CN1321266C - 斜流式水轮机转轮叶片 - Google Patents

斜流式水轮机转轮叶片 Download PDF

Info

Publication number
CN1321266C
CN1321266C CNB2004100815155A CN200410081515A CN1321266C CN 1321266 C CN1321266 C CN 1321266C CN B2004100815155 A CNB2004100815155 A CN B2004100815155A CN 200410081515 A CN200410081515 A CN 200410081515A CN 1321266 C CN1321266 C CN 1321266C
Authority
CN
China
Prior art keywords
partiald
theta
equation
stream interface
psi
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CNB2004100815155A
Other languages
English (en)
Other versions
CN1621682A (zh
Inventor
张礼达
余波
陈冬冬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xihua University
Original Assignee
Xihua University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xihua University filed Critical Xihua University
Priority to CNB2004100815155A priority Critical patent/CN1321266C/zh
Publication of CN1621682A publication Critical patent/CN1621682A/zh
Application granted granted Critical
Publication of CN1321266C publication Critical patent/CN1321266C/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/20Hydro energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Hydraulic Turbines (AREA)

Abstract

本发明涉及一种斜流式水轮机转轮叶片,该叶片建立了合理的流动模型,运用该模型及基本方程(1)、(6)、(12)、(14)构成了基于S1流面的准三维反问题计算的主方程,根据这些基本方程设计计算得出基本数据,依据这些基本数据制造出的斜流式水轮机转轮叶片,具有很好的能量和汽蚀性能,转轮叶片数5-6片,应用在30-70米水头中,填补混流式和轴流失水轮机应用水头段(30-70米)的经济、技术方面的不足。

