CN1343622A - 由盐溶液和煅烧二碳酸氢三钠获取碱 - Google Patents

由盐溶液和煅烧二碳酸氢三钠获取碱 Download PDF

Info

Publication number
CN1343622A
CN1343622A CN01117607.5A CN01117607A CN1343622A CN 1343622 A CN1343622 A CN 1343622A CN 01117607 A CN01117607 A CN 01117607A CN 1343622 A CN1343622 A CN 1343622A
Authority
CN
China
Prior art keywords
solution
sodium
salt solution
sodium carbonate
sesquicarbonate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN01117607.5A
Other languages
English (en)
Other versions
CN1315730C (zh
Inventor
D·E·史密斯
W·C·科彭哈弗
R·W·查斯顿
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Genesis Alkali Wyoming LP
Original Assignee
FMC Wyoming Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FMC Wyoming Corp filed Critical FMC Wyoming Corp
Publication of CN1343622A publication Critical patent/CN1343622A/zh
Application granted granted Critical
Publication of CN1315730C publication Critical patent/CN1315730C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01DCOMPOUNDS OF ALKALI METALS, i.e. LITHIUM, SODIUM, POTASSIUM, RUBIDIUM, CAESIUM, OR FRANCIUM
    • C01D7/00Carbonates of sodium, potassium or alkali metals in general
    • C01D7/22Purification
    • C01D7/24Crystallisation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01DCOMPOUNDS OF ALKALI METALS, i.e. LITHIUM, SODIUM, POTASSIUM, RUBIDIUM, CAESIUM, OR FRANCIUM
    • C01D7/00Carbonates of sodium, potassium or alkali metals in general
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B26/00Obtaining alkali, alkaline earth metals or magnesium
    • C22B26/10Obtaining alkali metals

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

本发明公开了一种将碳酸钠和碳酸氢钠稀溶液转化为可从中获取钠化合物的进料溶液的方法。中和稀溶液中的碳酸氢钠,然后用煅烧二碳酸氢三钠强化该溶液,形成浓缩了碳酸钠的进料液,可通过一水合物法或其他结晶过程从中获取钠化合物。

