体分界面的深度(DL): D p - D L = P F 1 - P F 2 g ( ρ F 1 - ρ F 2 )
其中g是重力加速度。
适当的是,第一流体是水,第二流体是烃流体,例如原油或天然气。所述方法用来确定含烃流体层中的自由水位,而所述自由水位在钻孔内或在钻孔底之下。
或者,第一流体是原油,第二流体是天然气。
如果第一和第二流体的密度不知道,或不能准确地知道,则最好把探测装置先降到井中的第一深度(I),然后降到第二深度(II),并启动压力探测器,在这两个深度的每一个上进行孔隙压力测量,这些测量用来确定和/或验证第一和第二流体的流体密度ρF1和ρF2
一般最好用探测装置进行测量,探测装置包括:
——第一压力探测器,其包括第一压力传感器,第一压力传感器被安装在一个测量室内,此测量室的一侧能渗第一流体,而不能渗第二流体,在预先确定的时间过程中,这一侧被压靠在钻孔壁上,同时此压力传感器被启动;以及
——第二压力探测器,其包括第二压力传感器,第二压力传感器被安装在一个测量室内,此测量室的一侧能渗第二流体,而不能渗第一流体,在预先确定的时间过程中,这一侧被压靠在钻孔壁上,同时第二压力传感器被启动。
具体实现方式
将参照附图对所述发明作更详细的说明,在附图中,
图1是根据所述发明有探测装置存在的测井纵剖面简图;和
图2是图1中探测装置的压力探测器之一的更详细的剖面图。在图1中,标出了钻孔1,它横跨地下岩层2。
用来测量地层2孔隙中油-水接触面8的深度DL的在电缆4上的探测装置3降到了钻孔1内。探测装置3包括第一压力探测器P1,用来测量钻孔1周围岩层2的孔隙中任何油的局部压力;和第二压力探测器P2,用来测量钻孔1周围岩层2的孔隙中任何水的局部压力。
探测装置3还包括一个泵和流体容器5。
两个探测器P1和P2的深度是DP,油-水流体接触面8的深度是DL。用探测器P1和P2,可以为选择的流体:油和水测量油层中的压力。用泵5,可把油层(reservior)流体泵入容器,这样可以从钻孔壁7上除去钻井流体污物。压力探测器P1和P2的详细情况见图2。水湿过滤器(waterwet filter)10(选择的渗水陶瓷薄膜)或油湿过滤器(选择的渗油聚四氯乙烯薄膜)被安装在空心活塞11上,活塞11可以被压靠在钻孔壁上。活塞11内的流体12可与要测量的油层流体混合,即带有油湿过滤器的活塞内的油以及带有水湿过滤器10的活塞内的水。相位压力PF1和PF2用每个探测器中的压力计13来测量。通过用泵抽吸油层流体而把污物从钻孔表面7清除后,泵5停止,把带过滤器的活塞压靠在钻孔表面7上,记录压力。根据测量的局部的油和水压力PF1和PF2流体压力,流体密度和DP,DL的值可以用下列公式计算出来: D p - D L = P F 1 - P F 2 g ( ρ F 1 - ρ F 2 )
要在实验室试验中对探测器进行测试,以便它能令人满意地工作。在实验室试验中,油压测量探测器和水压测量探测器在相对侧被压靠在从含油岩层采集的圆筒形岩芯试样的侧壁上。在试验过程中,通过抽水使水沿纵向从岩芯试样中流过把油冲走,从而建立了油-水接触面,在试样孔隙中的油逐渐被水取代。本发明的压力探测器测量的局部的油和水压力视为与在这一试验过程中独立计算的试样孔隙中的局部油和水压力很好地建立了联系。

Claims (7)