Description

斜流式水轮机转轮叶片
技术领域:
本发明涉及一种斜流式水轮机转轮叶片,属于流体机械领域。
背景技术:
水轮机是水电站的专用动力机械,水电站的装机容量约占全国总装机容量的25%,因此,水轮机的性能直接关系到水电站的出力和寿命。水轮机主要型式有轴流式、混流式、贯流式、冲击式等,斜流式水轮机是介于轴流式和混流式之间的一种机型。在专利文献数据库中,如专利号为:ZL97195388.0的《弗朗西斯水轮机的叶轮》只提出了结构形状,而未提出水轮机转叶轮的设计计算数学方程表达式,因而不能建立水力模型。
在公开发表的斜流式水轮机设计理论及方法中如:(Bankhend水电站转轮更换方案的设计研究/(加拿大)HungD;尹继红//《国外大电机》.-2001(4).-77-81),只讲述了斜流式水轮机转轮更换方案以及对既有转轮进行改型设计的三维计算程序,和本发明所涉及的利用两个相对流面理论,根据斜流式水轮机转轮具体的流道参数,建立流动方程,通过两个流面迭代计算的准三元计算不同。
又如(高水头大容量变转速斜流式水泵水轮机的研制/宫川数吉//《国外大电机》.-1999(2).-47-51),该文采用几种数字流动分析方法设计了斜流式水泵水轮机,其工作水头和输入/输出功率为常规机组的两倍,并进行了相应的模型试验。介绍了该种水泵水轮机的模型试验结果,从水动力学和结构强度的观点出发,确定固定导叶和活动导叶分别为24,转轮叶片数为10,本发明的主要内容是斜流式水轮机转轮叶片,设计水头段在30-70米之间,叶片数为5或6片,从结构型式以及实用范围的角度都不同。
再如(斜流式水泵水轮机工况零流量制动力矩的计算/于治明//《沈阳航空工业学院学报》.-2000,17(3).-81-83),该文利用πo-型式斜流式水泵水轮机的模型静态全特性曲线,分析了影响泵工况零流量制动力矩的主要因素,推导出了斜流式水泵工况零流量制动力矩的计算公式。适用于斜流式水泵水轮机机组的主阀关闭,导叶,轮叶以一定规律开启时,泵工况起动过渡的计算,也不涉及水轮机转轮叶片的范畴。
再又如(全电动中小容量斜流式水轮机的系列化/彭泽元//《水电站机电技术》.-1994,7(3).-65-67),介绍了日本三菱重工与中部电力公司共同研究开发的中小容量斜流转桨式水轮机叶片操作电动接力器,通过制作样机进行验证试验,完成了全电动中小容量斜流式水轮机的系列化,其主要内容在于叶片操作控制机构,和本发明的斜流式水轮机转轮及叶片设计相比,属于不同的技术领域。
发明内容:
本发明的目的是依据水流实际流动状态,提出新的斜流式水轮机的设计方法,根据两类相对流面(S1,S2)的流动理论和斜流式水轮机转轮具体的流道参数,建立两个流面的流动方程,通过两个流面迭代计算的准三元计算设计。设计出新型的斜流式转轮叶片,使之具有合理形状的转轮,供水电站选择,提高斜流式水轮机的效率和抗气蚀能力。
本发明的设计方法基于准三维反问题计算以S1流面和S2m流面计算为基础,其特征在于提出如下流动模型,其设计基本方程式为:
∂ ∂ r ( 1 r B f ∂ ψ ∂ r ) + ∂ ∂ z ( 1 rB f ∂ ψ ∂ z ) = 1 r ( tgμ ∂ V θ r ∂ r - tgλ ∂ V θ r ∂ z )
+ 1 W 2 [ ∂ E ∂ r ( W z - W θ tgμ ) - ∂ E ∂ z ( W r - W θ tgλ ) ] - - - ( 1 )
∂ ∂ m ( r h ∂ Ψ ∂ m ) + ∂ ∂ θ ( 1 hr ∂ ψ ∂ θ ) = 2 ωr ∂ r ∂ m = 2 sin σ - - - ( 6 )
Figure C20041008151500054
dX/dm=R*/R,dY/dθ=-R*    (14)
上述公式中符号见下面具体实施例中说明。
所述的斜流式水轮机转轮叶片的安装角在进水边为22.97°-31.80°之间,出水边为22.56°-30.64°。
所述的斜流式水轮机转轮叶片数为5片或6片。
附图说明:
结合附图对本发明做进一步说明
图1 转轮流道示意图
图2 等价速度三角形
图3A S1流面叶型展开图(5个断面)
图3B,3C 叶片三维图
图4A 斜流式转轮结构正视图
图4B 斜流式转轮结构剖面图
图4C 斜流式转轮叶片安装
图4D 斜流式转轮叶片安装孔
图5A 5叶片转轮实物图
图5B6叶片转轮实物图
1斜流式转轮叶片型线    2斜流式转轮叶片把合螺栓
3斜流式转轮体          4键槽    5叶片定位销孔
具体实施方式:
如图1、图2所示用方程(1)、(6)、(12)、(14)构成了基于S1流面的准三维反问题计算的主方程,通过S2m流面计算给定初始叶型的S1流面反问题与平均S2m流面正问题迭代,并在回转面(S1相对流面)引入“等价速度三角形”,用轴向速度变化率ξ和流面倾斜参数η来修正因流面倾斜和轴向速度变化而引起叶栅性能变化的影响,设计斜流式转轮叶片。进行轴面流动计算得到轴面流动后,就可得到若干回转S1面,然后在回转S1流面上设计出叶片形状,最后将这些叶片按公式
