CN1328971A - 光催化从废水中除去有机物的方法 - Google Patents

光催化从废水中除去有机物的方法 Download PDF

Info

Publication number
CN1328971A
CN1328971A CN01115762A CN01115762A CN1328971A CN 1328971 A CN1328971 A CN 1328971A CN 01115762 A CN01115762 A CN 01115762A CN 01115762 A CN01115762 A CN 01115762A CN 1328971 A CN1328971 A CN 1328971A
Authority
CN
China
Prior art keywords
titanium dioxide
toc
waste water
tio
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN01115762A
Other languages
English (en)
Other versions
CN1209297C (zh
Inventor
于尔根·迈尔
希尔马·吉尔格斯
伊娜·黑默
安娜·莫伊谢耶夫
斯文-乌韦·盖森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Evonik Operations GmbH
Original Assignee
Degussa GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Degussa GmbH filed Critical Degussa GmbH
Publication of CN1328971A publication Critical patent/CN1328971A/zh
Application granted granted Critical
Publication of CN1209297C publication Critical patent/CN1209297C/zh
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/063Titanium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • C02F1/32Treatment of water, waste water, or sewage by irradiation with ultraviolet light
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/725Treatment of water, waste water, or sewage by oxidation by catalytic oxidation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/66Treatment of water, waste water, or sewage by neutralisation; pH adjustment
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/36Organic compounds containing halogen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/10Photocatalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S210/00Liquid purification or separation
    • Y10S210/902Materials removed
    • Y10S210/908Organic

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Hydrology & Water Resources (AREA)
  • Water Supply & Treatment (AREA)
  • Environmental & Geological Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Catalysts (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)
  • Physical Water Treatments (AREA)

Abstract

本发明涉及一种光催化从废水中除去有机物的方法,其中以颗粒的形式使用光催化剂,该颗粒以热解制得的二氧化钛为基础,并具有以下物化特征数据:平均粒径:10-150μm;BET表面:25-100m2/g;pH值:3-6;紧密堆积密度:100-1200g/l。

