CN1366456A - 血管支撑架用线材及用此线材的血管支撑架 - Google Patents
血管支撑架用线材及用此线材的血管支撑架 Download PDFInfo
- Publication number
- CN1366456A CN1366456A CN01800797A CN01800797A CN1366456A CN 1366456 A CN1366456 A CN 1366456A CN 01800797 A CN01800797 A CN 01800797A CN 01800797 A CN01800797 A CN 01800797A CN 1366456 A CN1366456 A CN 1366456A
- Authority
- CN
- China
- Prior art keywords
- support frame
- vessel support
- wire rod
- monofilament
- vessel
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/82—Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/86—Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure
- A61F2/88—Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure the wire-like elements formed as helical or spiral coils
- A61F2/885—Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure the wire-like elements formed as helical or spiral coils comprising a coil including a plurality of spiral or helical sections with alternate directions around a central axis
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/82—Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/86—Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure
- A61F2/88—Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure the wire-like elements formed as helical or spiral coils
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/82—Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/86—Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure
- A61F2/90—Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/82—Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/86—Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure
- A61F2/90—Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure
- A61F2/91—Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/82—Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/86—Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure
- A61F2/90—Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure
- A61F2/91—Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes
- A61F2/915—Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes with bands having a meander structure, adjacent bands being connected to each other
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L31/00—Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
- A61L31/04—Macromolecular materials
- A61L31/06—Macromolecular materials obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L31/00—Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
- A61L31/14—Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/82—Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/86—Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure
- A61F2/90—Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure
- A61F2/91—Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes
- A61F2/915—Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes with bands having a meander structure, adjacent bands being connected to each other
- A61F2002/91533—Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes with bands having a meander structure, adjacent bands being connected to each other characterised by the phase between adjacent bands
- A61F2002/91541—Adjacent bands are arranged out of phase