Description

由盐溶液和煅烧二碳酸氢三钠获取碱
发明领域:本发明主要涉及由二碳酸氢三钠矿产混合物中获取包括碳酸钠和/或碳酸氢钠在内的钠化合物的方法。更具体地说,本发明涉及一种由含钠矿石获取钠化合物的改良方法,它可与传统一水合物法、溶液采矿法或其他钠提取法等过程结合使用。
现有技术现状:在Wyoming西南,Green River附近,发现了大量位于地表以下800-3,000英尺的二碳酸氢三钠(Na2CO3·NaHCO3·2H2O)原沉积矿。土耳其和中国也存在着这样的二碳酸氢三钠地下沉积矿。Green River的二碳酸氢三钠矿床面积为1,000平方米,由通常互相层叠并以页岩层间隔的不同矿床层构成。在部分区域,二碳酸氢三钠床层跨400英尺的地层,有10层以上,占该总地层的25%。Green River流域的数家苏打灰公司干法开采(dry mine)地表下约1,500英尺处厚度约12英尺的二碳酸氢三钠矿层(seam),该矿层含约90%二碳酸氢三钠。二碳酸氢三钠的质量根据其在地层中的位置大不相同。对Wyoming,Green River地区所采得二碳酸氢三钠原矿的典型分析如下:
成分          百分比
碳酸氢三钠    90.00
NaCl          0.1
Na2SO4      0.02
有机物        0.3
不溶物        9.58
              100.00
二碳酸氢三钠矿石一般通过开挖矿井,由矿工用机械干法开采自地下矿层。用于开采二碳酸氢三钠矿的的地下开采技术各不相同,包括房柱式开采、连续开采、长壁开采,以及二碳酸氢三钠开采业熟知的其他技术。这些技术都曾被用来提高采矿效率。然而,二碳酸氢三钠矿开采的费用仍然是钠化合物生产中的一个问题,开采二碳酸氢三钠沉积矿所用的设备和人力是其中最大的开支。
二碳酸氢三钠原矿经处理而转化成为所需的形式,例如碳酸钠(Na2CO3),碳酸氢钠(NaHCO3),苛性钠(NaOH),碳酸氢三钠(Na2CO3·NaHCO3·2H2O),磷酸钠(Na5P3O10),或其他钠化合物。最具有市场价值的钠化合物是苏打灰,又称碳酸钠。通常,用两种熟知方法之一,即碳酸氢三钠法或一水合物法,从二碳酸氢三钠矿石中获取碳酸钠。
碳酸氢三钠法的一系列步骤包括:将采得的二碳酸氢三钠原矿溶于循环的热母液中,该母液所含碳酸钠多于碳酸氢钠,以均匀溶解二碳酸氢三钠;清除去除溶液中的泥浆;过滤溶液;使滤液通过一系列真空结晶器,蒸发水份,冷却溶液,使得碳酸氢三钠以稳定的晶体相从溶液中结晶析出;再循环母液,以溶解以后的二碳酸氢三钠原矿;在足够高的温度煅烧碳酸氢三钠晶体,将其转化为碳酸钠即苏打灰。
继碳酸氢三钠法后一种更直接更简单的方法是一水合物法。一水合物法主要得到致密的无有机成分碳酸钠产物,其一系列步骤包括:在约125-500℃煅烧二碳酸氢三钠原矿,将其转化为粗碳酸钠,以此通过氧化和蒸馏减少有机物含量;将该粗碳酸钠溶于水中;从溶液中去除不溶物泥浆以澄清所得的碳酸钠溶液;过滤澄清后的溶液;在蒸发器回路中蒸发掉澄清和过滤后碳酸钠溶液中的水分,从母液中结晶出一水合碳酸钠晶体;将该一水合碳酸钠晶体煅烧成致密的无有机物碳酸钠产物;将晶体的母液循环至蒸发步骤。用一水合物法生产的致密苏打灰产物已成为业界以二碳酸氢三钠为原料的碳酸钠/苏打灰标准产品。
溶液采矿法因干法采矿的成本不断升高而开始受到关注。而且,溶液开采法可获取原先在干法中作为矿柱、矿壁和矿顶而遗留的大量矿石。最简单的溶液开采法包括将二碳酸氢三钠原矿溶于溶液和从该溶液中获取钠产物。例如,将二碳酸氢三钠矿石或其他含钠矿石与例如水等溶剂接触。水令二碳酸氢三钠溶出,形成盐溶液。抽取并处理该溶液,以获取碳酸钠、碳酸氢钠、碳酸氢三钠、一水合碳酸钠,或其他含钠产物。通常将去除了含钠产物的盐溶液再循环,以溶解其他二碳酸氢三钠原矿。
然而,溶液开采法的缺点之一是二碳酸氢三钠矿石中碳酸钠和碳酸氢钠原位溶入溶液的溶解速度较慢。通常,溶液开采法得到的溶液只含低浓度的碳酸钠和碳酸氢钠,因而达不到直接进行一水合物法或碳酸氢三钠法所需的浓度。而且,溶液开采法所得溶液的碳酸钠和碳酸氢钠浓度常常变化,不得不改变处理步骤,并可能严重影响处理过程的稳定性。
本发明提供了一种将含碳酸钠和/或碳酸氢钠的矿水即盐溶液转化成碳酸钠、碳酸氢钠、碳酸氢三钠、一水合碳酸钠、十水合碳酸钠等含钠化合物的新方法。
该方法包括中和和强化含碳酸钠和碳酸氢钠的盐溶液或矿石溶液。中和,在此指:将盐溶液或矿石溶液中的部分碳酸氢钠转化为碳酸钠。在本发明方法中,中和的是含碳酸氢钠的盐溶液。然后,对中和后的盐溶液进行强化,以提高其中碳酸钠的浓度。强化是用煅烧二碳酸氢三钠进行的。该中和和强化后的盐溶液适合进行常规的一水合物法或其他结晶法等后续处理,或作为这些方法的补充。
所述方法的实例之一是从地下二碳酸氢三钠矿石中抽取盐溶液。将溶剂,例如水,泵入地下二碳酸氢三钠矿,水在此溶解二碳酸氢三钠矿石。除了泵入的水之外,天然地下水可与引入的水混合。一段时间后,水使得二碳酸氢三钠矿石中的碳酸钠和碳酸氢钠溶出,形成盐溶液。将该溶液从矿井中抽送至处理车间,在此进行中和。中和一般用石灰或其他苛性物质进行,它们将盐溶液中的至少部分碳酸氢钠转化成碳酸钠。可对来自矿井的全部盐溶液进行处理,也可以将该盐溶液分成两股物流,中和其中一股,然后与另一股重新混合而形成中和的盐溶液流。在中和之外,还可以对盐溶液流进行汽提,以进一步将碳酸氢钠转化成碳酸钠。
用煅烧二碳酸氢三钠强化中和后的盐溶液,以提高该盐溶液的总碱度。该煅烧二碳酸氢三钠强化物质通过在盐溶液中提高碳酸钠浓度而不显著提高碳酸氢钠浓度来提高盐溶液的总碱度。将中和和强化后的盐溶液加入结晶器,通过传统的一水合物法或其他结晶法在此从中和并强化的盐溶液中结晶出碳酸钠、一水合碳酸钠和十水合碳酸钠之类晶体。