Description

光催化从废水中除去有机物的方法
本发明涉及光催化从废水中除去有机物的方法。
热解二氧化钛(市售商品名为Degussa TiO2P25)的特征是在光催化领域具有多种可能的应用(R.W.Matthews,S.R.McEvoy,J.Photochem.Photobiol.A:Chem.,64(1992)231-246;R.I.Bickley等人,Journal of SolidState Chemistry,92(1991),178-190;R.Franke,C.Franke,Chemosphere,第39卷15号(1999),2651-2659;H.Zen,JETI(1998),46(10),66-67)。
其可用作光催化活性高的参比物(V.Loddo等人,Applied Catalysis B:Environmental 20(1999),29-45)。
本发明提供一种光催化从废水中除去有机物的方法,该方法的特征在于,以颗粒的形式使用光催化剂,该颗粒以热解制得的二氧化钛为基础,并具有以下物化特征数据:
平均粒径:    10—150μm
BET表面:     25—100m2/g
pH值:        3—6
紧密堆积密度:100—1200g/l。
可根据本发明使用的颗粒是如下制备的:将热解制得的二氧化钛分散在水中,喷雾干燥,然后任选地将所得的颗粒在150—1100℃下回火1—8小时。
热解二氧化钛可按照已知的方法通过高温或火焰水解由TiCl4制得(乌尔曼化工词典(Ullmanns Enzyklopaedie der technischen Chemie),第4版,第21卷,464页(1982))。
在水中用于制备颗粒的分散液可具有3—25重量%的二氧化钛浓度。
可在分散液中添加有机辅助物质,以提高分散液的稳定性,并改善喷雾干燥后的颗粒形态。
例如,可使用以下辅助物质:多元醇、聚醚、氟代烃基的表面活性剂、醇。
喷雾干燥可在200—600℃的温度下进行。在该过程中可使用圆盘式雾化器或喷嘴雾化器。
颗粒的回火可在固定床如箱式炉以及搅动床如转管干燥器中进行。
改变进料以及喷雾和回火过程中的条件,由此可在特定的限制范围内改变颗粒的物化参数,如比表面、粒径分布、紧密堆积密度和pH值。
在成粒时不需要额外的辅助物质。未经喷雾干燥的二氧化钛不具有限定的附聚物尺寸,而与之相比,根据本发明的二氧化钛颗粒具有限定的粒径。
根据本发明的二氧化钛颗粒能够进行无尘处理。由于紧密堆积密度高,在运输时仅需要非常少的包装工作。
根据本发明的方法可在20—40℃的温度下进行。有机物的浓度可为10—150mg/ml。
可用本发明的方法除去的有机物是4—氯苯酚(4—CP)、二氯乙酸(DCA)、三氯乙烯(TCE)、和二氯乙烷(DCE)。
根据本发明的方法具有以下优点:与非颗粒状的二氧化钛P25相比毒性物质更快速分解,而且根据本发明的二氧化钛颗粒可以比非颗粒状的二氧化钛P25更好地与反应混合物分离(更好地沉降)。
以下将参考附图进一步说明本发明,在附图中:
图1是参考物质4—CP的光催化分解—时间曲线。
实施例
对于热解二氧化钛,使用具有以下物化特征数据的二氧化钛P 25。其在一系列题目为“颜料(Pigmente)”的出版物(No.56:“HochdisperseMetalloxide nach dem Aerosilverfahren,第4版,1989年2月,DegussaAG)中是已知的(表1)。
表1
    二氧化钛P25
CAS登记号     13463—67—7
相对于水的性质     亲水性的
外观     松散的白色粉末
BET表面1,m2/g     50±15
主颗粒的平均粒径,nm     21
紧密堆积密度2,g/l     约100
比重10,g/ml     约3.7
离开送料机时的干燥失重3,%(105℃下2小时)     <1.5
点火失重4,7(1000℃下2小时)     <2
 pH值5(在4%水分散液中)     3-4