Landscapes
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Vascular Medicine (AREA)
- Public Health (AREA)
- Heart & Thoracic Surgery (AREA)
- Veterinary Medicine (AREA)
- Life Sciences & Earth Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Cardiology (AREA)
- Oral & Maxillofacial Surgery (AREA)
- Transplantation (AREA)
- Epidemiology (AREA)
- Surgery (AREA)
- Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Media Introduction/Drainage Providing Device (AREA)
- Materials For Medical Uses (AREA)
- Prostheses (AREA)
Abstract
本发明一种植入冠状动脉等血管的血管支撑架用线材,该线材由生物体吸收性聚合物聚(L-丙交酯)组成,利用示差扫描热分析测定的结晶度为15%~60%。该线材为单丝,其直径做成0.08mm~0.30。单丝成型做成筒状结构物体,构成血管支撑架。
Description
技术领域
本发明涉及植入冠状动脉等血管的血管支撑架中使用的线材以及使用该线材的血管支撑架。
技术背景
在冠状动脉等的血管中出现狭窄部位的情况下,广泛使用经皮血管成形术(PTA)。该经皮血管成形术这种手术,是在血管的狭窄部位插入设在导管的前端部位附近的气球成形部,通过使其扩张,扩张血管狭窄部,改善血流,通常在该经皮血管成形术中,为了防止再狭窄植入血管支撑架。
血管支撑架在血管内一定期间保持其形状,防止实施血管成形术部位的再狭窄。
金属血管支撑架对冠状动脉患者的治疗特别有效,自此以来,特别关注冠状动脉血管支撑架的临床使用。血管支撑架不仅对急性冠脉闭塞,而且具有预防远隔期再狭窄的效果,对经皮冠状动脉成形术(PTCA)不适合的病变也有效,是极其有用的器具,广泛应用于介入性心脏手术等。有报道称只利用气球的血管成形术与并用血管支撑架时的比较临床试验,表明并用血管支撑架的情况急性冠脉闭塞发生率、再狭窄率都低下。
但是金属血管支撑架虽然在中短期的结果看,具有足够的可靠性,长期的结果指出对冠状动脉可能有预想不到的障碍。
利用金属血管支撑架对于血管支撑架内再狭窄,尚未建立基本的治疗法。例如对于血管支撑架内再狭窄,再进行PTCA是一种方法,但是在血管内已经植入血管支撑架,由于还残留着,许多情况出现气球的扩张困难,再PTCA障碍。
冠状动脉的广泛范围内,或者产生多处狭窄的场合,多采用同时植入多个金属支撑架的方法。外科开胸,避开狭窄部,对血管进行连接旁通管、确保血流的旁通管手术是一种对血管支撑架内再狭窄有效的治疗方法。但是金属血管支撑架中存在确认X光造影的困难,如果想在连接旁通管的预定的部位上已植入有金属血管支撑架,就不得不放弃进行旁通管手术,给患者增加很大的负担。
而且,对于血流和金属的适合性进行了各种研究,金属由于是亲水性的,所以容易形成血栓,金属血管支撑架固有的血栓形成倾向是一个大的问题。因而,为了防止在血管支撑架植入部位的血栓性闭塞,不可缺少集中性抗血栓治疗法,但是常伴随有出血并发症相关的危险。
因此,将永久性残留的金属血管支撑架植入体内时存在问题。
血管支撑架植入的主要目的是避免急性冠脉闭塞和减少再狭窄的频度。急性冠脉闭塞和再狭窄由于是一种和一定期间有关系的现象,所以有报告只要求临时的治疗,只保持必要期间的血管支撑架的机能,希望完成该作用之后不要作为异物残存在生物体内。特别是由于再狭窄率的增加在6个月左右稳定,所以需要在该期间(6个月)保持血管支撑架的机能。
除此之外,作为血管支撑架要求的事项,从物理性机能的观点考虑,例如有:
(a)力学性质:作为结构体,为了开通血管,必须在一定期间具有
足够的力学性质。
(b)扩缩能力:具有的结构在搬送到目的血管部位前,可以缩小血
管支撑架的直径,在目的血管部位可以扩大到任意的直径。
(c)搬送能力:不存在血管内的移动、弯曲、拧、破损等现象,必
须正确地植入目的的冠状动脉。
发明的公开
本发明的目的在于提供一种满足上述要求事项的新型的血管支撑架用线材以及血管支撑架。
本发明的具体的目的在于提供具有生物体吸收性能,抗血栓性以及物理机能好,可以和血管支撑架同样处理的血管支撑架用线材以及血管支撑架。
本发明者经过长期地进行各种研究,结果选择生物体吸收性聚合物的聚(L-丙交酯),使其结晶度最优化,可以得到物理机能和经过一定期间后的生物体吸收性均好的结论,完成本发明。本发明是由此出发完成的。
即,本发明的血管支撑架用线材由生物体吸收性聚合物聚(L-丙交酯)组成,将由示差扫描热量分析测定的结晶度为15%~60%的线材成型,做成筒状结构的结构体。
在此形成的血管支撑架做成外径为2mm~5mm,利用0.08mm~0.03mm粗的线材例如聚(L-丙交酯)单丝制成。
聚(L-丙交酯)是一种生物体吸收性的聚合物,植入生物体之后,在一定期间之后被生物体吸收,消失。
该聚(L-丙交酯)的物理性质受结晶度的影响很大,抗血栓性也受结晶度的影响,将其制成15%~60%,可以具有力学性能及保持扩缩能力、搬送能力。另外,将结晶度设定在15%~60%的范围,利用该线材形成的血管支撑架在一定期间具有开存能力,其后迅速消失。
本发明的另一目的,由本发明得到的具体的优点通过以下附图说明的实施例的说明可以更进一步的清楚。
附图的简单说明
图1是表示37℃生理食盐水中浸渍6个月后的PLLA单丝的结晶度和破断时的负荷的关系的特性的图。
图2是表示PLLA单丝制作时的结晶度和破断时的负荷的关系的特性的图。
图3是表示PLLA单丝制作时的结晶度和破断伸度的关系的特性的图。
图4是表示编成的血管支撑架缩径过程的模式图。
图5是表示编成的血管支撑架植入血管内的过程的模式图。
图6是表示编成的血管支撑架的缩径处理的另外的方法的模式图。
图7是模式状表示锯齿状的PLLA单丝成型圆筒状的血管支撑架的一个例子的平面图,图8是模式状表示构成血管支撑架主体的单丝的弯曲状态的平面图,图9是将血管支撑架主体的一部分扩大显示的平面图。
图10A~图10G是显示非织非编状态的PLLA单丝的形态例子的模式图。
图11是显示非织非编状态的PLLA单丝做成圆筒状的血管支撑架的一个例子的模式图。
图12是显示非织非编状态的PLLA单丝做成圆筒状的血管支撑架的另一个例子的模式图。
实施发明的最佳形态
下面详细地叙述适用本发明的血管支撑架用线材以及血管支撑架。
本发明所述的血管支撑架用线材是一种由聚(L-丙交酯)组成的丝状物,其形态可以采用单丝、复丝等任意形态。但是考虑后述的血管支撑架有效适用单丝。该单丝的直径可以任意设定,例如根据冠状动脉中使用的血管支撑架的尺寸自然地有限制。冠状动脉中使用的血管支撑架长度为10~50mm,筒状结构物体形成直径为5mm左右,将其缩径为直径2mm左右,插入血管。这样构成缩径到2mm的血管支撑架的单丝需要使用直径为0.3以下的材料。另外构成血管支撑架的单丝如后述要求具有一定的强度,同时编成或弯曲成锯齿状,做成筒状结构物体,为此要求也具有一定的伸展率和一定的破断延伸度。从该观点出发,构成所述大小的血管支撑架的聚(L-丙交酯)组成的单丝必须为直径0.08mm以上粗。
