CN1346934A - Fuel jet method - Google Patents

Fuel jet method Download PDF

Info

Publication number
CN1346934A
CN1346934A CN01135377A CN01135377A CN1346934A CN 1346934 A CN1346934 A CN 1346934A CN 01135377 A CN01135377 A CN 01135377A CN 01135377 A CN01135377 A CN 01135377A CN 1346934 A CN1346934 A CN 1346934A
Authority
CN
China
Prior art keywords
fuel
nozzle
stroke
firing chamber
burner oil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN01135377A
Other languages
Chinese (zh)
Other versions
CN100416068C (en
Inventor
K·黑姆
T·海尼
A·比特利
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wartsila NSD Schweiz AG
Original Assignee
Wartsila NSD Schweiz AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wartsila NSD Schweiz AG filed Critical Wartsila NSD Schweiz AG
Publication of CN1346934A publication Critical patent/CN1346934A/en
Application granted granted Critical
Publication of CN100416068C publication Critical patent/CN100416068C/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F1/00Cylinders; Cylinder heads 
    • F02F1/24Cylinder heads
    • F02F1/242Arrangement of spark plugs or injectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/14Arrangements of injectors with respect to engines; Mounting of injectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M63/00Other fuel-injection apparatus having pertinent characteristics not provided for in groups F02M39/00 - F02M57/00 or F02M67/00; Details, component parts, or accessories of fuel-injection apparatus, not provided for in, or of interest apart from, the apparatus of groups F02M39/00 - F02M61/00 or F02M67/00; Combination of fuel pump with other devices, e.g. lubricating oil pump

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Fuel-Injection Apparatus (AREA)
  • Combustion Methods Of Internal-Combustion Engines (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Feeding And Controlling Fuel (AREA)

Abstract

Method for injecting fuel into a combustion chamber having at least two fuel injectors of a cylinder of a reciprocating internal combustion diesel engine in underload operation comprises alternately injecting the fuel so that during at least two successive working cycles no fuel is injected by at least one of the fuel injectors and during at least two following successive working cycles no fuel is injected by the other fuel injector. The fuel is alternately injected by a method wherein any fuel is not fed through at least one nozzle during a series of duty cycle of at least two times and thereafter, any fuel is not fed by another injection nozzle.

