CN1353326A - 液晶显示元件和投影型液晶显示装置 - Google Patents

液晶显示元件和投影型液晶显示装置 Download PDF

Info

Publication number
CN1353326A
CN1353326A CN01137862A CN01137862A CN1353326A CN 1353326 A CN1353326 A CN 1353326A CN 01137862 A CN01137862 A CN 01137862A CN 01137862 A CN01137862 A CN 01137862A CN 1353326 A CN1353326 A CN 1353326A
Authority
CN
China
Prior art keywords
liquid crystal
light
crystal display
lens
lenticule
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN01137862A
Other languages
English (en)
Other versions
CN1185524C (zh
Inventor
福田俊广
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Publication of CN1353326A publication Critical patent/CN1353326A/zh
Application granted granted Critical
Publication of CN1185524C publication Critical patent/CN1185524C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/0006Arrays
    • G02B3/0037Arrays characterized by the distribution or form of lenses
    • G02B3/0062Stacked lens arrays, i.e. refractive surfaces arranged in at least two planes, without structurally separate optical elements in-between
    • G02B3/0068Stacked lens arrays, i.e. refractive surfaces arranged in at least two planes, without structurally separate optical elements in-between arranged in a single integral body or plate, e.g. laminates or hybrid structures with other optical elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/10Beam splitting or combining systems
    • G02B27/1006Beam splitting or combining systems for splitting or combining different wavelengths
    • G02B27/102Beam splitting or combining systems for splitting or combining different wavelengths for generating a colour image from monochromatic image signal sources
    • G02B27/1046Beam splitting or combining systems for splitting or combining different wavelengths for generating a colour image from monochromatic image signal sources for use with transmissive spatial light modulators
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/10Beam splitting or combining systems
    • G02B27/14Beam splitting or combining systems operating by reflection only
    • G02B27/145Beam splitting or combining systems operating by reflection only having sequential partially reflecting surfaces
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/10Beam splitting or combining systems
    • G02B27/14Beam splitting or combining systems operating by reflection only
    • G02B27/149Beam splitting or combining systems operating by reflection only using crossed beamsplitting surfaces, e.g. cross-dichroic cubes or X-cubes
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/28Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising
    • G02B27/283Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising used for beam splitting or combining
    • G02B27/285Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising used for beam splitting or combining comprising arrays of elements, e.g. microprisms
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133526Lenses, e.g. microlenses or Fresnel lenses
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3102Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM] using two-dimensional electronic spatial light modulators
    • H04N9/3105Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM] using two-dimensional electronic spatial light modulators for displaying all colours simultaneously, e.g. by using two or more electronic spatial light modulators
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3141Constructional details thereof
    • H04N9/315Modulator illumination systems
    • H04N9/3152Modulator illumination systems for shaping the light beam
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133528Polarisers
    • G02F1/133536Reflective polarizers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133528Polarisers
    • G02F1/13355Polarising beam splitters [PBS]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/74Projection arrangements for image reproduction, e.g. using eidophor
    • H04N5/7416Projection arrangements for image reproduction, e.g. using eidophor involving the use of a spatial light modulator, e.g. a light valve, controlled by a video signal
    • H04N5/7441Projection arrangements for image reproduction, e.g. using eidophor involving the use of a spatial light modulator, e.g. a light valve, controlled by a video signal the modulator being an array of liquid crystal cells

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Nonlinear Science (AREA)
  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Multimedia (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Liquid Crystal (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Projection Apparatus (AREA)
  • Transforming Electric Information Into Light Information (AREA)

Abstract

本发明涉及一种液晶显示元件和投影型液晶显示装置。在液晶面板中,将具有第一和第二透镜表面的微透镜对应于每个象素孔径设置。第二透镜表面的焦点位置与第一透镜表面的主点基本一致,整个微透镜的焦点位置与象素孔径基本一致。在该液晶面板中,当相对于光轴具有发散角分量的入射光从微透镜出射时,所述发散角分量被消除。