构成血管支撑架用线材的聚(L-丙交酯)(下面称为PLLA。)属于生物降解性的脂肪族聚酯,化学结构上为乳酸脱水缩合聚合物,是一种在乳酸的光学异构体中只聚合L体的乳酸的聚合物。
该PLLA的重均分子量只要是可以加工成线材的范围就可以,具体优选55000以上。重均分子量为55000以上,力学性质饱和,以此作为界限即使提高重均分子量其强度和弹性模量也不变。实用上为70000~400000、优选100000~300000。特别是如上述的做成直径0.08~0.30mm的单丝的场合,优选做成100000以上。
而且作为生物降解性材料考虑时,所述PLLA的分解速度由所述分子量及结晶度、单丝的粗细、表面积决定,但是特别是在结晶性PLLA的场合,结晶度和单丝的粗细对分解速度有很大的影响。
这里使用PLLA的单丝,形成筒状结构物体的血管支撑架,将该血管支撑架移入血管,这时伴随分解,强度下降。特别是结晶度低的场合,分解速度快,强度大大地降低。为此伴随分解的血管支撑架在所定的期间,考虑保持血管的形态的保持期间结晶度存在下限。如前所述,植入血管内之后的血管支撑架的形态保持期间必须6个月左右,因此将观察伴随PLLA的单丝的分解的力学特性的变化的期间设定为6个月。
本发明者将筒状结构物体做成如上所述的长度为10mm~50mm,直径为5mm左右的大小,制成用于将其直径缩成2mm左右,插入血管的血管支撑架的PLLA单丝,制成直径即粗细设定为0.3mm的物质A、粗细为0.17mm的B、粗细为0.08mm的C,将这些PLLA单丝浸渍于37℃的生理食盐水中6个月,这时确定了其结晶度和破断时的负荷。结果得到图1所示的结果。
破断时的负荷为一般金属血管支撑架中使用的钽为6N以上。使用PLLA单丝的血管支撑架中,血管支撑架长度为10~50mm,作为筒状结构物体直径为5mm左右的大小,将其直径缩径到2mm左右,插入血管中。将这样形成的血管支撑架在血管内植入6个月之后的血管,扩张保持强度,要求和血管支撑架具有同等的强度,这时破断时的负荷为6N以上。为了满足该条件,正如图1所述,粗细设定为0.3mm的单丝A也需要结晶度为25%以上。
因此,具有生物体吸收性的PLLA单丝,植入生物体,伴随着分解,结晶度提高。即,这是因为非结晶部分首先分解。
图1所示的粗细的各单丝A、B、C在制作时,结晶度和负荷的关系如图2所示。即,在将粗细设定为0.3mm的单丝A中,在37℃的生理食盐水中浸渍6个月之后,作为破断时的负荷,具有满足6N以上的25%的结晶度的物质最初结晶度约为15%。
由图1以及图2所示的结果,在假定制成具有所述的粗细的血管支撑架时尽可能最粗的PLLA单丝时,考虑结晶度进行制成时,要求至少为15%的结晶度。
考虑生物体吸收性聚合物制的丝适用到血管支撑架时,对适用的PLLA要求具有高度的物理机能。
这里对所述PLLA的结晶度从物理机能的观点探讨最佳范围。
作为构成血管支撑架的结构材料的特性例如有:来自弹性模量及强度(力学性质)的特性、来自容易折曲和加工性的特性、来自容易弯曲和柔软性(搬送能力)的特性。
其中首先重要的是来自弹性模量和强度的特性。强度和弹性模量是血管支撑架作为结构体开存血管的力的因子,优选和金属血管支撑架相同或更好的。适用钽丝(直径126μm)的血管支撑架的场合,强度约为6N、弹性模量约为50Gpa。
为了实现和金属血管支撑架具有相同以上的强度,需要PLLA单丝制作时的结晶度如前所述为15%以上。结晶度越高,强度越上升,由这一的观点来看,结晶度越高越有利。
但是结晶度高时,破断伸度低下。即,表现硬而脆的物性。
所述的物理机能中,考虑扩缩能力及搬送能力的观点,要求容易弯曲,需要适当的破断伸度。例如考虑将线材制成血管支撑架时,必须能够扩缩。另外在加工线材时,如果折断,则不能使用。
这里为了制成如上所述的长度为10mm~15mm,粗细为2mm~5mm的大小的血管支撑架,编成筒状或弯曲成锯齿状,加工成圆筒状的结构物体,要求使用的线材单丝在加工过程中,不产生裂缝或破断等,可以弯曲或弯折。在制造血管支撑架的过程中发现,为了满足该要求,线材的粗细不同也有不同,在制作所述血管支撑架中使用的0.08mm~0.30mm的PLLA单丝,作为确实弯曲或弯折的限度的破断伸度为15%以上。
因而通过研究所述的可以用于制作通常使用的血管支撑架的0.08mm~0.30的粗细的PLLA单丝,发现弯曲或弯折的可能性受破断伸度的影响,该破断伸度随结晶度变化。
图3是表示粗细分别为0.30mm、0.17mm、0.08mm的PLLA单丝A、B、C的结晶度和破断伸度的关系的特性图。从图3可知,各种粗细的单丝A、B、C也正如图3可知,随着结晶度变化,破断伸度也变化,作为破断伸度,满足15%以上的PLLA单丝设定粗细为0.08mm时,结晶度必须为60%以下。实际上,结晶度为60%以上的PLLA单丝硬、脆,弯折时,简单地折断,不能制成如上所述的大小的血管支撑架。
所述的单丝截面形状为任意,例如有圆形、椭圆型等。但是,单丝的表面形状基截面形状不同对分解速度有影响,该分解速度也和表面积成正比,所以优选将其粗细和结晶度一并考虑。
对血管支撑架中使用的材料来说,除此之外,抗血栓性是一个重要的项目。对所述PLLA的抗血栓性进行考察。
作为表示材料的抗血栓性的指标,有利用柱法检测得到的血小板粘着率。血小板粘着率高,材料的抗血栓性低,不适合作为血管支撑架材料。
考虑血管支撑架材料的情况,不同的性质或物质相互配置,即通过采取微区(micro domain)结构,血小板某种程度上难于附着。在微区结构中,材料的物性在微单位不同,结构上具有抗血栓的性质的聚合物可知有嵌段化聚氨酯。
一般的高分子聚合物中,结晶度高时,难于附着血栓,但也不是越高越好。
所述PLLA采用结晶非结晶型的微区结构,所以在PLLA中也认为其结晶度和抗血栓性有密切的关系。
但是在结晶度过高的PLLA中,有报告指出,针状结晶分解物在体内长期地残留,引起炎症,从安全性方面考虑,优选避免过度的结晶。
通过以上的研究,在制作时,本发明作为血管支撑架用的线材使用的PLLA的结晶度需要为15%~60%的范围。
下面对使用该PLLA单丝的血管支撑架的形态进行说明。
首先对编织所述单丝制成的血管支撑架进行说明。
该血管支撑架基本编织一根丝,即由于通过编织形成,所以比使所谓经丝、纬丝交叉形成的织物更均匀,可以做成脉管血管支撑架的筒状管状物体。
而且编织成的血管支撑架在将血管支撑架运送到目的部位时,比金属血管支撑架或织物血管支撑架更容易通过各种蛇行的血管。也就是,用织物制成的血管支撑架对于任何程度的蛇行都有跟随性,而且也可以植入弯曲部。之所以这样,是因为编织而成的筒状管状的物体具有强扩张力、难于损害内空形状的性质。编织而成的血管支撑架为了将编成约5的直径的为筒状管状的血管支撑架从生物体内插入细径的血管中,通过热处理缩径(热定型),做成约2mm以下的直径,该过程示于图4。
另外,经热定型的血管支撑架通过具有气球5的导管4植入血管内,将该模式示于图5。
将由PLLA单丝编成的血管支撑架的缩径处理的另外的方法示于图6。该图6所示的方法的优点在于不使用耐热性树脂或金属等制成的管,可以直接安装在导管前端近旁的气球形成部。
该血管支撑架1由PLLA丝(PLLA单丝2)编成,也就是说,是一种通过编织制成的筒状管状的血管支撑架,和其他的布帛形态相比,也就是毡类形状的无纺布及通常的使用经丝的织物,其柔软性以及形态保持性好,该编织成的血管支撑架再进行热处理(热定型),其柔软性以及形态保持性具有进一步明显的效果。