以说明书为依据的权利要求具体指明并要求了对本发明本质的保护,同时,结合附图阅读本发明的说明将更容易明确本发明的优点。附图中:
图1是水、碳酸钠和碳酸氢钠的相图;
图2是不同碳酸钠浓度和不同温度下,钠离子/钙离子/二氧化碳/水系统的相关系图;
图3是本发明实施例之一的方框图。
本发明的优点在于提供了一种经济的方法,通过它,用低温水作为溶液采矿溶剂所得的稀盐溶液可进行现用的一水合物法处理。与传统的一水合物法不同,本发明的方法还能够适合不同的盐溶液,例如用低温水溶解二碳酸氢三钠矿石的溶液采矿法所得,碳酸氢钠与碳酸钠之比因二碳酸氢三钠在溶液中溶解不一致而不同的盐溶液。本发明还适用于二碳酸氢三钠以外其他的含碳酸氢钠的矿石。
本发明涉及对盐溶液的中和和强化,可用传统的一水合物法或其他结晶法由该溶液沉淀出碳酸钠或一水合碳酸钠晶体。首先用苛性物质,例如石灰,中和由传统溶液采矿法所得或来自废物流或蒸发池的盐溶液。盐溶液的中和将碳酸氢钠转化成碳酸钠。也可以在中和之前或之后对该盐溶液进行汽提,以进一步将碳酸氢钠转化成碳酸钠。中和后,用煅烧二碳酸氢三钠强化该盐溶液以提高其总碱度,并形成可在结晶过程例如一水合物法中从中沉淀出碳酸钠或一水合碳酸钠的盐溶液。
在用水进行二碳酸氢三钠矿开采时,二碳酸氢三钠的溶解是不一致的。当二碳酸氢三钠原矿溶于水时,碳酸氢三钠(占二碳酸氢三钠矿石的约90%)不能通过冷却从溶液中结晶析出。通过图1中的YZ线就可看出这一点,该线又称二碳酸氢三钠/水线,描述将二碳酸氢三钠(碳酸氢三钠)溶于水时所得溶液中的碳酸氢钠和碳酸钠浓度,其实际组成取决于温度。该图显示3条溶解度等温线,100℃、30℃和20℃各一。
图1是水、碳酸氢钠和碳酸钠之间相关系的总图,包括上述3条等温线,描述不同浓度碳酸钠和碳酸氢钠溶液结晶所得的固体盐。由线YZ可以看出,该线与点T-U-W和V界定的碳酸氢三钠边界不相交,在所述边界围成的区域内,碳酸氢三钠晶体与溶液平衡。只有在该区域内,碳酸氢三钠才可能从含所示浓度碳酸钠和碳酸氢钠的溶液中结晶析出。所以,由于二碳酸氢三钠/水线(线YZ)上没有点落入该碳酸氢三钠区,显然,碳酸氢三钠不能溶于水,而当溶液被冷却时也不能再结晶析出。
用20℃的溶剂水开采二碳酸氢三钠使得二碳酸氢三钠按照图1中的YZ线溶解,直至碳酸氢钠达到20℃溶解度等温线的饱和点。此时,溶剂与二碳酸氢三钠继续接触使得溶液沿等温线向右移动,于是,碳酸氢钠沉淀,碳酸钠继续溶解,直至在约17%碳酸钠和约4%碳酸氢钠处与二碳酸氢三钠达到平衡。如果溶剂水温度是30℃,过程相同,但用的是30℃的溶解度等温线,最终的组成十分相似,约17.3%碳酸钠和约4.7%碳酸氢钠。在这些温度,溶剂温度的略微升高并不显著改变平衡组成。所以,提高溶剂温度使之高于二碳酸氢三钠矿藏的一般温度(地下1,500英尺处约20-22℃)是不经济的。
随着二碳酸氢三钠非一致地溶解于溶剂水并达到平衡,在正在溶解的二碳酸氢三钠表面形成一层碳酸氢钠。该碳酸氢钠层阻止但不终止二碳酸氢三钠的继续溶解,因为碳酸氢钠也是可溶于水的。用地矿温度的水作为溶剂使得抽出(exit)盐溶液的浓度随时间改变,因为随着时间推移,越来越多的碳酸氢钠溶入溶液,而溶入溶液的二碳酸氢三钠则越来越少。最后,根据用来溶解二碳酸氢三钠的水量,盐溶液浓度降低。当存在大量二碳酸氢三钠而溶剂水量有限时,二碳酸氢三钠-水达到平衡,所得的盐溶液平衡保持在约17%碳酸钠和约4%碳酸氢钠。当用溶剂水溶液开采含有大量大外露表面积二碳酸氢三钠的矿区时,情况就是这样。长时间后,随着二碳酸氢三钠溶解的减弱,抽出盐溶液将难以达到平衡。此时,盐溶液组成在图1中向左移动,即碳酸氢钠浓度升高,碳酸钠浓度下降。这称为窒塞。虽然,窒塞在多年后才可能发生,但用溶液采矿所得盐溶液作为进料的各种方法都应该能够在基本上无需改变过程或设备的情况下应对进料液组成因时间而起的变化。
本发明方法进料盐溶液的来源可通过用水或含有少量碳酸钠或碳酸氢钠的水性溶液作为溶剂溶液开采二碳酸氢三钠而得到。理想的溶剂之一是碳酸钠少于3%而且/或碳酸氢钠少于3%(例如图1中A区所代表的)的水溶液。溶剂的温度宜大致保持在溶液开采的二碳酸氢三钠矿本身的温度,即约20-22℃(地表以下1,500英尺深处)。实际经验显示:用水或稀水溶液在地矿温度进行的溶液开采将得到图1中B区附近的组成。这样的盐溶液一般含约4重量%碳酸氢钠,约13-16重量%碳酸钠,实际浓度取决于所含杂质的浓度和溶剂在二碳酸氢三钠矿体上的停留时间。
本发明进料盐溶液的另一来源天然地存在于许多矿藏中。地下水留入矿区形成的天然矿物水与溶液采矿用溶剂混合,共同形成矿物盐溶液的总浓度。通常,由蓄水层流入矿层的水,或二碳酸氢三钠矿所夹带的水,流经二碳酸氢三钠矿床,溶解部分二碳酸氢三钠。这种天然矿物水的组成可能差别很大,从数百分比的总碱度(AT)至饱和(约20%TA)。
适宜盐溶液的其他来源还包括例如一水合物或倍半碳酸盐方法等碳酸钠获取过程产生的废液。此外,蒸发池产生的盐溶液如果其碳酸钠和碳酸氢钠浓度落在本发明所述的范围内,则也可能适合用作本发明的盐溶液。
“TA”或“总碱度”在此指溶液中碳酸钠和/或碳酸氢钠(后者通常表示为其相当于碳酸钠的量)的重量百分比。例如,含17重量%碳酸钠和4重量%碳酸氢钠的溶液的TA为19.5%。
本发明方法适用于任何碳酸氢盐/碳酸盐溶液,特别适合总碱度至少3重量%的盐溶液,更适合至少约8重量%的盐溶液。处理浓度更低的盐溶液将失去商业意义。与其他溶液开采法不同,本发明中,盐溶液中碳酸钠和碳酸氢钠的浓度以及碳酸氢盐与碳酸盐之比并不重要,因为本发明方法能够应对不同的盐溶液浓度,不需要改变处理步骤或处理条件。