Description

液晶显示元件和投影型液晶显示装置
发明背景
1.发明领域
本发明涉及一种液晶显示元件,并且涉及一种采用该液晶显示元件显示图象的投影型液晶显示装置。
2.现有技术说明
传统上,通过投射经液晶显示元件(以下称作“液晶面板(LCD)”)光学调制的光束来显示图象的投影型液晶显示装置(液晶投影仪)是公知的。投影型液晶显示装置可以采用两种图象投影方法,即,用于从屏幕前侧投影图象的前投影方法(前投式)和用于从屏幕后侧投影图象的背投影方法(背投式)。产生彩色显示的投影型液晶显示装置分成采用单个液晶面板的单面板型,和采用对应于三色光红色(R)、绿色(G)和蓝色(B)的三个液晶面板的三面板型。
图9表示现有技术投影型液晶显示装置的光学系统(主要是照明光学系统)的一般结构。该投影型液晶显示装置包括光源101、一对第一和第二多透镜阵列集合器(以下称作“MLA”)102和103、PS光束组合器104、聚光透镜105、场透镜106、液晶面板107,和投影透镜108,按上述顺序沿光轴100设置。MLA 102和103分别具有多个微透镜102M和103M,分别设置成二维形式。PS光束组合器104包括多个半波片104A,对应于第二MLA 103的相邻微透镜103M之间的交界设置。
在该投影型液晶显示装置中,从光源101发出的照明光束通过MLA102和103,被分割成多个小光束。通过MLA 102和103的光束作为光束L10进入PS光束组合器104,光束L10包括在垂直于光轴100的平面内彼此相交的P偏振光分量和S偏振光分量。PS光束组合器104将光束L10分离成两类偏振光分量L11和L12(分别为P偏振光分量和S偏振光分量)。一个经分离的偏振光分量L11从PS光束组合器104出射,同时保持其偏振方向(例如P偏振方向)。另一偏振光分量L12(例如S偏振光分量)在通过半波片104A的作用转换成另一偏振光分量(例如P偏振光分量)之后由之出射。然后,将两个分离偏振光分量L11和L12的偏振方向统一成一个特定方向。
从PS光束组合器104出射的光束通过聚光透镜105和场透镜106,射向液晶面板107。由MLA 102和103分离的小光束被放大,其放大率由聚光透镜105的焦距fc和第二MLA 103的微透镜103M的焦距fML2决定,然后照射液晶面板107的整个入射表面。继而,多个放大光束叠加在液晶面板107的入射表面,从而其整个入射表面得以均匀照明。液晶面板107根据图象信号对入射光进行空间调制并发出光束。从液晶面板107发出的光束由投影透镜108投射在屏幕上(未画出),从而在屏幕上形成图象。
在液晶面板中,在其基板上形成有薄膜晶体管(TFT)作为驱动装置,因此,在其相邻象素之间形成称作黑底的遮蔽区域。为此原因,液晶面板的孔径比不等于100%。传统上,为了提高液晶面板的有效孔径比,例如在一个位于光入射侧的相对基板上沿光轴方向每点(每象素或每子象素)设置一个或多个聚光微透镜。此处,液晶面板的“有效孔径比”指的是从液晶面板出射的光束与所有入射在液晶面板上的光束之比。在投影型液晶显示装置中,一般不仅考虑液晶面板的光损耗,而且考虑位于下游端的投影透镜引起的光束遮蔽来定义其液晶面板的有效孔径比。
图10表示一例采用微透镜的液晶面板107的结构。为便于观看,图10的一部分没有画影线。液晶面板107包括一个象素电极基板140B,和一个设置成与象素电极基板140B相对的在其光入射侧的相对基板140A,其间为液晶层145。
象素电极基板140B包括一个玻璃基板148、多个象素电极部分146,和多个位于玻璃基板148光入射侧的黑底部分147。象素电极部分146和黑底部分147设置成二维形式。每个象素电极部分146都是由导电透明材料制成的。每个黑底部分147形成于相邻的象素电极部分146之间,由例如金属膜遮蔽。在各黑底部分147形成有开关元件例如TFT(未画出),以便根据图象信号选择性地施加电压至相邻的象素电极部分146。
相对基板140A包括一个玻璃基板141、微透镜阵列142,和一个盖板玻璃144,从光入射侧按上述顺序设置。在玻璃基板141与微透镜阵列142之间形成有树脂层143。尽管没有画出,但是在盖板玻璃144与液晶层145之间插入有相对电极,以便在相对电极与对应的象素电极部分146之间产生电势。树脂层143由具有折射率n1的光学树脂制成。
微透镜周率142包括多个微透镜142M,由具有折射率n2(>n1)的光学树脂制成,设置成与象素电极部分146相对应的二维形式。每个微透镜142M都凸向光入射侧,并且具有正的折射光焦度。微透镜142M用于会聚经由玻璃基板141和树脂层143入射其上的光束,并将其射向对应的象素电极部分146。只要位于下游端的投影透镜108具有足够的F数,则入射在液晶面板107的光束中由微透镜142M会聚并进入孔径146A的光束就可用于图象显示。与没有形成微透镜142的情况相比,这种微透镜142M允许更多的光束进入象素电极部分146的孔径146A。这增大了有效孔径比,并且提高了光利用效率。
以相对于微透镜142M的光轴200具有发散角β进入具有这种结构的液晶面板107的光束,由微透镜142M的光焦度加以折射并由之出射,同时以比没采用微透镜142M的情况更大的角度发散。在此情况下,出射光的发散角θ为微透镜142M的光焦度产生的角度α与角度分量β之和,满足下式(1)表示的条件:
θ=α+β                          ...(1)
若假定微透镜142M的焦距表示为fML并且其最大外部尺寸(直径)表示为“2a”,则仅由微透镜142M的光焦度产生的角度α由下式(2)限定:
tanα=a/fML                      ...(2)
入射在液晶面板107上的照明光束的发散角(入射发散角)β由下式(3)限定:
tanβ=rc/fc                       ...(3)其中fc表示聚光透镜105(图9)的焦距,rc表示其半径。
若将从液晶面板107所出射光束的发散角表示为θ,则投影透镜108所需的F数(Fno.)由下式(4)限定:
Fno.=1/(2sinθ)                      ...(4)
在上述液晶面板107中,当具有较大发散角β的光束进入时,它不能由微透镜142M的透镜作用充分会聚在孔径146A中,其一部分由黑底部分147遮蔽。当光束从该面板出射时,由于微透镜142M光焦度的作用其发散角比未采用微透镜时的发散角更大,从而增大了其发散角θ,如式(1)所示。另一方面,投影透镜108不能将其发散角大于既定角度的光束聚集其中,其中该既定角度决定于式(4)所限定的F数。为此原因,具有过大出射发散角θ的光束由位于下游端的投影透镜108加以遮蔽。
从上述可知,为使微透镜142M提高光利用效率,必须降低入射发散角β。然而,入射发散角β的降低会导致聚光透镜105的焦距fc的增大,如式(3)所示,并且还会导致第二MLA 103的微透镜103M的焦距增大。因此,为了降低入射发散角β,必须增加从光源101至液晶面板107的光程。这种光程的增加使得装置的总尺寸增大,并且降低了包括位于液晶面板107上游的部件在内的整个照明光学系统的光利用效率。虽然可以通过采用具有对应于发散角β的较大F数(例如,大约1.2至1.5)的透镜作为投影透镜来避免投影透镜108的遮蔽,但是这种具有较大F数的透镜会实质提高设计难度并且增加了成本。
如上所述,照明光学系统和液晶面板107的微透镜142M具有下述问题(i)至(iii):