现在PLLA制的丝编织而成的筒状管状的血管支撑架1为直径约为4~5mm的物质,将其放入内径约为1~3mm、优选2mm的耐热性树脂或金属等组成的管3中,进行热定型,或者慢慢地加入进行热定型,可以得到定型为直径约为2mm的形态的血管支撑架(参照图4)。
另外,该热定型的意思是将编织成的筒状管状体血管支撑架在比较大的直径的状态时进行热处理(热定型),或者即使将所述编织成的筒状管状体缩径,热定型,编织物也就是编织物的末端的纤维或丝或者编织目整形性好,该热定型具有形态保持性,同时可以使作为血管支撑架对生物体血管内壁的刺激极小化。
本发明的编织血管支撑架线材与金属制成血管支撑架相比容易使其截面形状发生变化。也就是,通过将纺丝时的丝的截面形状做成中空或异型,或者可以使用单丝或复丝,可以控制和生物体的一致性以及形态保持性。
另外,本发明的血管支撑架分解被生物体吸收之后,数个月之后,只要发生血管的再狭窄,就可以在同一部位再植入血管支撑架,这是由于使用生物体分解吸收性聚合物。
另外由生物降解吸收性聚合物组成的毡状的不织物的薄片加工成筒状管状,只要具有和本发明的编织血管支撑架相同程度的形态保持特性以及弹性,也可以取代编织物使用。
下面对拧成锯齿状的PLLA单丝成型圆筒状的血管支撑架进行说明。
该血管支撑架11如图7所示,设有血管支撑架主体13,将由具有形状记忆能力的PLLA组成的单丝12弯折成锯齿状,将其制成筒状。
PLLA的单丝12如图8所示,形成连续的V字状弯折成锯齿状,同时螺旋状地卷回,形成血管支撑架主体13。这时,单丝12通过将形成V字状的1个折曲部14的一边设定为短线部14a,将另一边设定为长线部14b,得到螺旋状地卷回的形状。在单丝12的中间部位形成的折曲部14的开口角θ1几乎相同,折曲部14之间的短线部位14a以及长线部位14b的长度大致相同,这样如图9所示,相互邻接的折曲部14的顶点相互接触。相互接触的弯曲部14的顶点的若干个或全部相互接合。形成血管支撑架主体的13的单丝12通过使折曲部14相互接触顶点的部分接合,确实地维持成保持筒状的形状的状态。
另外通过将接合部位加热到融点Tm以上,熔融、融接,使顶点相互接触的折曲部14的接合。
最后对PLLA的单丝以非织非编的状态制成血管支撑架的例子进行说明。
该血管支撑架是一种基本不将一根丝织、编,沿着筒状物体或管状体的周围卷附,加工成筒状或管状的物体。虽然说沿着筒状物体或管状体的周围卷附,但不是所谓的卷回状态,如图10A~图10G所示,使单丝22蛇行,或制成轮,构成PLLA单丝22的面状体,将其沿着周面做成曲面形状,环成筒状体或管状体。
图11是显示该血管支撑架21的一个例子,本例是蛇行的PLLA制的丝形成管状。另外,图12显示以非织非编的状态PLLA的单丝做成血管支撑架21的另外的例子。同样将环状的PLLA单丝22同样制成管状。
产业上利用的可能性
由以上可知,本发明可以提供具有适当的生物体吸收性,物理性能好的血管支撑架用线材,可以提供通过使用所述材料,发挥一定期间开存力,其后快速地消失的血管支撑架。
Claims (13)
1.一种血管支撑架用线材,用于植入血管内的血管支撑架,其特征在于,所述线材由生物体吸收性聚合物聚(L-丙交酯)组成,利用示差扫描热分析测定的结晶度为15%~60%。
2.如权利要求1所述的血管支撑架用线材,其特征在于所述聚(L-丙交酯)的重均分子量为55000以上。
3.如权利要求1所述的血管支撑架用线材,其特征在于所述聚(L-丙交酯)的重均分子量为70000~400000。
4.如权利要求1所述的血管支撑架用线材,其特征在于所述线材由单丝构成。
5.如权利要求4所述的血管支撑架用线材,其特征在于所述单丝直径为0.08mm~0.30mm。
6.如权利要求5所述的血管支撑架用线材,其特征在于所述单丝截面形状为圆形。
7.如权利要求4所述的血管支撑架用线材,其特征在于构成所述单丝的(L-丙交酯)的重均分子量为100000以上,所述单丝的直径为0.08mm~0.30mm。
8.一种血管支撑架,将生物体吸收性聚合物制的线材成型,制成筒状结构体,其特征在于,所述线材由生物体吸收性聚合物聚(L-丙交酯)组成,利用示差扫描热分析测定的结晶度为15%~60%。
9.如权利要求8所述的血管支撑架,其特征在于所述线材由聚(L-丙交酯)单丝组成。
10.如权利要求8所述的血管支撑架,所述血管支撑架将外径做成为2mm~5mm,所述线材的直径为0.08mm~0.30mm。
11.如权利要求9所述的血管支撑架,其特征在于,将所述单丝编织,做成筒状结构体。
12.如权利要求9所述的血管支撑架,其特征在于,所述单丝折曲成锯齿状,同时卷回成圆筒状,做成筒状结构体。
13.如权利要求9所述的血管支撑架,其特征在于,所述单丝以不编不织状态以沿着筒状体的周面形成的形状成型,做成筒状结构体。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP73983/00 | 2000-03-13 | ||
JP2000073983 | 2000-03-13 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN1366456A true CN1366456A (zh) | 2002-08-28 |
CN1261084C CN1261084C (zh) | 2006-06-28 |
Family
ID=18592109
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CNB01800797XA Expired - Fee Related CN1261084C (zh) | 2000-03-13 | 2001-03-13 | 血管支撑架用线材及用此线材的血管支撑架 |
Country Status (12)
Country | Link |
---|---|
US (1) | US7070615B1 (zh) |
EP (2) | EP2298366B1 (zh) |
JP (2) | JP4790960B2 (zh) |
KR (1) | KR100788336B1 (zh) |
CN (1) | CN1261084C (zh) |
AT (1) | ATE516826T1 (zh) |
AU (1) | AU780196B2 (zh) |
CA (1) | CA2373961C (zh) |
DK (1) | DK2298366T3 (zh) |
ES (2) | ES2392798T3 (zh) |
PT (1) | PT2298366E (zh) |
WO (1) | WO2001067990A1 (zh) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1805718B (zh) * | 2003-06-13 | 2010-09-08 | 尼莫科学有限公司 | 支架 |
CN102892442A (zh) * | 2010-03-31 | 2013-01-23 | 艾博特心血管系统公司 | 降解速率可调的聚(l-丙交酯)支架的制造方法 |
CN104127270A (zh) * | 2007-01-19 | 2014-11-05 | 万能医药公司 | 可生物降解的内置假体结构及其制造方法 |