Description

The method that fuel sprays
Invention field
The present invention relates to when sub load turns round fuel sprayed into the method in the reciprocating piston type cylinder of diesel engine internal furnace.
According to EP 0 775 821 specifications, knownly a kind of fuel is sprayed into method in the firing chamber in the low speed reciprocating piston type cylinder of diesel engine.Fuel utilizes two to four fuel nozzles to spray in the firing chamber, and these nozzles are worked in whole load range continuously.Especially between the sub load on-stream period, the fuel quantity of a power stroke defined is only by a nozzle ejection, and in next power stroke, the fuel quantity of defined is through second nozzle ejection, therefore, in each power stroke, required fuel quantity is alternately sprayed by each nozzle.
The shortcoming of this injection method is especially to produce partial combustion when sub load turns round in the firing chamber, and therefore the waste gas of burning has a large amount of visible smokes.
Purpose of the present invention
The objective of the invention is the reciprocating piston type diesel engine that to turn round by this way, make it have operating condition preferably.
This purpose realizes by means of following method: when sub load Yunqi, fuel is sprayed in the firing chamber of reciprocating piston type cylinder of diesel engine, each firing chamber links with at least two nozzles, its characteristics are that fuel is alternately sprayed by this way, make at least two continuous work cycle and to come burner oil without in this two nozzle at least one, and subsequently at least two continuous work cycle, come burner oil without another nozzle in this two nozzle.
Other favorable method step is: link by two, three of burner oil or four nozzles and each firing chamber, at least two continuous cycles by same nozzle ejection fuel; Then at least two continuous cycles by another nozzle ejection fuel, in all cases, by one in these nozzles burner oil alternately; And at least two continuous work cycle same nozzle ejection fuel, in the time lag at least 3 seconds, by same nozzle burner oil continuously, at 5 to 60 seconds, especially in the time lag between 10 to 30 seconds, by same nozzle ejection fuel, stroke piston combustion engine is to turn round less than 10% full-power sub load, stroke piston combustion engine is as four-stroke or two stroke diesel engine work, when sub load turns round, by one or two or three nozzle ejection fuel.Utilize the stroke piston combustion engine of the method operation of above-mentioned arbitrary claim.
The dependent claims 2-9 that the method for characteristics realizes relates to other favorable method step.
This purpose especially realizes by means of a kind of method that is suitable for when sub load turns round fuel sprayed in the reciprocating piston type cylinder of diesel engine internal furnace, wherein each firing chamber and at least two nozzles link, fuel alternately sprays in this manner, make at least two continuous work cycle without in this two nozzle at least one fuel is sprayed into, then at least two continuous work cycle, fuel is sprayed into without another nozzle.
Summary of the invention
This method allows to produce a high-temperature zone in the firing chamber.In a kind of method for optimizing, at least 3 seconds, be preferably in time lag of 10 to 30 seconds, claim all that ground sprays with same nozzle with fuel is non-, so that when long-time running, in this zone of combustion, produce high temperature.The advantage that can see this method is disclosed comparing in the specification with EP 0 775 821, and the number of times that heat load changes has reduced, and this fatigue to material has favorable influence.In this zone of combustion and on every side, localized hyperthermia reduces visible smoke.Only the advantage with a nozzle ejection fuel is that fuel is longer through the discharge time of this nozzle, produces a stable injection with repeatability thus.It is disadvantageous in the continuous variation between each nozzle between injection period heat load being changed.
For example from the specification of EP 0 775 821, the expert knows that generally temperature distributing disproportionation is imperfect in the firing chamber, because for example, can produce high temperature corrosion in the hot-zone.In addition, the expert is known, and this uneven temperature distribution can cause big stress on cylinder and piston, and it is tired that this has also aggravated material.Therefore, the expert tries hard to avoid as far as possible the uneven temperature in the firing chamber to distribute according to its professional knowledge.
Yet, be surprised to find, when sub load turns round, especially only open a nozzle and can produce following advantage:
Burning occurs in same place, and therefore, in this zone of combustion, formation has the local hot spots of high temperature.This burns fuel more completely, thereby reduces the visible smoke in the gas of combustion.
Although temperature distributing disproportionation is even, yet do not produce dangerous high temperature corrosion on piston, because when sub load, on the whole, temperature value is lower;
Compare with the situation that changes nozzle in each work cycle, prolonged such as the operating life of the combustion chamber components of piston, cylinder head and outlet valve, because by means of injection method of the present invention, the number of times that heat load changes has reduced, and this has just alleviated fatigue of materials.
In all cases, fuel is preferably through a nozzle ejection.The sub load running causes the bulk temperature value lower.Therefore, the heavily stressed of combustion chamber components that is caused by uneven temperature distribution is restricted, and like this, do not produce too high or dangerous stress on combustion chamber components.Because the bulk temperature value is lower, also got rid of because of firing chamber localized hyperthermia and caused high temperature corrosion.
Method of the present invention is particularly suitable for being lower than 15% full-power utmost point lower part load running, is particularly suited for the sub load running between 1%~3% full load.