(i)具有较大入射发散角β的光束受到液晶面板的黑底部分或投影透镜的遮蔽。
(ii)通过降低入射发散角β,提高了液晶面板的有效孔径比,但是降低了整个照明系统的光利用效率并且增大了装置尺寸。
(iii)从液晶面板出射光束的发散角β为由微透镜光焦度产生的角度α与入射发散角β之和,出射光束以比未采用微透镜时更大的角度发散。为此原因,投影透镜必须具有对应于较大发散角β的较大F数。这提高了投影透镜的设计难度并且增加了成本。
可以通过降低液晶面板107的微透镜142M的焦距来减少上面(i)所述的黑底部分147的遮蔽。然而在此情况下,由微透镜142M的光焦度产生的角度α增大,并且出射发散角θ增大。这导致上述问题(iii)。如果通过降低投影透镜108的F数来保证亮度,则成象性能受到影响,并且提高了投影透镜本身的尺寸和制造成本。在实际的投影型液晶显示装置中,通过使微透镜142M的焦距fML与投影透镜108的F数一致来优化象素孔径与微透镜之间的长度。因此,仍然没用解决上述问题(i)和(ii)。
如图11所示,已有提出了另一种类型的液晶面板,其中微透镜阵列152也设置在象素电极基板140B的一侧,由相对基板140A中微透镜阵列142的微透镜142M产生的角度α在光束从微透镜阵列152出射时变为零。相对基板140A中的微透镜阵列142直接形成在玻璃基板141的光出射表面上。另一微透镜阵列152由光学树脂制成,设置在象素电极基板140B的光出射侧。玻璃基板151设置在微透镜阵列152的光出射侧。微透镜阵列152包括多个微透镜152M,与相对基板140A的微透镜142M相对应。每个微透镜152M凸向光出射侧,并且具有正的光焦度。微透镜152M与相对基板140A的对应微透镜142M一起用作准直器。在该液晶面板中,相对基板140A的玻璃基板141和微透镜142M的折射率n1和n2,以及象素电极基板140B的微透镜152M和玻璃基板151的折射率n3和n4,满足条件n2>n1以及n3>n4。
入射在这种类型的液晶面板上的光束首先由相对电极140A的微透镜142M的光焦度以角度α折射,例如图11中所示入射光212。由于在象素电极基板140B一侧微透镜152M作为准直器的作用,入射光212然后以角度-α折射,角度-α与角度α相反。继而,当光束从微透镜152M出射时,由相对基板140A的微透镜142M的光焦度产生的角度分量α变为零。由于角度分量α变为零,所以出射发散角θ根据式(1)等于β,并且可以比图10所示类型中小角α。在微透镜152M的该结构中,例如当具有发散角β的入射光213进入与微透镜152M-1相邻的微透镜152M-2时,微透镜152M-2不用作入射光的准直器。在此情况下,上述关系“θ=β”受到影响,出射发散角θ大于入射发散角β。这使得不能提高有效孔径比。
例如,日本未审查专利申请说明书No.5-341283提出了一种液晶面板,其中入射发散角β在光束出射时变为零。该液晶面板包括一对玻璃基板和位于其间的液晶层,微透镜设置在至少一个玻璃基板的两侧,对应于象素孔径。位于基板两侧的两个微透镜具有相同的焦距,并且其间的长度设定成等于其焦距。因此,每个微透镜具有光学特性将入射平行光会聚在一个与形成有微透镜的基板表面相对的表面附近,从而使入射发散角β变为零。在该液晶面板中,微透镜用离子交换法形成。
在上述说明书中,微透镜的一个表面凸向基板的内侧,其另一表面(基板的两个端表面)是平面。另外,象素孔径一侧的微透镜与该象素孔径之间的长度接近等于零。一般认为带有微透镜的基板的厚度大约为数十个毫米。然而在这种结构中,非常难于制作具有微透镜的基板。特别地,在采用离子交换法的制作过程中,难以调整厚度,并且难以精确加工具有大约数十毫米厚度的薄基板从而实现微透镜的所需光学特性。例如,虽然认为需要抛光位于基板两端的微透镜表面,但是非常难于精确抛光这种薄的基板。近年来,已存在提高液晶面板分辨率并降低象素间距的需求。因而需要更为精确的加工。上述说明书中公开的液晶面板在此方面是不利的。
发明概述
本发明考虑到上述问题作出,而本发明的目的在于提供一种液晶显示元件和一种投影型液晶显示装置,其中通过增大其有效孔径比来提高光利用效率,而不增加其尺寸并且不会增加制作难度。
为了实现上述目的,根据本发明的一个方面,提供了一种液晶显示元件,包括一个液晶层;一个象素电极部分,具有多个用于透射光的象素孔径;和至少一个微透镜阵列,具有多个微透镜,在液晶层的光入射侧和光出射侧至少其一上对应于象素孔径设置成二维形式。每个微透镜包括一个聚光透镜,在光轴方向具有至少一个透镜表面用于将入射光会聚向对应的一个象素孔径;和一个场透镜,在光轴方向具有至少一个透镜表面使得其焦点位置与所述聚光透镜的主点基本一致。聚光透镜和场透镜都可以形成在液晶层的光入射侧,或者例如聚光透镜可以形成在液晶层的光入射侧而场透镜可以形成在光出射侧。
优选地,各微透镜整个的焦点位置与象素孔径基本一致。虽然认为随着整个微透镜的焦点位置设置得更靠近象素孔径而使得其遮光系数变高,但是考虑到入射光的所有角度分量,遮光系数在焦点位置与象素孔径完全一致时并不总是最高。例如,优选将该焦点位置设定成使得光束的束腰与象素孔径一致。
根据本发明的另一方面,提供了一种投影型液晶显示装置,包括一个光源,用于发射光束;一个液晶显示元件,用于对入射光进行光学调制;和一个投影透镜,用于投射由所述液晶显示元件调制的光束。本发明适用于液晶显示元件。
在本发明的的液晶显示元件和投影型液晶显示装置中,通过增大其有效孔径比提高了光利用效率,而没有增加其尺寸并且没有增加制作难度。另外,例如在入射光相对于光轴具有发散角分量的情况下,该发散角分量在光束从微透镜阵列出射时得以消除。因此,例如即使在微透镜的焦距减小时,也可以防止出射光的发散角过分增大。这可以减少在例如投影型液晶显示装置中所用投影透镜对光束的遮蔽。
从下面参照附图给出的优选实施例的说明可以清楚本发明的其他目的、特色和优点。
附图的简要说明
图1为表示根据本发明实施例的投影型液晶显示装置的光学系统整体结构的结构图。
图2为表示第一实施例中液晶面板的一般结构的剖面图。
图3为表示图2所示液晶面板中微透镜部分的结构的简化图。
图4为表示第二微透镜阵列和PS光束组合器的基本结构的局部放大图。
图5A和5B为表示图2所示液晶面板中孔径比的具体例和对比例的示意图。
图6A和6B为表示图2所示液晶面板的改型的剖面图。
图7A至7C为表示微透镜表面形状的改型的示意图。
图8为表示图2所示液晶面板的另一改型的剖面图。
图9为表示公知类型的投影型液晶显示装置中光学系统的一般结构的平面图。
图10为表示公知类型液晶面板的结构例的剖面图。
图11为表示该液晶面板另一结构例的剖面图。
优选实施例的说明
图1表示根据本发明优选实施例的投影型液晶显示装置整体结构的一个例子。图1所示的投影型液晶显示装置是所谓的三面板型,通过采用三个透射式液晶面板来产生彩色图象显示。该投影型液晶显示装置包括用于发射光束的光源11;一对第一和第二多透镜阵列集合器(以下称作“MLA”)12和13;和一个全反射镜14,位于MLA 12和13之间,用以将光路(光轴10)弯曲大约90°朝向第二MLA 13。多个微透镜12M和13M以二维形式设置在MLA 12和13中。MLA 12和13用于将入射光分割成多个小光束以使照明分布均匀。