US9889238B2 (en) | 2009-07-21 | 2018-02-13 | Abbott Cardiovascular Systems Inc. | Biodegradable stent with adjustable degradation rate |
Families Citing this family (45)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4790960B2 (ja) * | 2000-03-13 | 2011-10-12 | 株式会社 京都医療設計 | 血管ステント用線材及びこれを用いた血管ステント |
US6527801B1 (en) | 2000-04-13 | 2003-03-04 | Advanced Cardiovascular Systems, Inc. | Biodegradable drug delivery material for stent |
AU2003225882A1 (en) * | 2002-03-20 | 2003-10-08 | Advanced Cardiovascular Systems, Inc. | Biodegradable hydrophobic polymer for stents |
US7794494B2 (en) * | 2002-10-11 | 2010-09-14 | Boston Scientific Scimed, Inc. | Implantable medical devices |
US7976936B2 (en) * | 2002-10-11 | 2011-07-12 | University Of Connecticut | Endoprostheses |
EP1958657A1 (en) * | 2003-07-18 | 2008-08-20 | Boston Scientific Limited | Medical devices |
US8778256B1 (en) | 2004-09-30 | 2014-07-15 | Advanced Cardiovascular Systems, Inc. | Deformation of a polymer tube in the fabrication of a medical article |
US7971333B2 (en) | 2006-05-30 | 2011-07-05 | Advanced Cardiovascular Systems, Inc. | Manufacturing process for polymetric stents |
US8747879B2 (en) | 2006-04-28 | 2014-06-10 | Advanced Cardiovascular Systems, Inc. | Method of fabricating an implantable medical device to reduce chance of late inflammatory response |
US20060020330A1 (en) | 2004-07-26 | 2006-01-26 | Bin Huang | Method of fabricating an implantable medical device with biaxially oriented polymers |
US8747878B2 (en) * | 2006-04-28 | 2014-06-10 | Advanced Cardiovascular Systems, Inc. | Method of fabricating an implantable medical device by controlling crystalline structure |
US7731890B2 (en) * | 2006-06-15 | 2010-06-08 | Advanced Cardiovascular Systems, Inc. | Methods of fabricating stents with enhanced fracture toughness |
US8012402B2 (en) * | 2008-08-04 | 2011-09-06 | Abbott Cardiovascular Systems Inc. | Tube expansion process for semicrystalline polymers to maximize fracture toughness |
US8268228B2 (en) | 2007-12-11 | 2012-09-18 | Abbott Cardiovascular Systems Inc. | Method of fabricating stents from blow molded tubing |
US20110066222A1 (en) * | 2009-09-11 | 2011-03-17 | Yunbing Wang | Polymeric Stent and Method of Making Same |
US9517149B2 (en) | 2004-07-26 | 2016-12-13 | Abbott Cardiovascular Systems Inc. | Biodegradable stent with enhanced fracture toughness |
US8501079B2 (en) | 2009-09-14 | 2013-08-06 | Abbott Cardiovascular Systems Inc. | Controlling crystalline morphology of a bioabsorbable stent |
DE102004044679A1 (de) * | 2004-09-09 | 2006-03-16 | Biotronik Vi Patent Ag | Implantat mit geringer Radialfestigkeit |
US7875233B2 (en) * | 2004-09-30 | 2011-01-25 | Advanced Cardiovascular Systems, Inc. | Method of fabricating a biaxially oriented implantable medical device |
US8043553B1 (en) | 2004-09-30 | 2011-10-25 | Advanced Cardiovascular Systems, Inc. | Controlled deformation of a polymer tube with a restraining surface in fabricating a medical article |
US8173062B1 (en) | 2004-09-30 | 2012-05-08 | Advanced Cardiovascular Systems, Inc. | Controlled deformation of a polymer tube in fabricating a medical article |
US8778375B2 (en) | 2005-04-29 | 2014-07-15 | Advanced Cardiovascular Systems, Inc. | Amorphous poly(D,L-lactide) coating |