本方法是一种用矿物水或其他含碳酸钠和碳酸氢钠盐溶液低成本生产苏打灰的新方法。有些现有方法通过溶液开采所得盐溶液与非煅烧干法开采所得二碳酸氢三钠接触来提高盐溶液的TA浓度,本发明则首先中和盐溶液中的碳酸氢钠,然后用煅烧二碳酸氢三钠来提高其中的碳酸钠浓度。这样,本方法可直接产生适合作为进料加入一水合物方法中一水合碳酸钠蒸发器—结晶器的碳酸钠浓溶液。使用煅烧二碳酸氢三钠代替非煅烧二碳酸氢三钠来强化盐溶液,不必另外加入碳酸氢钠,因而必需汽提和/或中和去除的碳酸氢钠就很少。本方法还取消了现有文献中用来提高碱性溶液TA浓度的其他高成本技术,例如蒸发和/或十水合碳酸钠结晶。现有一水合法工厂可方便地经改装而采用本发明的方法,从而可简便而低廉地获取含碳酸氢钠和碳酸钠盐溶液中的TA值成为获取成本曾经极其高昂的苏打灰产品。
本发明方法的第一步是加热进料盐溶液,并视需要对该盐溶液进料进行汽提。进料盐溶液的加热所达温度约为100-140℃,约105-120℃更好。可在汽提塔内对加热后的盐溶液流进行蒸汽汽提,使得部分碳酸氢钠分解为碳酸钠、二氧化碳和水。可按本领域熟知的方法进行蒸汽汽提。蒸汽汽提宜在随机充填或结构式充填的逆流塔,或在板式塔中进行。加热盐溶液流从塔顶进入,经汽提的盐溶液从塔底流出。蒸汽从塔底流入,水蒸气和二氧化碳从塔顶排出。溶液中二氧化碳的释放是缘于按以下化学反应进行的碳酸氢钠分解为碳酸钠:
出汽提塔的预加热盐溶液流其TA浓度与进汽提塔的盐溶液几乎相同,因为从汽提塔排出的水被从蒸发器进入汽提塔的蒸汽所补足。可对出汽提塔的二氧化碳进行回收,用于制造其他产品,例如碳酸氢钠。
如有必要,可在引入汽提塔之前对盐溶液流进行澄清或过滤,以去除所有可能存在的不溶性物质。此外,可在汽提前用已知方法去除盐溶液中的有机物。
汽提后,中和盐溶液,将其余碳酸氢钠转化成碳酸钠。“中和”或“中和阶段”表示碳酸氢钠通过与石灰和/或氢氧化钠反应而转化成碳酸钠。向盐溶液中加入足量的苛性钠或石灰,形成含约0-2重量%碳酸氢钠或0-0.5重量%氢氧化钠,约0-0.5重量%碳酸氢钠或约0-0.5重量%氢氧化钠更好的最终盐溶液进料。因此,进入一水合物蒸发器回路的最终盐溶液可能含有略微过量的氢氧化钠。
在另一种方法中,可将离开本方法汽提段的盐溶液,或未进行汽提的进料盐溶液分成两股物流。一股送至石灰苛化单元,产生稀苛性钠,例如约1-2重量%氢氧化钠,然后与另一股反应,中和盐溶液流中的碳酸氢钠。通过只向部分盐溶液中加石灰,可减小石灰消和器和苛化设备的规格但不减少苛化量。可按本领域已知方法,在石灰消和器中从稀苛性溶液中分离去除残渣(石灰中的不反应物质)。
可选的是,可对苛性或完全中和的盐溶液流进行澄清和/或过滤,以去除消和/苛化操作产生的不溶物,包括残渣、未反应的石灰和碳酸钙,这些总称“石灰泥”。
如果进行另外的、平行的石灰苛化步骤以制造苛性钠,进入苛化单元的优选进料来源是部分碳酸氢钠已分解,但TA浓度仍与入汽提塔时相同的经汽提的盐溶液。优选经汽提的盐溶液,因为它苛化所需的石灰比碳酸氢盐值较高的原盐溶液少。然而,本发明可采用各种来源的苛性钠。
苛化单元内发生的反应可概括并简化如下:
I) 
II)
由以上反应II可以看出,1摩尔石灰(CaO)与进入苛化单元的盐溶液进料流中的1摩尔碳酸钠反应生成2摩尔氢氧化钠。然而,如反应I所示,由于碳酸氢钠也需要石灰将其转化成碳酸钠才能通过反应II反应生成氢氧化钠,进入苛化单元的盐溶液中碳酸氢盐浓度越低,则意味着将总碱转化成氢氧化钠时所用的石灰越少。由于来自汽提塔的经汽提盐溶液的碳酸氢盐值比进料盐溶液低,所以它转化成氢氧化钠所需石灰较少,因而成为优选的苛化器进料。苛化在约70-100℃的较高温度进行。这能改善石灰的利用率,因为如此温度下的苛化反应更有效,泥浆的沉淀也更充分。此外,该反应是放热的,这有助于保持溶液的较高温度。最终的苛性水溶液也是趁热回收的,是含约1-12重量%NaOH的氢氧化钠稀溶液。
中和后,可过滤或澄清盐溶液,以去除其中未反应的石灰和其他不溶物。如果有石灰泥存在,宜将其从溶液中清除,避免当热的、20重量%以上TA的浓溶液接触石灰泥时产生钙水碱沉淀。这种沉淀是不利的,因为溶液中的碳酸钠浓度将随着钙水碱沉淀而下降。
将苛化步骤后的中和盐溶液引入煅烧二碳酸氢三钠溶解/尾渣分离回路,将盐溶液的碳酸钠浓度提高到足以进入其后的一水合碳酸钠蒸发器—结晶器的水平。用干法开采并用本领域熟知方法煅烧的煅烧二碳酸氢三钠强化盐溶液。在煅烧二碳酸氢三钠溶解/尾渣分离回路中,向中和后的盐溶液中加入足量煅烧二碳酸氢三钠,使盐溶液的碳酸钠浓度升至约22重量%,约28重量%更好,约30重量%最好。因为二碳酸氢三钠溶解在盐溶液中,盐溶液的碳酸钠浓度升高,形成适合进行一水合物法处理的盐溶液。
煅烧二碳酸氢三钠溶解/尾渣分离回路中的浸提部分由一个或串联的多个二碳酸氢三钠溶解即浸提罐组成,各罐在约80℃至溶液沸点即约100℃之间的温度搅拌运行。该温度可能随海拔而改变。用旋转分离器或旋液分离器分离去除出浸提罐浓溶液中的尾渣。主要含细尾渣的浓溶液进入澄清器,沉降出大部分残留不溶物。对所有出澄清器的溢流进行过滤,以去除悬浮固体,并视需要用炭处理以减少有机物含量。然后,将过滤后的溶液送至一水合碳酸钠蒸发器—结晶器。来自澄清器的底流主要含细尾渣,进入增稠器,以获取澄清器底流泥浆中溶液部分的TA。
可将中和后的盐溶液送至增稠器,将出自增稠器的溢流送至浸提罐以溶解煅烧二碳酸氢三钠。宜通过进一步增稠来进一步强化TA的回收,即,第一增稠器的底流进入第二增稠器。向第二增稠器中加入水或稀碱溶液(以碳酸氢钠含量少于约2%为宜),第二增稠器的溢流随中和盐溶液和澄清器底流一同进入第一增稠器。煅烧二碳酸氢三钠溶解/尾渣分离回路的目的是获得碳酸钠浓度约22-30重量%的澄清器溢流溶液,以及尽可能减少出最后增稠器的尾渣中的TA流失。根据中和盐溶液的浓度和中和盐溶液的量,为了将澄清器溢流保持在约22-30重量%碳酸钠的优选范围内,可能必需向煅烧二碳酸氢三钠溶解/尾渣分离回路中加入另外来源的水或稀碱溶液。