 SiO2 8     <0.2
 Al2O3 8     <0.3
 Fe2O3 8     <0.01
 TiO2 8     >99.5
 ZrO2 8     -
 HfO2 8     -
 HCl8,9     <0.3
 过筛存留6(根据Mocker,45μm),%     <0.05
1:根据DIN 66131
2:根据DIN ISO 787/XI,JIS K 5101/18(未过筛)
3:根据DIN ISO 787/II,ASTM D 280,JIS K 5101/21
4:根据DIN 55921,ASTM D 1208,JIS 5101/23
5:根据DIN ISO 787/IX,ASTM D 1207,JIS K 5101/24
6:根据DIN ISO 787/XVIII,JIS K 5101/20
7:相对于在105℃下干燥2小时的物质
8:相对于在1000℃下煅烧2小时的物质
9:HCl含量是点火失重的组分
10:用空气对比的比重瓶测定
为制备二氧化钛,将挥发性的钛化合物通过喷嘴注射入由氢和空气组成的氢氧火焰中。在大多数的情况下,使用四氯化钛。该物质在氢/氧反应过程中形成的水的作用下发生水解,形成二氧化钛和盐酸。离开火焰后,二氧化钛进入所谓的凝聚区,附聚形成二氧化钛的主颗粒和主附聚物。产物在此阶段为气溶胶型,在旋风分离器中与气态的伴随物分离,并随后用湿热空气进行后处理。
二氧化钛的粒径可随反应条件而变化,所述条件例如是火焰温度、氢或氧的比例、四氯化钛的量、在火焰中的停留时间或者凝聚路径的长度。
根据DIN 66 131用氮气测定BET表面。
紧密堆积体积按照ASTM D 4164—88的模型测定。
仪器:Engelsmann制造的冲压式体积计STA V 2003,根据DIN 53194第5.2.b-f部分,测量圆筒250ml,刻度2ml,最大误差范围±0.1g
实施:
将冲压式体积计的计数机构设定在1000次冲压。
称重测量圆筒。
将颗粒填入测量圆筒中最高至250ml刻度。
标注样品的重量(±0.1g)。
将测量圆筒插入冲压式体积计中,然后开动仪器。
冲压结束,1000次冲压后仪器自动关闭。
读取经冲压的堆积体积,精确至1ml。
计算
E:颗粒样品的重量(g)
V:读取的体积(ml)
W:水含量(重量%)(根据实验说明P001测定)
紧密堆积密度=E×(100—W)/(V×100)
pH值是在4%水分散液中测定,如果是疏水性催化剂载体,则在1:1的水:乙醇中。制备可用于本发明中的颗粒
将热解二氧化钛分散在经过完全脱盐的水中。在此过程中,使用根据转子/定子原理运行的分散单元。喷雾干燥所形成的分散液。通过过滤器或旋风分离器分离最终产品。
在隔焰炉中对喷雾颗粒进行回火。与喷雾干燥有关的数据记录在表2中。
表2:与TiO2 P25水分散液的喷雾干燥有关的数据
实施例 H2O的量(kg) TiO2P25的量(kg)  雾化 喷雾盘的转速(rpm) 运行温度(℃) 废气温度(℃)  分离
 1  10  1.5  盘  35000  345  100  旋风分离器
 2  10  1.5  盘  45000  370  105  旋风分离器
 3  10  1.5  盘  20000  350  95  旋风分离器
 4  10  2.5  盘  15000  348  100  旋风分离器
 5  100  15  2组分喷嘴   ——  445  130  过滤器
 6  100  15  盘  10000  450  105  过滤器
 7  10  2.5  盘  20000  348  105  旋风分离器
 8  10  1.5  盘  15000  348  105  旋风分离器
 9  10  2.5  盘  35000  300  105  旋风分离器
表3:喷雾干燥产品的物化数据
 实施例  BET表面(m2/g)  紧密堆积密度(g/l)  pH值  d50值(Cilas)(μm) 干燥失重(%) 点火失重(%)