Method of the present invention allows burning free from environmental pollution when sub load turns round, and has the obvious advantage of the waste gas smoke, mists and clouds of the grey of having avoided disturbing vision or black.This is particularly advantageous for marine diesel engine.
Method of the present invention is applicable to the running of fixed and portable two-stroke and four-cycle diesel, is particularly useful for cylinder diameter greater than 150 mm or greater than the four-cycle diesel of 300 mm.
For example, a firing chamber and three or four nozzles link.This diesel engine can turn round by following running operating mode according to load:
When full load operation, fuel is supplied with the firing chamber through all three or four nozzles;
In first portion's load range between 25~15% full load, fuel sprays into the firing chamber through two nozzles;
In less than 15% full-power second portion load range fuel only a nozzle in three or four nozzles spray into the firing chamber.
During in switching to cited three running operating modes one, the switching of nozzle is gone into and is switched that the switching function that utilization has hysteresis be favourable.Like this, for example, between the first and second sub load scopes, switch and to be undertaken by this sample loading mode, begin with first portion's load range, switch to running operating mode with 12.5% full-power sub load by the second portion load range, and, switch to running operating mode by first portion's load range with 17.5% full-power sub load from the second portion load range.
Switch to another running operating mode from a running operating mode, for example, also can utilize the time to control this mode and carry out, make after certain moment, for example drop to be lower than or surpass a predetermined threshold value after 20 seconds, forward another changing of operating mode of turning round to and cut.Also can carry out to the switching of another running operating mode from a running operating mode, like this, the switching that forwards another running operating mode to can be carried out immediately greater than for example 5% load variations with suddenling change.
With reference to each accompanying drawing, below by exemplary embodiment explanation the present invention.
Description of drawings
Fig. 1 is a two stroke diesel engine sketch;
Fig. 2 a is the planimetric map with firing chamber of one-stroke nozzle;
Fig. 2 b is the planimetric map with firing chamber of two-stroke nozzle.
Embodiment describes in detail
Hereinafter, work cycle is understood to mean the process that is taken place between the stroke piston combustion engine on-stream period, start comprising valve, combustion jet, the discharge of burning and combustion gas is in the two-stroke machine, work cycle is finished between a commentaries on classics usually, and finishes after two change in the four-stroke machine.
Fig. 1 represents a two stroke diesel engine 1, and some cylinders 11 and piston 10 are arranged, and wherein, cooperatively interacting between the motion of bent axle 2, burning conveying and outlet valve 13 is electronically controlled.Utilize a high-pressure service pump 4 by the road 6 and accumulator 5 fuel is defeated by nozzle 12.The location that comprises the hydraulic system permission start outlet valve 13 of pressure pump 7, pipeline 9 and accumulator 8.The outlet valve 13 of this longitudinally scavenged two stroke diesel engine 1 center arrangement and plurality of nozzles 12, they are along the cylinder head arranged around.Usually, this two stroke diesel engine has two to four fuel nozzles 12.
Fig. 2 a simply represents the firing chamber of cylinder 11, has three nozzle 12a, 12b, 12c, they with the gap that equates along circumference.The running of the case representation sub load of this method in all cases, has a main jet 12a, and shown in constantly, no fuel 14 is through nozzle 12b and 12c injection.In at least two continuous work cycle, fuel 14a is only sprayed by nozzle 12a, and then at least two continuous work cycle, fuel 14a is only sprayed by nozzle 12b, then in two continuous work cycle at least again, is only sprayed by nozzle 12c.In a kind of particularly advantageous method, in two continuous operation cycle periods basically, for example during 10 to 30 seconds, fuel is supplied with by a nozzle 12a.After this at one time in the cycle, fuel is only supplied with by nozzle 12b, is only supplied with by nozzle 12c then.This method makes combustion chamber temperature even, thereby forms the zone of combustion with high temperature, and the result makes burning that cigarette seldom be arranged.Fuel at first nozzle 12a sprays, and is then sprayed by nozzle 12c by nozzle 12b then.The order of nozzle also can change, and makes them with nozzle 12c, the order work of nozzle 12b and nozzle 12a.
Fig. 2 b is illustrated in a method example in the sub load running, in all cases, two nozzle 12a is arranged, and 12b works at the same time.Be similar to the exemplary embodiment of Fig. 2 a, fuel 14a, 14b are equally only supplied with by nozzle 12a, 12b at least two continuous work cycle, are supplied with by nozzle 12c, 12a then.This method is continued to repeat.1 arrives another to before nozzle 12b, the 12c shown in Fig. 2 a, in 5 to 60 seconds, in 10 to 30 seconds, is particularly advantageous by two same nozzle 12a, 12b burner oil 14a, 14b especially.
Only be illustrated at this two methods example shown in Fig. 2 a and the 2b how fuel 14a, 14b can be by two examples in non-a large amount of possibilities of spraying with all claiming in a two-stroke or the four-cycle diesel, in all cases, 11 2 to four fuel nozzles 12 of every cylinder are only opened the part in the existing nozzle, to reach long and more stable injection duration, and make combustion chamber temperature reach temporary transient uneven distribution, promptly between the sub load on-stream period, obtain a high temperature combustion zone.
When 1% to 15% full-power utmost point lower part is loaded, press the method shown in Fig. 2 a, in all cases, be particularly advantageous with main jet 12a, 12b, a 12c.The size of these nozzles 12a, 12b, 12c is applicable to rated load and turns round.In order to reach favourable spray regime, under low sub load, it is favourable by nozzle 12a, a 12b, 12c less fuel quantity being supplied with the firing chamber.