如果将中和盐溶液加入第一增稠器后,煅烧二碳酸氢三钠溶解/尾渣分离回路中第一增稠器内的溶液低于约20重量%AT,则不宜从盐溶液中分离石灰苛化回路在中和盐溶液中产生的石灰泥。石灰泥随中和溶液一同进入第一增稠器,就可以没有钙水碱沉淀的危险。石灰泥将随着煅烧二碳酸氢三钠尾渣一同以底流形式离开第一增稠器。对出自最后增稠器的尾渣处理可以是将其返回地下矿层,或进行贮存,或进行地表填埋。
也可将含或不含石灰泥的中和后盐溶液只加入第二增稠器。此外,可增加第三增稠段来提高TA获取率。
在本方法的下一步中,22-30%的碳酸钠过滤液在60℃至110℃之间蒸发,形成一水合碳酸钠晶体。这步操作可用合适的多效蒸发器进行,用蒸汽再压缩蒸发器则更好,它们可进行溶液的蒸发并结晶出一水合碳酸钠。在多效蒸发器中,溶液的温度随效果而不同,大部分蒸发在100℃以下进行。虽然在多效蒸发器中可能发生碳酸氢钠的热分解,但在100℃以下,该分解是极少的。在多效蒸发器中,进料中高于0.5%的碳酸氢钠水平会因操作条件造成碳酸氢三钠与一水合碳酸钠的共结晶。相反,机械蒸汽再压缩一水合物蒸发器中的全部溶液则通常经历100℃以上的温度,于是,更多的碳酸氢钠分解。当进入蒸发器的物流含1%以上碳酸氢钠时,在蒸发器设计中必需允许碳酸氢钠分解所产生二氧化碳的排放。将一水合晶体浆从一水合物蒸发结晶器送至离心机,在此将晶体与母液分离。将母液返回一水合物蒸发结晶器,晶体则送至干燥器,加热直至转化成苏打灰。从离心机返回一水合物蒸发结晶器的部分母液被从流程中排出,以控制杂质含量。可选的是,可将一水合物母液废液送至十水合碳酸钠结晶器,溶液在此冷却至约0-30℃,以5-20℃为佳。这可以获取一水合物母液中的碳酸钠值成为十水合晶体,而且,因为来自十水合碳酸钠结晶器的母液废液的杂质浓度更高,所以从过程中洗去的碳酸钠更少。如此获取所得的十水合碳酸钠可通过加入少量水并加热至30℃以上来热溶解,得到较纯的约30重量%碳酸钠溶液,该溶液可再循环至一水合物蒸发器的进料中。也可以将十水合晶体热溶解在新鲜的蒸发器进料流中,如果该进料还没有饱和。另一种方法是,可对晶体热溶解形成的溶液碳酸化,形成碳酸氢钠或碳酸氢三钠晶体,经分离获取而作为产品。
虽然优选的方法是在100℃以上对盐溶液进行汽提,但汽提步骤可以取消,只通过向新鲜盐溶液中加石灰或氢氧化钠来降低盐溶液中碳酸氢钠浓度。根据进料盐溶液中碳酸氢盐对碳酸盐之比,以及蒸汽、石灰和/或氢氧化钠的成本,较经济的做法可以只用石灰和/或苛性钠去除碳酸氢钠,而不采用汽提。
本发明方法与现有方法相比具有显著优点,其中包括:
a.本方法可用如下溶液开采所得的二碳酸氢三钠溶液作为进料:用环境温度的水作为溶剂进行原位开采,尽管所得溶液并不含有用于碳酸氢三钠法和一水合物法所需的高浓度总碱。低温水溶液溶剂当然更好,因为这可以尽可能降低溶液开采的能耗。
b.溶液开采所得二碳酸氢三钠溶液的碱度可转化成多种产物,即30重量%碳酸钠溶液、一水合碳酸钠晶体和最终的致密苏打灰。作为最终的商品,一水合晶体和苏打灰终产物各有用途和优点,而碳酸钠溶液则可作为进料用于生产其他钠化合物,例如磷酸钠和碳酸氢钠。
c.本方法回收目前认为的废液,即不具备进行常规一水合物法处理所需碱度的废液。这些废液可作为溶剂在溶液开采步骤中吸收更多的碱度,并可用作本发明方法的进料盐溶液。
d.本发明方法很容易为现有一水合物法工厂所采用。
参照图3,以此流程图作为本发明方法的一个实施例:在管壳式换热器中,将含4重量%碳酸氢钠和15重量%碳酸钠以及少量氯化钠和硫酸钠的的进料盐溶液12加热至110℃。如果需要汽提,可将该盐溶液引入充填床汽提塔中进行蒸汽汽提。如果采用汽提,进料盐溶液中约30%的碳酸氢钠在汽提塔内分解。在消和器和苛化罐中(苛化回路35),向溶液(不论是进料盐溶液还是汽提过的盐溶液)中加入含95%活性CaO的石灰3,使得盐溶液中的碳酸氢钠浓度降至0.1重量%。在消和器中分离出残渣,通过物流22去除。将含有石灰泥但不含残渣的中和后盐溶液(物流13)加入煅烧二碳酸氢三钠热溶解/尾渣分离回路的第一增稠器55。第一增稠器的溢流17进入煅烧二碳酸氢三钠浸提系统40,含石灰泥和尾渣的底流浆20则进入第二增稠段60。将极少或不含碳酸氢钠的煅烧二碳酸氢三钠4加入浸提系统40。向第二增稠器60中加入水5。来自第二段增稠器60的溢流溶液19与中和盐溶液13及澄清器底流16一同进入第一段增稠器55。调节加入第二段增稠器60的水量5和进入浸提系统40的煅烧二碳酸氢三钠量4,使得澄清器溢流溶液15含30重量%碳酸钠。处理出自第二增稠器60的底流浆21,即将尾渣和石灰泥泵送到二碳酸氢三钠矿的地下采空区。在压力叶式过滤器中过滤出自澄清器45的溢流溶液15,以去除悬浮的固体。将滤液送至在103℃运行的机械蒸汽再压缩蒸发器中,因水分蒸发而沉淀出一水合碳酸钠晶体。在无孔转鼓离心机中将该晶体与母液分离。然后在150℃的流化床煅烧炉中加热分离所得的晶体,直至生成致密的苏打灰。将离心机分出的母液再循环至蒸发器进料罐。少量母液被排出,以控制母液中杂质的累积。在结晶器中将母液废液冷却至22℃,沉淀出十水合碳酸钠。在离心机中将十水合碳酸钠与其母液分离,将其热溶解和溶解在热水中,形成30%碳酸钠的溶液,再将此溶液再循环至一水合碳酸钠结晶器。十水合碳酸钠结晶器中离心分出的滤液则从过程中排出。
为了简化描述,图3没有包括离心机洗涤水、消泡剂、晶体生长修饰剂、凝聚剂,以及其他添加剂或处理助剂等物流。而且,为了优化能耗、温度与热函平衡,还需要更多热交换设备,并需要考虑杂质的影响,这些都没有包括在该图中,因为这些都是本领域技术人员所熟知的。
虽然已经描述了许多本方法可能的改变形式,但仍可在主要方法框架内进行其他修改以优化结果,可以采用连续或分批或其他运行方式,这些都在本发明范围之内。
以上描述了本发明的优选实施方式,但本发明仅由权利要求限定而非以上描述中的具体细节,因为,根据本发明精神和范围,显然还可能存在着许多可能的改变。