WO2007119423A1 (ja) * | 2006-03-30 | 2007-10-25 | Terumo Kabushiki Kaisha | 生体内留置物 |
JP2007313009A (ja) * | 2006-05-25 | 2007-12-06 | Terumo Corp | ステント |
US9072820B2 (en) * | 2006-06-26 | 2015-07-07 | Advanced Cardiovascular Systems, Inc. | Polymer composite stent with polymer particles |
US7740791B2 (en) * | 2006-06-30 | 2010-06-22 | Advanced Cardiovascular Systems, Inc. | Method of fabricating a stent with features by blow molding |
US7666342B2 (en) * | 2007-06-29 | 2010-02-23 | Abbott Cardiovascular Systems Inc. | Method of manufacturing a stent from a polymer tube |
US8377116B2 (en) * | 2008-03-20 | 2013-02-19 | Abbott Cardiovascular Systems Inc. | Implantable medical device coatings with improved mechanical stability |
US9572692B2 (en) | 2009-02-02 | 2017-02-21 | Abbott Cardiovascular Systems Inc. | Bioabsorbable stent that modulates plaque geometric morphology and chemical composition |
US20100244304A1 (en) * | 2009-03-31 | 2010-09-30 | Yunbing Wang | Stents fabricated from a sheet with increased strength, modulus and fracture toughness |
US20110319987A1 (en) | 2009-05-20 | 2011-12-29 | Arsenal Medical | Medical implant |
US8992601B2 (en) | 2009-05-20 | 2015-03-31 | 480 Biomedical, Inc. | Medical implants |
CA2762811C (en) | 2009-05-20 | 2023-03-21 | Arsenal Medical, Inc. | Self-expandable medical device comprising polymeric strands and coatings thereon |
US9265633B2 (en) | 2009-05-20 | 2016-02-23 | 480 Biomedical, Inc. | Drug-eluting medical implants |
US9309347B2 (en) | 2009-05-20 | 2016-04-12 | Biomedical, Inc. | Bioresorbable thermoset polyester/urethane elastomers |
US8888840B2 (en) * | 2009-05-20 | 2014-11-18 | Boston Scientific Scimed, Inc. | Drug eluting medical implant |
MY156526A (en) * | 2009-06-17 | 2016-02-26 | Toray Industries | Method for producing crystallized polyester |
US8372133B2 (en) * | 2009-10-05 | 2013-02-12 | 480 Biomedical, Inc. | Polymeric implant delivery system |
ES2758798T3 (es) | 2009-10-06 | 2020-05-06 | Sahajanand Medical Tech Private Limited | Implante vascular biorreabsorbible que tiene tensiones distribuidas homogéneamente bajo una carga radial |
US8370120B2 (en) | 2010-04-30 | 2013-02-05 | Abbott Cardiovascular Systems Inc. | Polymeric stents and method of manufacturing same |
US8834776B2 (en) | 2011-05-10 | 2014-09-16 | Abbott Cardiovascular Systems Inc. | Control of degradation profile of bioabsorbable poly(l-lactide) scaffold |
US8709070B2 (en) | 2011-05-10 | 2014-04-29 | Abbott Cardiovascular Systems Inc. | Bioabsorbable scaffold with particles providing delayed acceleration of degradation |
US8968387B2 (en) | 2012-07-23 | 2015-03-03 | Abbott Cardiovascular Systems Inc. | Shape memory bioresorbable polymer peripheral scaffolds |
WO2015119653A1 (en) | 2014-02-04 | 2015-08-13 | Abbott Cardiovascular Systems Inc. | Drug delivery scaffold or stent with a novolimus and lactide based coating such that novolimus has a minimum amount of bonding to the coating |
KR101721485B1 (ko) | 2015-09-04 | 2017-03-31 | 연세대학교 산학협력단 | 의료용 스텐트 |
Family Cites Families (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5527337A (en) * | 1987-06-25 | 1996-06-18 | Duke University | Bioabsorbable stent and method of making the same |