光源11发出白光,含有彩色图象显示所必需的红色光、蓝色光和绿色光。光源11包括用于发射白光的光发射部件(未画出),和用于反射和会聚从光发射部件发出的光束的凹面反射镜。光发射部件例如是卤素灯、金属卤化物灯或氙灯。优选地,凹面反射镜具有可以提高聚光效率的形状,例如,具有旋转对称的形状如椭球面反射镜和抛物面反射镜。
该投影型液晶显示装置还包括PS光束组合器15、聚光透镜16和二向色镜17,以上述顺序设置在第二MLA 13的光出射侧。二向色镜17用于将入射光分离成例如红色光和另一颜色的光束。
PS光束组合器15具有多个半波片15a,形成在与第二MLA 13中相邻微透镜13M之间的交界相对应的位置。PS光束组合器15用于将入射光LO分离成两种类型的偏振光分量L1和L2(P偏振光分量和S偏振光分量),如图4所示。PS光束组合器15还用于由之出射一个经分离的偏振光分量L2,同时保持其偏振方向(例如P偏振方向),并且在通过半波片15A的作用将该偏振光L1转换成另一个偏振光分量(例如P偏振光分量)之后,出射另一偏振光分量L1(例如S偏振光分量)。
该投影型液晶显示装置还包括一个全反射镜18、场透镜24R和液晶面板25R,以所述顺序沿着由二向色镜17分离的红色光LR的光路设置。全反射镜18将经由二向色镜17分离的红色光LR反射向液晶面板25R。液晶面板25R用于根据图象信号对经由场透镜24R入射其上的红色光LR进行空间调制。
该投影型液晶显示装置还包括一个二向色镜19,沿着由二向色镜17分离的另一颜色光的光路设置。二向色镜19用于将入射光分离成例如绿色光和蓝色光。
该投影型液晶显示装置还包括一个场透镜24G和一个液晶面板25G,以所述顺序沿着由二向色镜19分离的绿色光LG的光路设置。液晶面板25G用于根据图象信号对经由场透镜24G入射其上的绿色光LG进行空间调制。
该投影型液晶显示装置还包括中继透镜20、全反射镜21、中继透镜22、全反射镜23、场透镜24B和液晶面板25B,以所述顺序沿着由二向色镜19分离的蓝色光LB的光路设置。全反射镜21将经由中继透镜20入射其上的蓝色光LB反射向全反射镜23。全反射镜23将由全反射镜21反射并经由中继透镜22入射其上的蓝色光LB反射向液晶面板25B。液晶面板25B用于根据图象信号对由全反射镜23反射并经由场透镜24B入射其上的蓝色光LB进行空间调制。
该投影型液晶显示装置还包括一个正交棱镜26,设置在红色光LR、绿色光LG和蓝色光LB的光路的交点处,用以合成所述三种色光LR、LG和LB。该投影型液晶显示装置还包括一个投影透镜27,用于将从正交棱镜26出射的合成光投射向屏幕28。正交棱镜26具有三个入射表面26R、26G和26B,以及一个出射表面26T。从液晶面板25R出射的红色光LR进入入射表面26R,从液晶面板25G出射的绿色光LG进入入射表面26G,并且从液晶面板25B出射的蓝色光LB进入入射表面26B。正交棱镜26将入射在入射表面26R、26G和26B上的三种色光加以合成,并将合成光从出射表面26T出射。
图2表示液晶面板25R、25G和25B的一例结构。液晶面板25R、25G和25B除了其调制不同的光束成分之外基本具有相同的功能和结构。下面总体说明液晶面板25R、25G和25B的结构。为便于观看,图2的一部分没有画出影线。液晶面板25(25R、25G和25B)包括一个象素电极基板40B,和一个与象素电极基板40B的入射侧相对的相对基板40A,液晶层45位于其间。
象素电极基板40B包括一个玻璃基板48,和设置在玻璃基板48入射侧的多个象素电极部分46和多个黑底部分47。象素电极基板40B还包括一个介于象素电极部分46和黑底部分47与液晶层45之间的对准膜(未画出)。象素电极部分46和黑底部分47设置成二维形式。象素电极部分46由透明导电材料制成。各黑底部分47形成在相邻的象素电极部分46之间,并且由例如金属膜遮蔽。黑底部分47其中具有开关元件例如TFT(未画出),用于根据图象信号选择性地施加电压至相邻象素电极部分46。由黑底部分47围绕的一个象素电极部分46的开口区域用于透射入射光,并且形成用于一个象素的象素孔径46A。
相对基板40A包括玻璃基板41、第一树脂层43A、微透镜阵列42、第二树脂层43B,和盖板玻璃44,从光入射侧按上述顺序设置。相对基板40A还包括相对电极和一个形成在盖板玻璃44与液晶层45之间的对准膜(未画出)。各相对电极与对应的象素电极46一起产生电势。
微透镜阵列42由光学树脂制成,包括多个微透镜42M,对应于象素电极部分46设置成二维形式。各微透镜42M整体上具有正的折射光焦度,用于将入射在液晶面板25上的光束会聚向对应的象素电极部分46。当位于下游端的投影透镜27具有足够的F数时,进入液晶面板25的绝大多数光束由微透镜42M加以会聚,并且进入象素孔径46A,从而可用于图象显示。为了有效地利用来自液晶面板25的出射光,投影透镜27的F数优选大于或近似等于微透镜42M的数值孔径。
在各微透镜42M中,对于一个象素孔径46A也即每个点(每象素或每子象素),沿光轴方向设有两个透镜表面R1和R2。在图2中,透镜表面R1和R2是球面,第一透镜表面R1凸向光入射侧(光源侧),而第二透镜表面R2凸向光出射侧。为使透镜表面R1和R2具有正光焦度的形状,将第一树脂层43A、微透镜阵列42和第二树脂层43b的折射率n1、n2和n3设置成具有如下关系n2>n1、n3。优选地,折射率n2和n1之间的相对差尽可能地大,例如大约0.2至0.3。这同样适用于n2和n3。
在各微透镜42M中,第二透镜表面R2的焦点位置与第一透镜表面R1的主点H1(见图3)基本一致,整个微透镜42M的焦点位置与象素孔径46A的位置基本一致。第一透镜表面R1形成聚光透镜,第二透镜表面R2形成场透镜。后面将详细说明满足上述光学条件的微透镜42M的光学作用和优点。
虽然认为随着微透镜的焦点位置设置得更靠近象素孔径而使得其遮光系数变高,但是遮光系数在焦点位置与象素孔径完全一致时并不总是最高。考虑到入射光的所有角度分量,优选将其焦点位置设定成例如使得光束的束腰与象素孔径一致。
只要第一树脂层43A、微透镜阵列42和第二树脂层43B构造成使得透镜表面R1和R2具有正的光焦度和预定的光学特性就是符合要求的,其形状并不限于图中所示的那些形状。只要能够确保足够的光焦度使微透镜42M适当工作,可以省去树脂层43A和43B,并且可以将微透镜阵列42直接形成在玻璃基板41与盖板玻璃44之间,如下面的改型中所述。
下面简要说明在液晶面板25中制作微透镜阵列42的方法。首先,形成第一树脂层43A和第二树脂层43B。第一树脂层43A例如通过由一个其上具有微透镜42M的第一透镜表面R1的图纹的压模来模制丙烯酸树脂而形成。类似地,第二树脂层43B例如通过由一个其上具有微透镜42M的第二透镜表面R2的图纹的压模来模制丙烯酸树脂而形成。如此模制的这两个树脂层43A和43B彼此相对地设置,并且将其间的空间填充以光学树脂(例如氨基甲酸乙酯或丙烯酸树脂)作为微透镜阵列42的材料。所填充的树脂还用作粘合剂,用以粘合第一树脂层43A、微透镜阵列42和第二树脂层43B。然后,对第一树脂层43A和第二树脂层43B的表面进行抛光。微透镜阵列的制作方法并不限于上述方法,也可以采用其它方法。
在液晶面板25中,盖板玻璃44、对准膜(未画出)和液晶层45介入在第二透镜表面R2与象素孔径46A之间。优选地,其厚度设定得尽可能小(例如其总厚度在空气中约为5μm至25μm)。
下面说明具有上述结构的投影型液晶显示装置的运作。