Claims (10)

1. when sub load Yunqi, with fuel (14a, 14b) spray into method in the firing chamber of reciprocating piston type diesel engine (1) cylinder (11), each firing chamber and at least two nozzle (12a, 12b, 12c) link, it is characterized in that (14a 14b) is alternately sprayed fuel by this way, make at least two continuous work cycle without this two nozzle (12a, 12b, 12c) at least one come burner oil, and subsequently at least two continuous work cycle, without this two nozzle (12a, 12b, 12c) another nozzle in come burner oil (14a, 14b).
2. the method for claim 1 is characterized in that being linked by two, three of its burner oil or four nozzles and each firing chamber.
3. claim 1 or 2 method is characterized in that at least two continuous cycles by same nozzle ejection fuel; Then at least two continuous cycles by another nozzle ejection fuel.
4. the method for one of claim 1-3 is characterized in that in all cases, by one in these nozzles burner oil alternately; And at least two continuous work cycle by same nozzle ejection fuel.
5. the method for one of claim 1-4 is characterized in that in the time lag at least 3 seconds, by same nozzle burner oil continuously.
6. the method for claim 4 is characterized in that at 5 to 60 seconds, especially in the time lag between 10 to 30 seconds, by same nozzle ejection fuel.
7. the method for one of claim 1-6 is characterized in that stroke piston combustion engine is to turn round less than 10% full-power sub load.
8. the method for one of claim 1-7 is characterized in that stroke piston combustion engine is as four-stroke or two stroke diesel engine work.
9. the method for one of claim 1-8 is characterized in that when sub load turns round, by one or two or three nozzle ejection fuel.
10. utilize the stroke piston combustion engine of the method operation of above-mentioned arbitrary claim.
CNB011353775A 2000-10-10 2001-10-09 Fuel jet method Expired - Fee Related CN100416068C (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP00810932 2000-10-10
EP00810932.4 2000-10-10

Publications (2)

Publication Number Publication Date
CN1346934A true CN1346934A (en) 2002-05-01
CN100416068C CN100416068C (en) 2008-09-03

Family

ID=8174961

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB011353775A Expired - Fee Related CN100416068C (en) 2000-10-10 2001-10-09 Fuel jet method

Country Status (9)

Country Link
EP (1) EP1197650B1 (en)
JP (1) JP5009467B2 (en)
KR (1) KR100743210B1 (en)
CN (1) CN100416068C (en)
AT (1) ATE298393T1 (en)
DE (1) DE50106574D1 (en)
DK (1) DK1197650T3 (en)
PL (1) PL199837B1 (en)
TW (1) TW491930B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103003558A (en) * 2010-12-08 2013-03-27 三菱重工业株式会社 Fuel injection device for internal combustion engines, and fuel injection method for internal combustion engines
CN104126066A (en) * 2012-04-11 2014-10-29 三菱重工业株式会社 Dual-fuel diesel engine

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5998671B2 (en) * 2012-06-27 2016-09-28 株式会社Ihi 2-cycle engine
DE102017201586A1 (en) 2017-02-01 2018-08-02 Robert Bosch Gmbh Internal combustion engine with redundant injectors