1.一种确定有一个流体密度(ρF1)的第一流体(F1)与有另一个流体密度(ρF2)的第二流体之间的接触面的深度(DL)的方法,这些流体在地下钻孔周围或下面的含烃流体层的孔隙中,所述方法包括:——把压力探测装置下降到进入钻孔的某一深度(Dp),把一对压力探测器压靠在钻孔壁上,所述的压力探测器中的一个用来单独测量钻孔周围地层的孔隙中的第一流体(F1)的相位压力(PF1),另一个压力探测器用来单独测量钻孔周围地层的孔隙中的第二流体(F2)的相位压力(PF2);以及——根据下列公式确定所述流体接触面的深度(DL): D p - D L = P F 1 - P F 2 g ( ρ F 1 - ρ F 2 )
其中g是重力加速度。
2.如权利要求1的方法,其特征在于第一流体是水,第二流体是烃流体,例如原油或天然气,本方法用来确定含烃流体层中的自由水位,而所述自由水位位于钻孔底部之下。
3.如权利要求1的方法,其特征在于第一流体是原油,第二流体是天然气。
4.如权利要求1的方法,其特征在于探测装置先降到井中的第一深度(I),然后降到第二深度(II),并启动压力钻头,在所述两个深度的每一个上进行孔隙压力测量,这些测量用来确定和/或验证第一和第二流体的流体密度ρF1和ρF2
5.一种用于如权利要求1所述的方法中的探测装置,此探测装置包括:
——第一压力探测器,包括第一压力传感器,其安装在测量室内,测量室(measuring chamber)的一侧能渗第一流体,而不能渗第二流体,在预先确定的时间过程中,这一侧被压靠在钻孔壁上,同时此压力传感器被启动;以及
——第二压力探测器,包括第二压力传感器,其安装在测量室内,测量室的一侧能渗第二流体,而不能渗第一流体,在预先确定的时间过程中,这一侧被压靠在钻孔壁上,同时第二压力传感器被启动。
6.如权利要求5的探测装置,其特征在于包括一个细长的探测器承载体,在它上面可移动地安装着第一和第二流体传感器,它们的位置沿直径方向相对,这样两个传感器就能同时膨出顶靠在钻孔壁上,并能同时从钻孔壁缩回。
7.如权利要求5的探测装置,其特征在于探测装置被设计成能测量油-水接触面,并且第一压力探测器有一个装满水的测量室,并有一个用选择的渗水陶瓷薄膜做的侧面,次侧面在使用被压靠在钻孔壁上;第二压力探测器有一个装满油的测量室和一个用选择的渗油薄膜做的侧面,这个侧面在使用中被压靠在钻孔壁上。
CNB008110751A 1999-08-02 2000-07-25 确定地层中流体接触面的探测装置 Expired - Fee Related CN1224775C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP99202541 1999-08-02
EP99202541.1 1999-08-02

Publications (2)

Publication Number Publication Date
CN1367858A true CN1367858A (zh) 2002-09-04
CN1224775C CN1224775C (zh) 2005-10-26

Family

ID=8240519

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB008110751A Expired - Fee Related CN1224775C (zh) 1999-08-02 2000-07-25 确定地层中流体接触面的探测装置

Country Status (10)

Country Link
US (1) US6539795B1 (zh)
EP (1) EP1200709B1 (zh)
CN (1) CN1224775C (zh)
AT (1) ATE250179T1 (zh)
AU (1) AU761677B2 (zh)
BR (1) BR0012889A (zh)
CA (1) CA2380496C (zh)
DE (1) DE60005369T2 (zh)
EA (1) EA003378B1 (zh)
WO (1) WO2001009483A1 (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102168551A (zh) * 2011-01-19 2011-08-31 杨平 油井动液面深度连续测量和采出液连续计量装置及方法
CN103261919A (zh) * 2010-10-21 2013-08-21 鼎盛油田技术有限公司 确定储层中相变的改进方法
CN105275460A (zh) * 2015-10-16 2016-01-27 中国石油天然气集团公司 一种fdt模块式双探头地层测试器及测试系统
US9541436B2 (en) 2011-11-22 2017-01-10 Lufkin Industries, Llc Distributed two dimensional fluid sensor
US9541665B2 (en) 2011-09-30 2017-01-10 Zenith Oilfield Technology Limited Fluid determination in a well bore
US10107789B2 (en) 2013-03-11 2018-10-23 Zenith Oilfield Technology Limited Multi-component fluid determination in a well bore
US10329898B2 (en) 2010-11-19 2019-06-25 Zenith Oilfield Technology Limited High temperature downhole gauge system