US5145945A (en) * | 1987-12-17 | 1992-09-08 | Allied-Signal Inc. | Homopolymers and copolymers having recurring carbonate units |
DE4007882C2 (de) | 1990-03-13 | 1994-03-10 | Boehringer Ingelheim Kg | Verwendung von Polyglycolsäure und ihrer Derivate als Nukleierungsmittel |
CA2083157A1 (en) * | 1990-05-18 | 1991-11-19 | Richard S. Stack | Bioabsorbable stent |
WO1993012160A1 (en) * | 1991-12-19 | 1993-06-24 | Mitsui Toatsu Chemicals, Inc. | Polyhydroxy carboxylic acid and production thereof |
CA2087132A1 (en) * | 1992-01-31 | 1993-08-01 | Michael S. Williams | Stent capable of attachment within a body lumen |
US5599352A (en) * | 1992-03-19 | 1997-02-04 | Medtronic, Inc. | Method of making a drug eluting stent |
JP3739411B2 (ja) * | 1992-09-08 | 2006-01-25 | 敬二 伊垣 | 脈管ステント及びその製造方法並びに脈管ステント装置 |
US5514378A (en) * | 1993-02-01 | 1996-05-07 | Massachusetts Institute Of Technology | Biocompatible polymer membranes and methods of preparation of three dimensional membrane structures |
WO1994021196A2 (en) * | 1993-03-18 | 1994-09-29 | C.R. Bard, Inc. | Endovascular stents |
US5626611A (en) * | 1994-02-10 | 1997-05-06 | United States Surgical Corporation | Composite bioabsorbable materials and surgical articles made therefrom |
AU715915B2 (en) * | 1995-09-14 | 2000-02-10 | Takiron Co. Ltd. | Osteosynthetic material, composited implant material, and process for preparing the same |
US6245103B1 (en) | 1997-08-01 | 2001-06-12 | Schneider (Usa) Inc | Bioabsorbable self-expanding stent |
US5980564A (en) | 1997-08-01 | 1999-11-09 | Schneider (Usa) Inc. | Bioabsorbable implantable endoprosthesis with reservoir |
US6626939B1 (en) * | 1997-12-18 | 2003-09-30 | Boston Scientific Scimed, Inc. | Stent-graft with bioabsorbable structural support |
EP1000958B1 (en) * | 1998-11-12 | 2004-03-17 | Takiron Co. Ltd. | Shape-memory, biodegradable and absorbable material |
JP4790960B2 (ja) * | 2000-03-13 | 2011-10-12 | 株式会社 京都医療設計 | 血管ステント用線材及びこれを用いた血管ステント |
-
2001
- 2001-03-13 JP JP2001566461A patent/JP4790960B2/ja not_active Expired - Fee Related
- 2001-03-13 AT AT01912330T patent/ATE516826T1/de not_active IP Right Cessation
- 2001-03-13 KR KR1020017014272A patent/KR100788336B1/ko active IP Right Grant
- 2001-03-13 DK DK10192696T patent/DK2298366T3/da active
- 2001-03-13 EP EP20100192696 patent/EP2298366B1/en not_active Expired - Lifetime
- 2001-03-13 CN CNB01800797XA patent/CN1261084C/zh not_active Expired - Fee Related
- 2001-03-13 AU AU41123/01A patent/AU780196B2/en not_active Ceased
- 2001-03-13 ES ES10192696T patent/ES2392798T3/es not_active Expired - Lifetime
- 2001-03-13 CA CA002373961A patent/CA2373961C/en not_active Expired - Fee Related
- 2001-03-13 ES ES01912330T patent/ES2367628T3/es not_active Expired - Lifetime
- 2001-03-13 US US09/979,377 patent/US7070615B1/en not_active Expired - Lifetime
- 2001-03-13 WO PCT/JP2001/001983 patent/WO2001067990A1/ja active IP Right Grant
- 2001-03-13 PT PT10192696T patent/PT2298366E/pt unknown
- 2001-03-13 EP EP20010912330 patent/EP1184008B9/en not_active Expired - Lifetime
-
2011
- 2011-01-31 JP JP2011017582A patent/JP5059201B2/ja not_active Expired - Fee Related