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR840465A (en) * 1937-08-06 1939-04-26 Porsche Kg Fast running internal combustion engine, in particular for motor vehicles and airplanes
US2640422A (en) * 1946-12-03 1953-06-02 Texas Co Fuel pump for internal-combustion engines
CH665453A5 (en) * 1985-01-11 1988-05-13 Sulzer Ag CYLINDER COVER FOR A PISTON INTERNAL COMBUSTION ENGINE.
JPS62118055A (en) * 1985-11-16 1987-05-29 Mitsubishi Heavy Ind Ltd Variable injection nozzle fuel injection valve
JPH06173821A (en) * 1992-12-09 1994-06-21 Mazda Motor Corp Fuel injection device for engine
DE59508329D1 (en) 1995-11-24 2000-06-15 Waertsilae Nsd Schweiz Ag Wint Method and device for injecting fuel in a reciprocating piston internal combustion engine

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103003558A (en) * 2010-12-08 2013-03-27 三菱重工业株式会社 Fuel injection device for internal combustion engines, and fuel injection method for internal combustion engines
CN103003558B (en) * 2010-12-08 2015-06-03 三菱重工业株式会社 Fuel injection device for internal combustion engines, and fuel injection method for internal combustion engines
CN104126066A (en) * 2012-04-11 2014-10-29 三菱重工业株式会社 Dual-fuel diesel engine
CN104126066B (en) * 2012-04-11 2018-05-11 三菱重工业株式会社 Double-fuel diesel engine

Also Published As

Publication number Publication date
ATE298393T1 (en) 2005-07-15
JP5009467B2 (en) 2012-08-22
PL199837B1 (en) 2008-11-28
DE50106574D1 (en) 2005-07-28
PL349991A1 (en) 2002-04-22
DK1197650T3 (en) 2005-07-11
EP1197650B1 (en) 2005-06-22
KR100743210B1 (en) 2007-07-26
CN100416068C (en) 2008-09-03
EP1197650A1 (en) 2002-04-17
TW491930B (en) 2002-06-21
JP2002155782A (en) 2002-05-31
KR20020028778A (en) 2002-04-17

Similar Documents

Publication Publication Date Title
CN100516475C (en) Strategy for fueling a diesel engine
US7270108B2 (en) Opposed piston, homogeneous charge pilot ignition engine
CN101351632B (en) Method and apparatus for operating a spark-ignited direct fuel injection engine
EP0890725A3 (en) Apparatus for and method of controlling internal combustion engine
KR101564866B1 (en) Dual-fuel diesel engine
CN110462187B (en) Method and system for engine skip fire
EP0905360A3 (en) Direct fuel injection engine
CN1496442A (en) Method for heating a catalyst connected downstream of a spark-ignition, direct-injection internal combustion engine
CN1934340A (en) Control strategy for hcci-cd combustion in a diesel engine using two fuel injection phases
EP1036272B1 (en) Method of injection of a fuel-gas mixture to an engine
CN112639272A (en) Segmented direct injection for reactivated cylinders of an internal combustion engine
CN102884298A (en) Fuel injection rate shaping in an internal combustion engine
CN110469413A (en) Method and system for engine control
CN102918240B (en) For the method and apparatus supplying fuel in internal combustion engine
CN1083926C (en) Four-stroke diesel engine with catalytic converter
US8069835B2 (en) Internal combustion engine and operating method therefor
CN100416068C (en) Fuel jet method
EP0902172B1 (en) Method for operating a multicylinder internal combustion engine with direct injection into the cylinder
CN103119269A (en) Method for operating an internal combustion engine
CN1788147A (en) In-cylinder combustion recipe for meeting tier 2 locomotive emissions regulations
CN106133298B (en) Inject fuel into the method in internal combustion engine
US20070266978A1 (en) Self-Igniting Petrol Internal Combustion Engine
GB2389148A (en) Direct injection spark ignition i.c. engine combustion chamber with two spark plugs
CN113107686B (en) Selective cylinder deactivation, particularly in turbocharged diesel engines having high power density
CN110374740A (en) For operating the method and control device of dual fuel engine

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20080903

Termination date: 20201009

CF01 Termination of patent right due to non-payment of annual fee