 1  51  641  3.9  14.6  0.9  0.9
 2  50  612  3.7  10.6  0.8  1.0
 3  52  680  3.5  25.0  0.8  1.0
 4  51  710  3.7  43.6  0.8  1.2
 5  52  660  4.0  17.1  0.9  0.9
 6  53  702  3.9  27.5  0.9  0.9
 7  50  708  3.5  26.7  1.1  0.6
 8  53  696  3.9  30.1  1.0  0.9
 9  49  640  3.7  16.0  0.7  0.8
在任选酸化的水悬浮液中,于紫外照射下在光催化分解氯代烃的过程中测试根据本发明的方法的光催化活性。
通过参考值(零值),当使用纯的二氧化钛Degussa P25作为光催化剂时,利用在任选酸化的水悬浮液中在紫外照射下氯代烃的光催化速率。用Degussa P25进行实验的持续时间最长为360分钟。
1、测定悬浮液中氯代烃之光催化分解速率的实验方法
为研究氯代烃如4—CP(4—氯苯酚)在纯水或者经酸化的水悬浮液中于紫外照射下光催化分解速率,实验的总运行时间最长为360分钟。
分解反应在搅拌槽反应器中进行。另外,待研究的悬浮液从储存容器倾倒至搅拌槽反应器中,并反方向倾倒,以确保均匀的紫外照射。悬浮液的初始pH值在2—6之间,优选的pH为2—3。搅拌槽反应器中的温度在25—40℃之间,优选在30—35℃之间。给定情况(TiO2 P 25或者颗粒状TiO2)下,光催化活性的二氧化钛的浓度为1g/l。烃的浓度在10—150mg/l之间,优选约为120mg/l。
连续地从储存容器中倾倒至紫外照射单元,并再反方向倒回,另外用冷却水冷却紫外灯系统,由此将温度保持在上述恒定范围内。在分解反应的整个持续时间内,连续地监测氯代烃在紫外照射下的分解进程。以固定间隔测定TOC值(TOC=总有机碳=有机键合的碳),由此可测定TOC/TOC0(TOC0=悬浮液中有机键合的碳的初始浓度)。TOC/TOC0定义了在具体的取样时间时的TOC百分含量。在TOC/TOC0—时间曲线中,绘制了氯代烃如4—CP(4—氯苯酚)的分解进程。在相同的条件下还用标准品测试了TiO2 P 25的分解速率。记录曲线的总形状。TiO2 P25:
将在酸化的水悬浮液中的120mg/l的4—CP(4—氯苯酚)和1g/l的TiO2P25注入储存容器中,然后再注入搅拌槽反应器中,并根据上述方法进行处理。记录TOC/TOC0—时间曲线。360分钟后,存在40.5%的初始TOC含量。颗粒状的TiO2
将在酸化的水悬浮液中的120mg/l的4—CP(4—氯苯酚)和1g/l的颗粒状二氧化钛(根据本发明)注入储存容器中,然后再注入搅拌槽反应器中,并根据上述方法进行处理。记录TOC/TOC0—时间曲线。360分钟后,存在35.0%的4—CP(4—氯苯酚)初始TOC含量。
测定的值绘制在图1中。
2、用二氧化钛P25和颗粒状二氧化钛光催化分解4—CP(4—氯苯酚)360分钟后的实验结果
催化剂 360分钟时存留的TOC/TOC0 提高(%)
TiO2 P 25 40.5 /
颗粒状的TiO2 35.0 13.6
反应器体积:V反应器=1.7升总体积:V反应器=3.0升恒定地通入O2辐射器:UVH1022 Z4掺杂铁的高压汞蒸汽灯功率输出:500W(Heraeus)催化剂浓度:1g/l氯代烃的初始浓度:C0=120mg/l初始pH值:pH0=2.4
在纯水或者经酸化的水悬浮液中,于UV照射下使用颗粒状的二氧化钛作为光催化剂进行氯代烃(例如4—CP)的光催化氧化实验。恒定地搅拌悬浮液,并连续地用掺杂铁的高压汞蒸汽灯UVH1022 Z4照射。存在灯的冷却系统,以确保恒定的条件。连续地从储存容器倾倒至反应器中,并按相反方向倒回,以及额外进行冷却,由此也将悬浮液保持在恒定的温度下。