首先,参照图1说明投影型液晶显示装置的一般运作。从光源11发出的白光通过MLA 12和13的透射被分割成多个小光束。透过MLA 12和13的光束进入PS光束组合器。PS光束组合器上15的入射光LO包括P偏振光分量和S偏振光分量,在垂直于光轴10的平面内相交。PS光束组合器15将入射光LO分离成两种类型的偏振光分量(P偏振光分量和S偏振光分量)L1和L2,如图4所示。一个经分离的偏振光分量L2从PS光束组合器15出射同时保持其偏振方向(例如P偏振方向)。另一偏振光分量L1(例如S偏振光分量)在通过半波片15A的作用转换成另一个偏振光分量(例如P偏振光分量)之后出射。然后,将两个经分离的偏振光分量L1和L2的偏振方向统一成一个特定方向(例如P偏振方向)。
从PS光束组合器15出射的光束通过聚光透镜16,进入二向色镜17。例如,入射光通过二向色镜17的作用被分离成红色光LR和另一颜色的光。
由二向色镜17分离的红色光LR由全反射镜18反射向液晶面板25R,并经由场透镜24R进入液晶面板25R。入射的红色光LR在液晶面板25R中被根据图象信号进行空间调制,然后进入正交棱镜26的入射表面26R。
相反地,由二向色镜17分离的另一颜色光进入二向色镜19,并分离成例如绿色光LG和蓝色光LB。由二向色镜19分离的绿色光LG经由场透镜24G进入液晶面板25G。绿色光LG在液晶面板25G中被根据图象信号进行空间调制,然后进入正交棱镜26的入射表面26G。
由二向色镜19分离的蓝色光LB经由中继透镜20进入全反射镜21,并且由之反射向全反射镜23。蓝色光LB然后经由中继透镜22进入全反射镜23,并由之反射向液晶面板25B。蓝色光LB经由场透镜24B进入液晶面板25B,并且被根据图象信号进行空间调制,然后进入正交棱镜26的入射表面26B。
由MLA 12和13分离的多个光束被放大并叠加在液晶面板25R、25G和25B的入射表面上,并且均匀地照明该入射表面。光束被放大的放大率由聚光透镜16的焦距fc和第二MLA 13的微透镜13M的焦距fMLA2决定。
所述三种颜色的光束LR、LG和LB由正交棱镜26加以合成,并且从出射表面26T出射向投影透镜27。出射光由投影透镜27投射在屏幕28的前侧或后侧,从而在屏幕28上形成图象。
下面主要参照图3说明作为该实施例主要部分的液晶面板25中微透镜42M的光学作用和优点。
为了简化说明,图3仅画出了液晶面板25的微透镜部分的主要部件。如上所述,微透镜42M的第一透镜表面R1和第二透镜表面R2具有正的光焦度。第二透镜表面R2的焦点位置与第一透镜表面R1的主点H1基本一致,整个微透镜的焦点位置与象素孔径46A基本一致。在下面的说明中,假定整个液晶面板25用位于上游端的照明光学系统出射的具有发散角β的照明光束加以照明。
首先,对平行于微透镜42M的光路60的主光线60A(以实线表示)进行说明。主光线60A由整个微透镜的光焦度会聚至相邻的象素孔径46A。从微透镜42M出射的光束相对于光轴60的最大发散角α由微透镜42M的最大外部尺寸与整个微透镜42M的合成焦距之间的关系决定。更具体地说,最大发散角α由下式(5)给出:
tanα=a/f                      ...(5)其中2a表示所述直径,f表示所述合成焦距。
合成焦距f由下式(6)给出:
f=f1×f2/(f1+f2-Δ)            ...(6)其中f1表示第一透镜表面R1的焦距,f2表示第二透镜表面R2的焦距,Δ表示第一透镜表面R1的主点H1与第二透镜表面R2的主点H2之间的距离(主距)。
当第二透镜表面R2的焦点位置与第一透镜表面R1的主点H1彼此一致时,Δ等于f2,因此,合成焦距f由下式(7)给出:
f=f2                       ...(7)
式(7)表明合成焦距f为恒定值f2,与第一透镜表面R1的焦距f1无关。式(5)和(7)表明主光线60A的出射光的最大发散角α由微透镜42M的半径“a”和第二透镜表面R2的焦距f2直接且排他性地决定。在此情况下,整个透镜的合成焦点位置可以通过根据第一透镜表面R1的焦距f1用确定的合成焦距f进行控制。通过适当地设定焦距f1,可以确保工作所需的象素孔径46A与第二透镜表面R2之间的距离。
下面说明以一定的角度分量进入光轴60的发散光60B(以虚线表示)。相对于光轴60以角度±B照射液晶面板25的光束,通过第一透镜表面R1,相对于主光线60A以±β的角度发散。该光束在通过第二透镜表面R2时转而平行于主光线60A,因为第二透镜表面R2的焦点位置与第一透镜表面R1的主点H1基本一致。也就是说,主光线60A和发散光60B在从微透镜42M出射之后其最大发散角α相等。
通过设置具有上述光学作用的微透镜42M,使得从液晶面板25出射的光束的最大发散角θ由下式(8)给出:
θ=α                      ...(8)
式(8)表明从液晶面板25出射光束的发散角θ也仅由两个参数决定,即微透镜42M的半径“a”和第二透镜表面R2的焦距f2,照明光束的发散角β对出射光束的发散角θ不具有任何影响。也就是说,根据此实施例,照明光束的发散角β在照明光束从液晶面板25出射时得以消除,发散角θ可以比图10所示现有技术中小角度β。相应地,即使在微透镜42M的合成焦距减小时,也可以降低在黑底部分47的光束遮蔽程度。这使得可以实质减小微透镜42M的焦距而不降低有效孔径比,从而实质减小形成在象素孔径46A中的光斑的尺寸。其结果是,可以降低液晶面板25的有效孔径比。
另外,由于该实施例中象素孔径46A处光斑的尺寸与现有技术相比可以令人满意地降低,所以可以增大入射发散角β。如图3所示,通过增大入射发散角β,可以将光斑尺寸增大至象素孔径46A的孔径尺寸,并且可以增加出射光束的量。入射发散角β的增大对于液晶面板25上的入射光通量以及用于容纳该光学系统的盒体的尺寸来说十分重要。
类似于参照图9所述的现有技术的方式,入射在液晶面板25上的照明光束的发散角β由下式(3)限定:
tanβ=rc/fc                ...(3)其中fc表示聚光透镜16的焦距,rc表示其半径。
以此方式,发散角β成为由聚光透镜16的半径rc及其焦距fc决定的参数。然而,由于聚光透镜16的半径rc基本上由构成光源11的灯的尺寸决定,所以当发散角β增加时,焦距fc降低。另一方面,第一MLA 12的每一微透镜12M的放大率M(与液晶面板25和第一MLA 12的照明区域的相似比相对应的固定值)为每一微透镜13M的焦距fMLA2与聚光透镜16的焦距fc之比,由式(7)给出。由MLA 12和13分离的小光束被放大至放大率M以照明液晶面板。
M=fc/fMLA2                ...(7)
为此原因,减小聚光透镜16的焦距fc以增大发散角β意味着第二MLA13的每一微透镜13M的焦距fMLA2也必须减小。由于两个MLA 12和13之间的距离随着焦距fMLA2的降低而降低,所以可以减小光学系统的总尺寸。因而减小了光学系统盒体的尺寸。
如图4所示,当第二MLA 13的一个微透镜13M的有效直径表示为D时,考虑到PS光束组合器15的结构,PS光束组合器15对于一个微透镜13可以只转换入射在具有大约D/2尺寸的孔径上的光束的偏振光成分。因此,为了提高光束会聚至PS光束组合器15中的效率,优选通过减小第二MLA 13上光源图象的尺寸来降低入射在PS光束组合器15上的光束的直径。形成在第二MLA 13上的光源图象的尺寸通常由下式(8)给出,与构成光源11的灯的灯弧长度以及光源11中反射镜与灯弧之间的距离(弧镜距离)有关:
灯弧长度×fMLA2/弧镜距离              ...(8)
这表明通过增大发散角β以降低焦距fMLA2,可以使第二MLA 13上的光源图象变小。因此,可以提高光束会聚至第二MLA 13和PS光束组合器15中的效率,以增加位于自液晶面板25上游的整个照明系统的光输出,并且增加液晶面板25上的入射光通量。
如上所述,通过增大液晶面板25上入射光的发散角β,可以既减小光学系统盒体的尺寸,也增加整个照明系统的光输出。
[实例]
图5A表示在采用图2所示结构的液晶面板的情况下有效孔径比(光束会聚至投影透镜的效率)的实际例子。在此例中,其有效孔径比在图5B所示的模拟条件下计算。如图5B所示,点尺寸(对应于图3所示“2a”)设定为18μm×18μm,象素孔径46A的尺寸设定为12μm×12μm。作为照明光学系统,采用蝇眼集合器光学系统用于0.9英寸的面板(液晶面板上入射光的发散角β为±9°)。投影透镜27的F数设定为1.7(从液晶面板出射光束的发散角θ为17.1°)。
通过这种模拟条件,当微透镜42M的合成焦距f为41μm以及第二透镜表面2R与象素孔径46A之间距离为8μm时,计算结果是有效孔径比为96%。对于对比例,采用传统的其中一个透镜表面具有光焦度的单透镜聚光微透镜(见图10)进行模拟运算。在第一对比例中,微透镜的焦距设定为70μm,这是相当长的,其有效孔径比为86%。在第二对比例中,微透镜的焦距设定为41μm,这是相当短的,其有效孔径比为77%。
在对比例的条件下,由于焦距较短时投影透镜的遮蔽程度较大,所以焦距为70μm时的有效孔径比高于焦距为41μm时。相反地,在此实例中,类似于第二对比例中的方式,其合成焦距较短(f=41μm),但是其有效孔径比比焦距较长的第一对比例中高10%。这是因为入射照明光束的发散角β由于微透镜42M的作用而变为零。特别地,由于该模拟结果包含具有不同折射率的表面之间界面处的反射损耗,所以可以认为4%(100%-96%)对应于该反射损耗。也就是说,在该实例中,可以认为遮蔽作用很少由黑底部分或投影透镜所引致,微透镜42M在增加有效孔径比方面是有效的。
如上所述,根据该实施例,将具有两个透镜表面R1和R2的微透镜42M设置成对应于各象素孔径,使第二透镜表面R2的焦点位置与第一透镜表面R1的主点H1基本一致,并且使整个微透镜的焦点位置与象素孔径46A的位置基本一致。因此,可以在光束从微透镜42M出射时消除入射光相对于光轴的发散角β。这增大了液晶面板的有效孔径比,并且提高了整个照明光学系统的光利用效率。除了这种光输出的增加之外,还可以减小照明光学系统的尺寸并且降低投影透镜的成本。因此,可以实现尺寸的减小和亮度的增加,并且便于微透镜的制作。
以此方式,该实施例可以增大有效孔径比并提高光利用效率,而不会增大其结构和增加制作难度。
[改型]
图6A和6B表示液晶面板25的结构的改型。参照图6A和6B,相对基板40A-1和40A-2与图2所示不同。虽然微透镜42M的透镜表面R1和R2由图2中树脂层之间的界面形成,但是它们也可以由玻璃与树脂(或空气间隙)之间的界面形成。在图6A和6B中,通过将具有折射率n1的树脂层52设置在具有折射率ng1和ng2的两个玻璃层51之间,形成微透镜42M。第一透镜表面R1由玻璃层51与树脂层52之间的界面形成,第二透镜表面R2由玻璃层53与树脂层52之间的界面形成。在此情况下,透镜表面R1和R2的形状由这两个界面之间的折射率之差决定。
在图6A所示的结构中,树脂层52和玻璃层51和53的折射率具有关系n1>ng1和ng2。在此情况下,第一透镜表面R1凸向光入射侧(光源侧),第二透镜表面R2凸向光出射侧。相反地,在图6B所示的结构中,树脂层52和玻璃层51和53的折射率具有关系n1<ng1和ng2。在此情况下,第一透镜表面R1凹向光入射侧,第二透镜表面R2凹向光出射侧。在图6B中,树脂层52可以用空气间隙替代。
图6A和6B中所示液晶面板的相对基板40A-1和40A-2例如如下制作,首先分别在两个玻璃基板的表面上形成透镜表面R1和R2的图纹,将玻璃基板设置成彼此相对,然后将其间的空间填充以光学树脂(例如氨基甲酸乙酯或丙烯酸树脂)用作树脂层52的材料。玻璃基板的表面可以通过例如多种刻蚀方法例如各向同性刻蚀、各向异性刻蚀和干法刻蚀加以处理。
与图2中所示的结构相反,在图6A和6B的相对基板40A-1和40A-2中省去了树脂层43A和43B。因此,可以减少树脂层的数目并降低成本。
图7A和7B画出了微透镜42M的透镜表面R1和R2形状的改型。透镜表面R1和R2不仅可以是球面(图7C),也可以是非球面,例如椭球面(图7B)或者菲涅尔型表面(图7A)。虽然球面透镜可以容易地进行加工,但是使其焦距最小化的曲率半径受到点尺寸的限制,因此难以降低其焦距,除非能够在透镜界面处确保足够的折射率差。相反地,非球面表面和菲涅尔表面具有较短焦距和平面主面的优点,如图中所示,因而可以有效地使发散角β变为零。
图8表示液晶面板25的结构的另一改型。在此改型中,在相对基板中设有一个聚光透镜表面,在象素电极基板中设有一个具有向场功能的透镜表面。该液晶面板包括一个象素电极基板50B,和一个位于象素电极基板50B的光入射侧并且与之相对的相对基板50A,液晶层45位于其间。
相对基板50A包括玻璃基板41、树脂层43A、第一微透镜阵列42A,和盖板玻璃44A,从光入射侧按上述顺序设置。另一方面,象素电极基板50B包括象素电极部分46和黑底部分47、盖板玻璃44B、第二微透镜阵列42B、树脂层43B,和玻璃基板48,从光入射侧按上述顺序设置。
第一微透镜阵列42A由光学树脂制成,包括多个第一微透镜42M-1,对应于象素电极部分46设置成二维形式。每个第一微透镜42M-1具有正光焦度的第一透镜表面R1,用作聚光透镜。树脂层43A的折射率n1和第一微透镜阵列42A的折射率n2具有关系n2>n1,第一透镜表面R1凸向光入射侧(光源侧)。
类似地,第二微透镜阵列42B由光学树脂制成,包括多个第二微透镜42M-2,对应于象素电极部分46设置成二维形式。每个第二微透镜42M-2具有正光焦度的第二透镜表面R2,用作场透镜。也就是说,第二透镜表面R2的焦点位置与第一透镜表面R1(第一微透镜42M-1)的主点基本一致。树脂层43B的折射率n4和第二微透镜阵列42B的折射率n3具有关系n3>n4,第二透镜表面R2凸向光出射侧。
图8中所示改型与图2中所示结构的不同之处在于象素孔径46A设置在两个微透镜42M-1与42M-2(两个透镜表面R1和R2)之间,而其相同之处在于两个微透镜42M-1和42M-2的合成焦点位置设置得邻近象素孔径46A。合成焦点位置与象素孔径46位置的对准可以通过例如调节微透镜42M-1和42M-2与象素孔径46A之间的距离来加以控制。可以认为该改型的结构实现了最高的遮蔽系数,但是使得制作最为困难。
图6至8中所示的上述改型不是彼此独立的,而是可以任意组合。
虽然本发明是结合目前认为是优选的实施例进行说明的,但是应当理解,本发明并不限于所公开的实施例。相反地,本发明意在覆盖包含在所附权利要求的精神和范围之内的各种改型和等同结构。例如,虽然上述实施例中对于一个点仅设有两个具有光焦度的透镜表面,但是一个点的透镜表面数量可以是三个或更多。本发明不仅适用于三面板型投影型液晶显示装置,而且适用于单面板型投影型液晶显示装置。