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6748328B2 (en) * 2002-06-10 2004-06-08 Halliburton Energy Services, Inc. Determining fluid composition from fluid properties
US7445043B2 (en) * 2006-02-16 2008-11-04 Schlumberger Technology Corporation System and method for detecting pressure disturbances in a formation while performing an operation
NO342792B1 (en) * 2016-11-30 2018-08-06 Hydrophilic As A probe arrangement for pressure measurement of a water phase inside a hydrocarbon reservoir
NO345469B1 (en) 2019-05-20 2021-02-15 Hydrophilic As Continuous water pressure measurement in a hydrocarbon reservoir
CN110658328B (zh) * 2019-11-01 2023-09-15 中国科学院武汉岩土力学研究所 一种浅层含气地层的便携式原位气体含量量测装置及方法
US20240011394A1 (en) * 2022-07-05 2024-01-11 Halliburton Energy Services, Inc. Single side determination of a first formation fluid-second formation fluid boundary
NO20221251A1 (en) * 2022-11-22 2023-07-03 Hydrophilic As A device and method for measuring pressure in immiscible fluids in a subterranean reservoir

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT1121122B (it) * 1979-01-08 1986-03-26 Cise Spa Circuito elettrico e struttura per sonde di pressione e temperatura dotato di accorgimenti adatti per la correzione dell errore di temperatura sul segnale di pressione e per eliminare l influenza della resistenza elettrica dei conduttori del cavo
US4282750A (en) * 1980-04-04 1981-08-11 Shell Oil Company Process for measuring the formation water pressure within an oil layer in a dipping reservoir
US4531087A (en) * 1982-06-09 1985-07-23 Larson Glenn F Electrical sensor for measuring moisture in landscape and agricultural soils
US4596139A (en) * 1985-01-28 1986-06-24 Mobil Oil Corporation Depth referencing system for a borehole gravimetry system
US4903207A (en) * 1986-05-15 1990-02-20 Restech, Inc. Method for determining reservoir bulk volume of hydrocarbons from reservoir porosity and distance to oil-water contact level
US4694692A (en) * 1986-06-04 1987-09-22 Technical Oil Tools Corporation Drilling fluid density measurement system
US4868491A (en) * 1987-12-11 1989-09-19 Black Grover R Apparatus for monitoring the moisture content of hay as it is being formed into a bale
US4984447A (en) * 1989-09-01 1991-01-15 Phillips James L Soils percolation testing apparatus
US5247830A (en) * 1991-09-17 1993-09-28 Schlumberger Technology Corporation Method for determining hydraulic properties of formations surrounding a borehole
US5621169A (en) * 1994-01-18 1997-04-15 Restech, Inc. Method for determining hydrocarbon/water contact level for oil and gas wells
GB2294326A (en) * 1994-10-06 1996-04-24 Scapa Group Plc Moisture detection meter
US5758538A (en) * 1995-02-21 1998-06-02 Lockheed Martin Idaho Technologies Company Tensiometer and method of determining soil moisture potential in below-grade earthen soil
US5767680A (en) * 1996-06-11 1998-06-16 Schlumberger Technology Corporation Method for sensing and estimating the shape and location of oil-water interfaces in a well
GB2334586A (en) * 1998-02-20 1999-08-25 Protimeter Plc Moisture sensing probe