Claims (1)

1、一种光催化从废水中除去有机物的方法,该方法的特征在于,以颗粒的形式使用光催化剂,该颗粒以热解制得的二氧化钛为基础,并具有以下物化特征数据:
平均粒径:    10—150μm
BET表面:     25—100m2/g
pH值:        3—6
紧密堆积密度:100—1200g/l。
CNB011157623A 2000-06-10 2001-06-08 光催化从废水中除去有机物的方法 Expired - Lifetime CN1209297C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP00112446A EP1162179B1 (de) 2000-06-10 2000-06-10 Photokatalytisches Verfahren
EP00112446.0 2000-06-10

Publications (2)

Publication Number Publication Date
CN1328971A true CN1328971A (zh) 2002-01-02
CN1209297C CN1209297C (zh) 2005-07-06

Family

ID=8168957

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB011157623A Expired - Lifetime CN1209297C (zh) 2000-06-10 2001-06-08 光催化从废水中除去有机物的方法

Country Status (8)

Country Link
US (1) US6508941B2 (zh)
EP (1) EP1162179B1 (zh)
JP (1) JP3560937B2 (zh)
KR (1) KR100449357B1 (zh)
CN (1) CN1209297C (zh)
AT (1) ATE276205T1 (zh)
DE (1) DE50007781D1 (zh)
ES (1) ES2228352T3 (zh)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004027118B4 (de) * 2004-06-03 2006-05-11 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Verfahren zum Nachweis des photokatalytischen Abbaus organischer Farbstoffe mittels Fluoreszenzanalyse
MX2007011706A (es) 2005-03-23 2007-12-11 Oculus Innovative Sciences Inc Metodo para tratar quemaduras de segundo y tercer grado utilizando solucion de agua con potencial oxido reductor.
AU2006242175A1 (en) 2005-05-02 2006-11-09 Oculus Innovative Sciences, Inc. Method of using oxidative reductive potential water solution in dental applications
CN1329313C (zh) * 2005-10-24 2007-08-01 东南大学 负载纳米二氧化钛的弥散光纤光催化废水处理反应器
US20090053694A1 (en) * 2005-12-26 2009-02-26 Kriksunov Leo B Photochemically Amplified Bioassay
WO2007085018A2 (en) 2006-01-20 2007-07-26 Oculus Innovative Sciences, Inc. Methods of treating or preventing inflammation and hypersensitivity with oxidative reductive potential water solution
US10342825B2 (en) 2009-06-15 2019-07-09 Sonoma Pharmaceuticals, Inc. Solution containing hypochlorous acid and methods of using same
CN102459088A (zh) * 2009-06-24 2012-05-16 巴斯夫欧洲公司 光催化水净化方法
US9593053B1 (en) 2011-11-14 2017-03-14 Hypersolar, Inc. Photoelectrosynthetically active heterostructures
US9604859B2 (en) 2012-08-17 2017-03-28 Council Of Scientific & Industrial Research Process for decomposition of organic synthetic-dyes using semiconductor-oxides nanotubes via dark-catalysis
US10100415B2 (en) 2014-03-21 2018-10-16 Hypersolar, Inc. Multi-junction artificial photosynthetic cell with enhanced photovoltages
ES2585087B1 (es) * 2015-04-01 2017-09-14 Navarra De Infraestructuras Locales, S.A. (Nilsa) Proceso fotocatalítico en continuo para la depuración de un medio líquido y reactor fotocatalítico para llevarlo a cabo

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4093543A (en) * 1976-09-22 1978-06-06 Mobil Oil Corporation Decomposition of formic acid in very low concentration
GB9102766D0 (en) * 1991-02-09 1991-03-27 Tioxide Group Services Ltd Destruction process
US5849200A (en) * 1993-10-26 1998-12-15 E. Heller & Company Photocatalyst-binder compositions
GB9325051D0 (en) * 1993-12-07 1994-02-02 Tioxide Group Services Ltd Titanium dioxide slurries
JPH07284764A (ja) * 1994-04-19 1995-10-31 Shoji Hirayama 菌類を含む排水の処理方法および装置
JPH0957254A (ja) * 1995-08-28 1997-03-04 Toray Ind Inc 浴室水浄化方法および装置
JPH09131588A (ja) * 1995-11-10 1997-05-20 Toray Ind Inc 台所シンク用排水処理方法および装置
US6136186A (en) * 1997-01-31 2000-10-24 Lynntech, Inc. Photocatalytic oxidation of organics using a porous titanium dioxide membrane and an efficient oxidant
IT1292087B1 (it) * 1997-06-05 1999-01-25 Eniricerche Spa Ora Enitecnolo Procedimento fotocatalitico per la depurazione di acque inquinate da tetraidrotiofene
IL121877A (en) * 1997-10-01 2001-09-13 Yissum Res Dev Co Photocatalysts for the degradation of organic pollutants
DE19843845A1 (de) * 1998-09-24 2000-03-30 Degussa Formkörper, bestehend aus pyrogenem Mischoxid und deren Verwendung

Also Published As

Publication number Publication date
EP1162179B1 (de) 2004-09-15
DE50007781D1 (de) 2004-10-21
ES2228352T3 (es) 2005-04-16
KR20010111037A (ko) 2001-12-15
EP1162179A1 (de) 2001-12-12
KR100449357B1 (ko) 2004-09-21
JP3560937B2 (ja) 2004-09-02
CN1209297C (zh) 2005-07-06
US20020027108A1 (en) 2002-03-07
JP2002035602A (ja) 2002-02-05
US6508941B2 (en) 2003-01-21
ATE276205T1 (de) 2004-10-15