Claims (6)

1.一种液晶显示元件,包括:
一液晶层;
一象素电极部分,具有多个用于透射光的象素孔径;和
至少一个微透镜阵列,具有多个微透镜,在所述液晶层的光入射侧和光出射侧至少其一上对应于所述象素孔径设置成二维形式,
其中每个所述微透镜包括:
一个聚光透镜,在光轴方向具有至少一个透镜表面,用于将入射光会聚向对应的一个所述象素孔径;和
一个场透镜,在光轴方向具有至少一个透镜表面,使得其焦点位置与所述聚光透镜的主点基本一致。
2.如权利要求1所述的液晶显示元件,其中每个所述微透镜的整体的焦点位置与所述对应的象素孔径基本一致。
3.如权利要求1所述的液晶显示元件,其中在相对于光轴具有发散角分量的入射光从所述微透镜阵列出射时,所述发散角分量通过所述场透镜的光学作用被消除,并且该入射光的出射角与平行于光轴入射的主光线的出射角基本一致。
4.如权利要求1所述的液晶显示元件,其中所述液晶显示元件应用于将透过所述液晶显示元件的光束通过一个投影透镜加以投射的投影型液晶显示装置,并且每个所述微透镜的数值孔径与所述投影透镜的F数基本一致。
5.如权利要求1所述的液晶显示元件,其中每个所述微透镜由一个或多个球面表面、非球面表面和菲涅尔表面构成。
6.一种投影型液晶显示装置,包括:
一光源,用于发射光束;
一液晶显示元件,用于对入射光进行光学调制;和
一投影透镜,用于投射由所述液晶显示元件调制的光束,
其中所述液晶显示元件包括:
一液晶层;
一象素电极部分,具有多个用于透射光的象素孔径;和
至少一个微透镜阵列,具有多个微透镜,在所述液晶层的光入射侧和光出射侧至少其一上对应于所述象素孔径设置成二维形式,
其中每个所述微透镜包括:
一个聚光透镜,在光轴方向具有至少一个透镜表面,用于将入射光会聚向对应的一个所述象素孔径;和
一个场透镜,在光轴方向具有至少一个透镜表面,使得其焦点位置与所述聚光透镜的主点基本一致。
CNB01137862XA 2000-11-10 2001-11-09 液晶显示元件和投影型液晶显示装置 Expired - Fee Related CN1185524C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2000343634A JP2002148603A (ja) 2000-11-10 2000-11-10 液晶表示素子および投射型液晶表示装置
JP343634/2000 2000-11-10