Claims (23)

1.一种从含碳酸钠和碳酸氢钠的溶液中制备钠化合物的方法,包括:
将含碳酸氢钠的矿石溶解在溶液中成为盐溶液;
中和该盐溶液;
将煅烧二碳酸氢三钠溶解在中和后的盐溶液中,形成进料液;和
对该进料液进行一水合碳酸钠法过程。
2.根据权利要求1所述的方法,所述的含碳酸氢钠矿石是二碳酸氢三钠矿石。
3.根据权利要求1所述的方法,所述进料液中的碳酸钠浓度为22-30重量%。
4.根据权利要求1所述的方法,所述进料液适合进行碳酸钠的结晶。
5.根据权利要求1所述的方法,所述进料液的组成使得基本纯的一水合碳酸钠成为所述进料液在结晶条件下首先沉淀析出的结晶产物。
6.一种从含碳酸钠和碳酸氢钠的溶液中制备钠化合物的方法,包括:
将含碳酸氢钠的矿石溶解在溶液中成为盐溶液;
将该溶液分为第一物流和第二物流;
苛化所述第一物流;
将所述的苛化后第一物流与所述第二物流合并成中和盐溶液物流;
将煅烧二碳酸氢三钠溶解在中和盐溶液物流中,形成进料液;和
将该进料液处理成为钠化合物。
7.根据权利要求6所述的方法,所述的苛化所述第一物流是用石灰进行的。
8.根据权利要求6所述的方法,还包括在将所述盐溶液分成第一和第二物流之前对其进行汽提。
9.根据权利要求6所述的方法,所述将进料液处理成钠化合物的步骤包括对进料液进行一水合碳酸钠法处理。
10.根据权利要求6所述的方法,所述的钠化合物含基本纯的一水合碳酸钠。
11.根据权利要求6所述的方法,所述的含碳酸氢钠矿石是二碳酸氢三钠矿石。
12.根据权利要求2所述的方法,所述的二碳酸氢三钠矿石是地下沉积矿。
13.根据权利要求1所述的方法,所述盐溶液中的碳酸钠浓度为13-17重量%。
14.根据权利要求1所述的方法,所述盐溶液中的碳酸氢钠浓度为3.5-4.7重量%。
15.根据权利要求1所述的方法,所述盐溶液中的碳酸钠浓度为13-17重量%,碳酸氢钠浓度为3.5-4.0重量%。
16.一种生产苏打灰的方法,包括:
将含碳酸氢钠的矿石溶解在溶液中成为盐溶液;
向该盐溶液中加入石灰,形成中和盐溶液和石灰泥;
将该中和盐溶液和石灰泥送入增稠器,将中和盐溶液与石灰泥基本分离;
从所述增稠器中获取中和盐溶液;
将煅烧二碳酸氢三钠溶解在中和盐溶液中形成进料液;
澄清该进料液;和
对该进料液进行结晶。
17.根据权利要求16所述的方法,所述的含碳酸氢钠矿石是二碳酸氢三钠。
18.根据权利要求16所述的方法,所述的结晶过程是一水合物结晶过程。
19.根据权利要求1所述的方法,所述盐溶液的总碱度至少为8重量%。
20.根据权利要求1所述的方法,所述盐溶液的总碱度至少为3重量%。
21.一种由含碳酸钠和碳酸氢钠的溶液生产钠化合物的方法,包括
将含碳酸氢钠的矿石溶解在溶液中,形成总碱度至少为8重量%的盐溶液;
用苛性剂中和至少部分该盐溶液,形成碳酸氢钠浓度为0-2重量%的中和盐溶液;
将煅烧二碳酸氢三钠溶解在中和盐溶液中形成碳酸钠浓度为22-30重量%的进料液;
将该进料液处理成一水合碳酸钠晶体。
22.根据权利要求21所述的方法,其中用苛性剂中和至少部分所述盐溶液的步骤还包括:
将所述盐溶液分成第一和第二盐溶液流;
在第一盐溶液流中加入足量苛性剂,形成氢氧化钠浓度为1-12重量%的稀苛性钠溶液流;和
将该苛性钠溶液流与第二盐溶液流合并,形成碳酸氢钠浓度为0-2重量%的中和盐溶液。
23.根据权利要求21所述的方法,还包括在所述中和至少部分所述盐溶液前,通过对所述盐溶液进行汽提将部分碳酸氢钠分解为碳酸钠。
CNB011176075A 2000-05-02 2001-04-30 由盐溶液和煅烧二碳酸氢三钠获取碱 Expired - Fee Related CN1315730C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US09/563,485 2000-05-02
US09/563,485 US6428759B1 (en) 2000-05-02 2000-05-02 Production of feed liquors for sodium carbonate crystallization processes