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1805718B (zh) * | 2003-06-13 | 2010-09-08 | 尼莫科学有限公司 | 支架 |
CN104127270A (zh) * | 2007-01-19 | 2014-11-05 | 万能医药公司 | 可生物降解的内置假体结构及其制造方法 |
CN105534627A (zh) * | 2007-01-19 | 2016-05-04 | 万能医药公司 | 可生物降解的内置假体结构及其制造方法 |
US9687594B2 (en) | 2009-07-21 | 2017-06-27 | Abbott Cardiovascular Systems Inc. | Method of treating with poly(L-lactide) stent with tunable degradation rate |
US9844612B2 (en) | 2009-07-21 | 2017-12-19 | Abbott Cardiovascular Systems Inc. | Method of making a poly(L-lactide) stent with tunable degradation rate |
US9889238B2 (en) | 2009-07-21 | 2018-02-13 | Abbott Cardiovascular Systems Inc. | Biodegradable stent with adjustable degradation rate |
CN102892442A (zh) * | 2010-03-31 | 2013-01-23 | 艾博特心血管系统公司 | 降解速率可调的聚(l-丙交酯)支架的制造方法 |
CN102892442B (zh) * | 2010-03-31 | 2015-06-10 | 艾博特心血管系统公司 | 降解速率可调的聚(l-丙交酯)支架的制造方法 |
Also Published As
Publication number | Publication date |
---|---|
EP1184008B1 (en) | 2011-07-20 |
JP5059201B2 (ja) | 2012-10-24 |
ES2392798T3 (es) | 2012-12-13 |
KR100788336B1 (ko) | 2007-12-27 |
DK2298366T3 (da) | 2012-11-26 |
EP2298366B1 (en) | 2012-08-22 |
KR20020013878A (ko) | 2002-02-21 |
ATE516826T1 (de) | 2011-08-15 |
ES2367628T3 (es) | 2011-11-07 |
EP1184008B9 (en) | 2012-09-19 |
CA2373961A1 (en) | 2001-09-20 |
AU4112301A (en) | 2001-09-24 |
JP4790960B2 (ja) | 2011-10-12 |
CA2373961C (en) | 2009-06-02 |
PT2298366E (pt) | 2012-11-20 |
US7070615B1 (en) | 2006-07-04 |
AU780196B2 (en) | 2005-03-10 |
WO2001067990A1 (fr) | 2001-09-20 |
JP2011092767A (ja) | 2011-05-12 |
EP1184008A1 (en) | 2002-03-06 |
EP2298366A1 (en) | 2011-03-23 |
CN1261084C (zh) | 2006-06-28 |
EP1184008A4 (en) | 2008-08-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN1261084C (zh) | 血管支撑架用线材及用此线材的血管支撑架 | |
US20210282915A1 (en) | Composite lumen with reinforcing textile and matrix | |
CN105992571B (zh) | 由生物可吸收聚合物制得的具有高疲劳强度和径向强度的薄支撑件支架及其制造方法 | |
JP5280839B2 (ja) | 吸収性/生分解性複合糸及びこれから形成された特性調節外科用インプラント | |
US3463158A (en) | Polyglycolic acid prosthetic devices | |
CN1197530C (zh) | 可再定位和再获取的血管扩张(stent)/移植物 | |
US7582108B2 (en) | Tubular implant | |
CN107693854B (zh) | 用于制备支架的管材及其制备方法、支架及其制备方法 | |
EP1299136B1 (en) | Implantable prostheses with improved mechanical and chemical properties | |
JP2022079625A (ja) | 生分解が管理された医療デバイス | |
CN104382671A (zh) | 一种可有效防止移位、降低增生的可降解人体支架及制作方法 | |
CN107320224A (zh) | 纺织基增强型可降解管腔支架及其制备和应用 | |
JP2024028635A (ja) | 生分解を制御した管状インプラント | |
JP2000271210A (ja) | 吸収性ポリマー材料のストランド状インプラント、その製法およびその外科的使用 | |
CN204169954U (zh) | 一种可有效防止移位、降低增生的可降解人体消化道支架 | |
CN106823120A (zh) | 一种具有形状记忆功能的可降解放射性粒子链的制备方法 | |
Cui et al. | Preparing and characterizing biodegradable materials for ureteral stents | |
CN210990958U (zh) | 一种分层可降解聚合物支架 | |
CN106823121A (zh) | 一种具有形状记忆功能的可降解放射性粒子链 | |
TW201927260A (zh) | 支架及包含其之醫療機器 | |
CN115721875A (zh) | 一种放射性粒子支架及生产方法 | |
CN116059013B (zh) | 用于植入髌骨关节的可吸收囊式间隔器及其制造方法 | |
CN114259607B (zh) | 一种支架制备方法 | |
JP2015012890A (ja) | 脈管ステント用の糸の製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
C17 | Cessation of patent right | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20060628 Termination date: 20130313 |