Similar Documents

Publication Publication Date Title
CN1209297C (zh) 光催化从废水中除去有机物的方法
Zhang et al. Photocatalytic degradation of mixed gaseous carbonyl compounds at low level on adsorptive TiO2/SiO2 photocatalyst using a fluidized bed reactor
CN1134399A (zh) 基于热解制备的二氧化硅的颗粒、其制备方法及其应用
US5965479A (en) Activated carbon and process for producing the same
CN1320557A (zh) 掺杂二氧化钛
Ding et al. A kinetic study on photocatalytic oxidation of phenol in water by silica-dispersed titania nanoparticles
Vaiano et al. Photocatalytic removal of phenol by ferromagnetic N-TiO2/SiO2/Fe3O4 nanoparticles in presence of visible light irradiation
CN1232489C (zh) 烯烃的水合方法
CN110255568B (zh) 一种内外双层胺基改性SiO2气凝胶的合成方法及其应用
Tao et al. Development of a TiO2/AC composite photocatalyst by dry impregnation for the treatment of methanol in humid airstreams
EP0725036B1 (en) Activated carbon and process for producing the same
Bouzikri et al. Bifurcaria bifurcata activated carbon for the adsorption enhancement of Acid Orange 7 and Basic Red 5 dyes: kinetics, equilibrium and thermodynamics investigations
Sathish et al. Enhanced photocatalytic degradation of caffeine using Co–Zn/Al2O3 nanocomposite
Mandor et al. A flow-circulation reactor for simultaneous photocatalytic degradation of ammonia and phenol using N-doped ZnO beads
Qiao et al. Photocatalytic oxidation technology for humic acid removal using a nano-structured TiO2/Fe2O3 catalyst
CN1772348A (zh) 一种空气中低浓度有机污染物的净化方法及其净化装置
Tejedor et al. Environmentally friendly synthesis of silicon dioxide nanoparticles and their application for the removal of emerging contaminants in aqueous media
Leichtweis et al. Use of the CuFe2O4/biochar composite to remove methylene blue, methyl orange and tartrazine dyes from wastewater using photo-Fenton process
Mohammed et al. Chitosan incorporated nickel ferrite photocatalyst for complete photocatalytic degradation of ciprofloxacin, ampicillin and erythromycin in water
WO2006045561A1 (de) Sorptionseinheit zur entfernung organischer siliziumverbindungen sowie verwendung von hydrophobierten kieselgel als selektives sorbens
Ischia et al. Synthesis, characterization and photocatalytic activity of TiO 2 powders prepared under different gelling and pressure conditions
Ngo et al. Adsorption characteristics and mechanisms of ciprofloxacin on polyanion-modified laterite material
baha et al. Synergistic Photocatalysis of Bayerite/Zeolite Loaded TiO2 Nanocomposites for Highly Efficient Degradation of Organic Pollutants in Aqueous Environments
CN1902187A (zh) 催化剂制备方法
Shokri et al. Degradation of Acid Red 18 in an aqueous environment by TiO2/Zeolite nano photocatalyst

Legal Events

Date Code Title Description
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C06 Publication
PB01 Publication
C14 Grant of patent or utility model
GR01 Patent grant
C56 Change in the name or address of the patentee

Owner name: EVONIK DEGUSSA CO., LTD.

Free format text: FORMER NAME: DEGUSSA CO., LTD.

CP03 Change of name, title or address

Address after: essen

Patentee after: Evonik Degussa GmbH

Address before: Dusseldorf, Federal Republic of Germany

Patentee before: Degussa AG

CP01 Change in the name or title of a patent holder

Address after: Essen, Germany

Patentee after: Evonik Operations Limited

Address before: Essen, Germany

Patentee before: Wingchuang Degusai Co., Ltd.

CP01 Change in the name or title of a patent holder
CX01 Expiry of patent term

Granted publication date: 20050706

CX01 Expiry of patent term