Publications (2)

Publication Number Publication Date
CN1353326A true CN1353326A (zh) 2002-06-12
CN1185524C CN1185524C (zh) 2005-01-19

Family

ID=18817970

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB01137862XA Expired - Fee Related CN1185524C (zh) 2000-11-10 2001-11-09 液晶显示元件和投影型液晶显示装置

Country Status (5)

Country Link
US (1) US6831707B2 (zh)
JP (1) JP2002148603A (zh)
KR (1) KR100811575B1 (zh)
CN (1) CN1185524C (zh)
TW (1) TW538289B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101793379B (zh) * 2009-01-30 2013-06-12 株式会社Jiro企业策划 液晶显示装置用的背光单元用光学片及使用其的背光单元

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6856459B1 (en) * 2000-12-22 2005-02-15 Cheetah Omni, Llc Apparatus and method for controlling polarization of an optical signal
JP2002350823A (ja) * 2001-05-28 2002-12-04 Sony Corp 液晶表示素子および投射型液晶表示装置
US6636363B2 (en) * 2002-03-11 2003-10-21 Eastman Kodak Company Bulk complex polymer lens light diffuser
US20060082701A1 (en) * 2004-10-18 2006-04-20 Tong Li Module for liquid crystal displays
JP4420857B2 (ja) * 2005-06-06 2010-02-24 三洋電機株式会社 投写型表示装置
KR101122199B1 (ko) * 2005-07-07 2012-03-19 삼성전자주식회사 2차원/3차원 영상 호환용 입체영상 디스플레이 장치
US7312928B2 (en) * 2005-10-01 2007-12-25 Hewlett-Packard Development Company, L.P. Projection system field lens
JP4600238B2 (ja) * 2005-10-05 2010-12-15 セイコーエプソン株式会社 画像表示装置
US7429983B2 (en) 2005-11-01 2008-09-30 Cheetah Omni, Llc Packet-based digital display system
JP2008216971A (ja) * 2007-02-08 2008-09-18 Seiko Epson Corp 画像表示デバイス
JP5499618B2 (ja) * 2009-04-22 2014-05-21 ソニー株式会社 投射型液晶表示装置
JP2011118324A (ja) * 2009-11-06 2011-06-16 Sony Corp 液晶表示素子及びその製造方法、並びに液晶表示素子を備えた投射型液晶表示装置
JP5991053B2 (ja) * 2011-10-04 2016-09-14 ソニー株式会社 表示装置および照明装置
TWI460526B (zh) * 2012-07-31 2014-11-11 Sintai Optical Shenzhen Co Ltd 投影機
CN112596332B (zh) * 2020-12-23 2022-03-11 广景视睿科技(深圳)有限公司 一种投影系统及投影仪

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69216340T2 (de) * 1991-09-26 1997-06-26 Canon Kk Flüssigkristallanzeige und damit versehener Projektor
US5430562A (en) * 1993-01-25 1995-07-04 Matsushita Electric Industrial Co., Ltd. Liquid crystal light valve including between light and light valve microlenses and two reflecting layers with a matrix of openings
US5852479A (en) * 1994-09-07 1998-12-22 Sharp Kabushiki Kaisha Color liquid crystal projector device
TW374864B (en) * 1994-10-28 1999-11-21 Toshiba Corp Projecting type displaying device and photo-modulating elements array used therein
JPH0990310A (ja) * 1995-09-22 1997-04-04 A G Technol Kk 反射型液晶表示素子及びその応用装置
JP3779052B2 (ja) * 1997-12-17 2006-05-24 株式会社半導体エネルギー研究所 液晶プロジェクタ
US6678023B1 (en) * 1997-12-17 2004-01-13 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal projector

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101793379B (zh) * 2009-01-30 2013-06-12 株式会社Jiro企业策划 液晶显示装置用的背光单元用光学片及使用其的背光单元

Also Published As

Publication number Publication date
KR100811575B1 (ko) 2008-03-10
US20020113911A1 (en) 2002-08-22
CN1185524C (zh) 2005-01-19
US6831707B2 (en) 2004-12-14
TW538289B (en) 2003-06-21
JP2002148603A (ja) 2002-05-22
KR20020036766A (ko) 2002-05-16

Similar Documents

Publication Publication Date Title
CN1185524C (zh) 液晶显示元件和投影型液晶显示装置
CN1266524C (zh) 液晶显示装置和投影型液晶显示设备
CN1249455C (zh) 制造微透镜矩阵和投影类液晶显示设备的方法
CN1052077C (zh) 高效照明装置和包括这种装置的图像投影设备
CN1178102C (zh) 背投式显示装置
US7327520B2 (en) Optical unit and image display apparatus
CN1338651A (zh) 用于dmd的棱镜系统及采用该棱镜系统的投影仪
CN1914929A (zh) 照明系统
CN107709873A (zh) 照明装置、照明方法和使用它的影像投射装置
EP1714176A2 (en) Reshaping light source modules and illumination systems using the same
CN1243577A (zh) 照明光学系统和投影型显示装置
CN1047670C (zh) 图象投影装置
CN1573513A (zh) 导光体、照明装置及投影型显示装置
CN1628266A (zh) 投影型显示装置
CN1906504A (zh) 菲涅耳透镜及使用这种透镜的投影显示设备
CN1786769A (zh) 投影机
CN1178092C (zh) 照明光学系统和使用该照明光学系统的投影仪
JPH01189685A (ja) 液晶ライトバルブ及び液晶ライトバルブを備えたビデオプロジェクター
CN1300625C (zh) 投影机
CN1826558A (zh) 照明装置及具备该装置的投影机
CN1945380A (zh) 照明光学系统以及图像投射装置
CN1542542A (zh) 宽视角屏幕以及包括该屏幕的投影电视
CN1577069A (zh) 背面投影屏幕用的扩散构造板及背面投影屏幕
CN1627180A (zh) 照明光学系和具有其的图像显示装置
CN212540917U (zh) 一种匀光及光斑修正透镜装置

Legal Events

Date Code Title Description
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C06 Publication
PB01 Publication
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20050119

Termination date: 20151109

EXPY Termination of patent right or utility model