Publications (2)

Publication Number Publication Date
CN1343622A true CN1343622A (zh) 2002-04-10
CN1315730C CN1315730C (zh) 2007-05-16

Family

ID=24250685

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB011176075A Expired - Fee Related CN1315730C (zh) 2000-05-02 2001-04-30 由盐溶液和煅烧二碳酸氢三钠获取碱

Country Status (3)

Country Link
US (1) US6428759B1 (zh)
CN (1) CN1315730C (zh)
TR (1) TR200101191A2 (zh)

Families Citing this family (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6589497B2 (en) * 2001-06-13 2003-07-08 Fmc Wyoming Corporation Process for preparing soda ash from solution mined bicarbonate brines
US6576206B2 (en) * 2001-06-13 2003-06-10 Fmc Wyoming Corporation Bicarbonate conversion in a carbonate monohydrate process
US7255841B2 (en) * 2001-07-20 2007-08-14 Church & Dwight Co., Inc. Sodium bicarbonate production method
US20030143149A1 (en) * 2002-01-31 2003-07-31 Braman Victor E. Sodium carbonate recovery from waste streams and impounded sodium carbonate decahydrate deposits
US8415509B2 (en) * 2003-11-20 2013-04-09 Solvay (Societe Anonyme) Process for producing dichloropropanol from glycerol, the glycerol coming eventually from the conversion of animal fats in the manufacture of biodiesel
US7517509B2 (en) * 2004-03-31 2009-04-14 University Of Utah Research Foundation Purification of trona ores by conditioning with an oil-in-water emulsion
CN1299991C (zh) * 2004-04-01 2007-02-14 大连化工研究设计院 一种分离重碱晶浆的生产工艺及设备
US7611208B2 (en) * 2004-08-17 2009-11-03 Sesqui Mining, Llc Methods for constructing underground borehole configurations and related solution mining methods
TR200403060A2 (tr) * 2004-11-11 2006-06-21 Eti Soda Üretim Pazarlama Nakliyat ve Elektrik Üretim Sanayi ve Ticaret A. Ş. Bikarbonat içeren çözeltilerden ağır soda, sodyumbikarbonat, hafif soda ve sodyum silikat üretimi
MY177112A (en) 2005-05-20 2020-09-07 Solvay Process for preparing a chlorohydrin in corrosion-resistant apparatus
CN101336207A (zh) * 2005-12-21 2008-12-31 Fmc有限公司 倍半碳酸钠和一水合碳酸钠的生产
US20100032617A1 (en) * 2007-02-20 2010-02-11 Solvay (Societe Anonyme) Process for manufacturing epichlorohydrin
FR2913684B1 (fr) * 2007-03-14 2012-09-14 Solvay Procede de fabrication de dichloropropanol
FR2918058A1 (fr) * 2007-06-28 2009-01-02 Solvay Produit a base de glycerol, procede pour sa purification et son utilisation dans la fabrication de dichloropropanol
KR20100089835A (ko) * 2007-10-02 2010-08-12 솔베이(소시에떼아노님) 용기의 내부식성 향상을 위한 실리콘-함유 조성물의 용도
TWI478875B (zh) * 2008-01-31 2015-04-01 Solvay 使水性組成物中之有機物質降解之方法
WO2009121853A1 (en) * 2008-04-03 2009-10-08 Solvay (Société Anonyme) Composition comprising glycerol, process for obtaining same and use thereof in the manufacture of dichloropropanol
US20090291038A1 (en) * 2008-05-23 2009-11-26 Solvay (Societe Anonyme) Process For The Joint Production of Sodium Carbonate and Sodium Bicarbonate
EP2285743A1 (en) 2008-05-13 2011-02-23 SOLVAY (Société Anonyme) Process for the joint production of sodium carbonate and sodium bicarbonate
EP2303432A4 (en) * 2008-06-20 2012-03-21 Carbon Engineering Ltd Partnership CUTTING CARBON DIOXIDE
CA2734786C (en) * 2008-08-21 2017-11-07 Carbon Engineering Limited Partnership Carbon dioxide capture method and facility
FR2935968B1 (fr) 2008-09-12 2010-09-10 Solvay Procede pour la purification de chlorure d'hydrogene
FR2939434B1 (fr) * 2008-12-08 2012-05-18 Solvay Procede de traitement de glycerol.
EP2621911A1 (en) 2010-09-30 2013-08-07 Solvay Sa Derivative of epichlorohydrin of natural origin
US8603192B2 (en) 2011-02-22 2013-12-10 Veolia Water Solutions & Technologies North America, Inc. Selective salt recovery from mixed salt brine
ES2661094T3 (es) * 2011-12-23 2018-03-27 Solvay Sa Extracción por disolución de mena que contiene carbonato y bicarbonato de sodio
IN2015KN00624A (zh) 2012-09-12 2015-07-17 Intercontinental Potash Corp
TR201609797A3 (tr) 2015-07-31 2018-03-21 Swenson Tech Inc Sodyum Karbonat Monohidrat Kristalleştirme
CA2970687A1 (en) 2016-06-14 2017-12-14 Carbon Engineering Limited Partnership Capturing carbon dioxide
US10422210B1 (en) 2018-05-04 2019-09-24 Sesqui Mining, Llc. Trona solution mining methods and compositions
CN113248068A (zh) * 2021-04-16 2021-08-13 天华化工机械及自动化研究设计院有限公司 一种pta氧化尾气洗涤塔排出液的资源化处理方法和系统