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103261919A (zh) * 2010-10-21 2013-08-21 鼎盛油田技术有限公司 确定储层中相变的改进方法
US10329898B2 (en) 2010-11-19 2019-06-25 Zenith Oilfield Technology Limited High temperature downhole gauge system
CN102168551A (zh) * 2011-01-19 2011-08-31 杨平 油井动液面深度连续测量和采出液连续计量装置及方法
CN102168551B (zh) * 2011-01-19 2014-04-16 杨平 油井动液面深度连续测量和采出液连续计量装置及方法
US9541665B2 (en) 2011-09-30 2017-01-10 Zenith Oilfield Technology Limited Fluid determination in a well bore
US9541436B2 (en) 2011-11-22 2017-01-10 Lufkin Industries, Llc Distributed two dimensional fluid sensor
US10107789B2 (en) 2013-03-11 2018-10-23 Zenith Oilfield Technology Limited Multi-component fluid determination in a well bore
CN105275460A (zh) * 2015-10-16 2016-01-27 中国石油天然气集团公司 一种fdt模块式双探头地层测试器及测试系统
CN105275460B (zh) * 2015-10-16 2018-06-01 中国石油天然气集团公司 一种fdt模块式双探头地层测试器及测试系统

Also Published As

Publication number Publication date
EP1200709B1 (en) 2003-09-17
EA200200223A1 (ru) 2002-08-29
US6539795B1 (en) 2003-04-01
EP1200709A1 (en) 2002-05-02
AU6986900A (en) 2001-02-19
DE60005369D1 (de) 2003-10-23
EA003378B1 (ru) 2003-04-24
CN1224775C (zh) 2005-10-26
CA2380496A1 (en) 2001-02-08
AU761677B2 (en) 2003-06-05
BR0012889A (pt) 2002-04-09
ATE250179T1 (de) 2003-10-15
WO2001009483A1 (en) 2001-02-08
DE60005369T2 (de) 2004-06-24
CA2380496C (en) 2008-10-07

Similar Documents

Publication Publication Date Title
CN1224775C (zh) 确定地层中流体接触面的探测装置
DK1982047T3 (en) VADOSE ZONE PROBE, PROCEDURE AND SYSTEM FOR MONITORING OF SOIL PROPERTIES
EP0520903B1 (en) Determining horizontal and/or vertical permeability of an earth formation
US7059179B2 (en) Multi-probe pressure transient analysis for determination of horizontal permeability, anisotropy and skin in an earth formation
US9091781B2 (en) Method for estimating formation permeability using time lapse measurements
US8104338B2 (en) Method and apparatus for ion-selective discrimination of fluids downhole
NO326755B1 (no) Anordning og fremgangsmate for formasjonsproving ved bruk av verktoy med aksielt- og spiralanordnede apninger
US5672819A (en) Formation evaluation using phase shift periodic pressure pulse testing
US20140014331A1 (en) Method and tool for evaluating a geological formation
WO2009064691A1 (en) Formation evaluation method
EP0176410B1 (en) Method for uniquely estimating permeability and skin factor for at least two layers of a reservoir
US7944211B2 (en) Characterization of formations using electrokinetic measurements
US6843118B2 (en) Formation tester pretest using pulsed flow rate control
WO2019219153A2 (en) Estimation of free water level and water-oil contact
US20080149332A1 (en) Multi-probe pressure test
EP2163723A1 (en) Method and tool for performing a pilot fluid injection and production test in a well
RU2098851C1 (ru) Способ геофизической разведки для определения продуктивности нефтяного пласта
CA2302995C (en) Method for measuring fracture porosity in coal seams using geophysical logs
EA009033B1 (ru) Способ и система для оценки поведения давления порового флюида в подземной формации
CN115902160A (zh) 一种评估盐水层地质中co2封存潜力的方法
EA040437B1 (ru) Оценка уровня зеркала воды
WO2010036258A1 (en) Multi-probe pressure test
Williams Capillary pressure determination using the micropore membrane technique
Liu et al. The formation evaluation tool and its application in offshore China
Schulze-Makuch A permeameter designed to measure both hydraulic conductivity and dispersivity of consolidated rocks

Legal Events

Date Code Title Description
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C06 Publication
PB01 Publication
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20051026

Termination date: 20100725