Family Cites Families (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2388009A (en) 1943-10-19 1945-10-30 Robert D Pike Solution mining of trona
US2625384A (en) 1949-07-01 1953-01-13 Fmc Corp Mining operation
US2770524A (en) * 1951-08-02 1956-11-13 Fmc Corp Production of pure sodium carbonate from wyoming trona
US2887360A (en) * 1956-12-07 1959-05-19 Columbia Southern Chem Corp Purification of sodium carbonate monohydrate
US3050290A (en) 1959-10-30 1962-08-21 Fmc Corp Method of recovering sodium values by solution mining of trona
US3131996A (en) * 1960-11-28 1964-05-05 Intermountain Res & Dev Corp Production of sodium carbonate
US3119655A (en) 1961-02-17 1964-01-28 Fmc Corp Evaporative process for producing soda ash from trona
US3260567A (en) * 1961-06-14 1966-07-12 Stauffer Chemical Co Process for the recovery of soda ash from wyoming trona
US3498744A (en) * 1961-09-18 1970-03-03 Intermountain Res & Dev Corp Purification of calcined crude trona by monohydrate recrystallization
US3184287A (en) 1961-10-05 1965-05-18 Fmc Corp Process for the production of soda ash from underground trona deposits
US3246962A (en) 1963-03-07 1966-04-19 Intermountain Res & Dev Corp Dissolving lump trona in a descending aqueous film
US3264057A (en) 1963-03-07 1966-08-02 Intermountain Res & Dev Corp Preparation of soda ash including the leaching of trona with steam
US3425795A (en) * 1966-08-09 1969-02-04 Allied Chem Method for preparing superdense sodium carbonate from wyoming trona and the product thereof
US3479134A (en) * 1967-01-19 1969-11-18 Phillips Petroleum Co Production of dense soda ash from trona
US3479133A (en) * 1967-01-19 1969-11-18 Phillips Petroleum Co Production of soda ash from trona
US3869538A (en) 1973-01-10 1975-03-04 Intermountain Res & Dev Corp Process for producing sodium carbonate from trona
US3953073A (en) 1974-05-17 1976-04-27 Kube Wolfram H Process for the solution mining of subterranean sodium bicarbonate bearing ore bodies
US4869882A (en) 1987-12-30 1989-09-26 General Chemical Corporation Recovery of sodium carbonate values from contaminated dilute soda ash streams
CN1016865B (zh) * 1989-04-07 1992-06-03 马全留 碳酸钠的生产方法
US5043149A (en) 1990-08-29 1991-08-27 Fmc Corporation Soda ash production
MX9202691A (es) * 1991-06-27 1992-12-01 Fmc Corp Produccion de sosa comercial.
US5262134A (en) 1992-02-21 1993-11-16 Fmc Corporation Process for producing sodium salts from brines of sodium ores
US5192464A (en) * 1992-04-23 1993-03-09 Lech Pawlowski Evaporative cooler
US5283054A (en) 1993-03-30 1994-02-01 Fmc Corporation Process for producing sodium salts from brines of sodium ores
US5911959A (en) * 1993-05-25 1999-06-15 Environmental Projects, Inc. Method for purification and production of saline minerals from trona
DE69612133T2 (de) * 1995-05-10 2001-10-18 Solvay Minerals, Inc. Verfahren zur Herstellung von dichtem Natriumcarbonat aus Natriumcarbonatfeinpartikeln
US5609838A (en) 1995-06-09 1997-03-11 Tg Soda Ash, Inc. Equilibrium production of sodium carbonate from sodium bicarbonate
US5575922A (en) 1995-06-30 1996-11-19 Solvay Minerals, Inc. Method for treating mine water using caustic soda
US5736113A (en) * 1996-01-11 1998-04-07 Environmental Projects, Inc. Method for beneficiation of trona
US5989505A (en) 1996-03-18 1999-11-23 Solvay Minerals, Inc. Method for recovery of alkali values from trona using air stripping
US5766270A (en) 1996-05-21 1998-06-16 Tg Soda Ash, Inc. Solution mining of carbonate/bicarbonate deposits to produce soda ash
US5955043A (en) 1996-08-29 1999-09-21 Tg Soda Ash, Inc. Production of sodium carbonate from solution mine brine

Also Published As

Publication number Publication date
TR200101191A3 (tr) 2001-12-21
CN1315730C (zh) 2007-05-16
TR200101191A2 (tr) 2001-12-21
US6428759B1 (en) 2002-08-06

Similar Documents

Publication Publication Date Title
CN1343622A (zh) 由盐溶液和煅烧二碳酸氢三钠获取碱
US5283054A (en) Process for producing sodium salts from brines of sodium ores
US11396452B2 (en) Method for preparing lithium concentrate from lithium-bearing natural brines and processing thereof into lithium chloride or lithium carbonate
US5993759A (en) Production of lithium carbonate from brines
US5766270A (en) Solution mining of carbonate/bicarbonate deposits to produce soda ash
US5955043A (en) Production of sodium carbonate from solution mine brine
US5609838A (en) Equilibrium production of sodium carbonate from sodium bicarbonate
US6776972B2 (en) Recovery of common salt and marine chemicals from brine
US7638109B2 (en) Production of sodium sesquicarbonate and sodium carbonate monohydrate
US6589497B2 (en) Process for preparing soda ash from solution mined bicarbonate brines
US8771380B2 (en) Sodium chloride production process
US3655331A (en) Production of sodium carbonate
US6228335B1 (en) Process for the production of sodium carbonate crystals
US3933977A (en) Process for producing sodium carbonate
US9051627B2 (en) Process for producing sodium bicarbonate
CN1558870A (zh) 从盐水中回收氯化钠和其他盐
US4564508A (en) Process for the recovery of sodium carbonate from salt mixtures
US4980136A (en) Production of lithium metal grade lithium chloride from lithium-containing brine
JP7422776B2 (ja) 水酸化リチウムの回収
CN110937612B (zh) 一种利用粗碳酸氢钠制取优质重质纯碱的工艺
NL2008357C2 (en) Process for producing sodium bicarbonate.
JPH11246217A (ja) ナトリウム塩の製造方法
US7655053B1 (en) Process for sodium carbonate crystals from solutions
PT106208A (pt) Processo para produzir bicarbonato de sódio.
EA047556B1 (ru) Способ производства кальцинированной соды и бикарбоната натрия

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20070516

Termination date: 20110430