Figure C20041008151500061
积分形成三维实体叶片,并按公式 加厚。其叶片安装角在进水边为22.97″-31.80″之间,出水边为22.56″-30.64″。叶片数为5片或6片。
设计计算的基本过程:
1基于S1流面的准三维反问题计算数学模型
(1)平均S2m流面流动控制方程
假设转轮内部相对流动定常,水流无粘性不可压,对转轮内实际三维流动进行周向平均处理,可得转轮区周向平均的流函数控制方程:
∂ ∂ r ( 1 rB f ∂ ψ ∂ r ) + ∂ ∂ z ( 1 rB f ∂ ψ ∂ z ) = 1 r ( tgμ ∂ V θ r ∂ r - tgλ ∂ V θ r ∂ z )
+ 1 W 2 [ ∂ E ∂ r ( W z - W θ tgμ ) - ∂ E ∂ z ( W r - W θ tgλ ) - - - ( 1 )
平均流动函数定义为:
∂ ψ ∂ r = rB f W 2 ‾ , ∂ ψ ∂ z = - rB f W r ‾ - - - ( 2 )
式中: B f = B · Δθ 2 π
对于轴面有势流动,tgλ和tgμ为0,E为常数,因此,方程(1)的右端项为0。
(2)S1相对流面流动控制方程
S1回转相对流面上的连续方程为:
∂ ∂ m ( hrW m ) + ∂ ∂ θ ( hW θ ) = 0 - - - ( 3 )
S1流面的运动方程为:
∂ ( rW 0 ) ∂ m - ∂ W m ∂ θ = ∂ ∂ m ( k m ∂ ψ ∂ m ) + ∂ ∂ θ ( k θ ∂ ψ ∂ θ ) - - - ( 4 )
= 2 ωr ∂ r ∂ m = 2 ω r sin σ + h W 2 ( ∂ E r ∂ θ W m - ∂ E ∂ m W θ )
式中: k m = r h , k θ = 1 hr
h——S1流面的流层厚度;
m——子午面座标。
方程(3)和(4)构成了S1相对流面绝对无旋运动的基本方程组。
根据连续方程(3)定义流函数为:
∂ ψ ∂ θ = rhW m , ∂ ψ ∂ m = - hW 0 - - - ( 5 )
代入方程(4),可得出S1流面相对运动的流函数方程:
∂ ∂ m ( r h ∂ ψ ∂ m ) + ∂ ∂ θ ( 1 hr ∂ ψ ∂ θ ) = 2 ωr ∂ r ∂ m = 2 sin σ - - - ( 6 )
(3)基于S1流面的叶型设计
叶片方程如下:
Figure C20041008151500078
对于S1流面流动,定义如下周向平均:
q ‾ ( m ) = 1 θ p - θ s ∫ θ s θ p q ( m , θ ) dθ - - - ( 8 )
将式(8)引入式(7)可得基于S1流面计算的叶片积分方程
式中: V θ ‾ ( m ) = 1 θ p - θ s ∫ θ x θ p V θ ( m , θ ) dθ ,
W θ ‾ ( m ) = 1 θ p - θ s ∫ θ x θ p W θ ( m , θ ) dθ
一阶常微分方程(9)求解需给定初值条件。称此条件为叶片叠加条件,对斜流式水轮机转轮,取Zst为叶片旋转轴的轴向坐标,给定如下初值条件:
(r,z=zst)=0    (10)
初始叶型与最终设计叶型间修正公式:
Figure C20041008151500085
由于 与(n)间为非线性关系,故采用松弛迭代,叶型修正可写为:
这样,基于给定初始叶型,通过S2m流面流动和S1流面流动计算,采用式(11)进行叶型迭代修正,并使之满足叶片叠加条件,实现了S1流面上的叶型设计。
给定叶片向厚度tn(r,z,θ),考虑叶片的三维扭曲,叶片的周向厚度tn(r,z,θ)则由下式给出:
Figure C20041008151500088
基于所设计的叶片中面,由式(13)求得厚度ts进行背面加厚,则可得到设计厚度的叶片,实现转轮的准三维设计。
2任意倾斜回转流面的变换
(1)任意倾斜回转面的基本方程
连续方程:
∂ ∂ m ( hr W m ) + ∂ ∂ θ ( hW θ ) = 0
流函数ψ的方程:
∂ ψ ∂ θ = rhW m , ∂ ψ ∂ m = - hW 0
满足于流函数ψ的回转流面相对运动方程:
∂ 2 ψ ∂ m 2 + 1 r 2 ∂ 2 ψ ∂ θ 2 + [ 1 r ∂ r ∂ m - 1 h ∂ ( h ) ∂ m ] ∂ ψ ∂ m - 1 h ∂ ( h ) r ∂ θ = 2 ωh ∂ r ∂ m
(2)等价速度三角形理论
将倾斜的回转流面在任定基准半径R*的圆柱面的展开面x-y面内映象。引入映象函数
dX/dm=R*/R,  dY/dθ=-R*    (14)
由于叶栅进、出口的轴向速度不等,因此引进“等价速度三角形”如图2所示。
因流面倾斜和轴向速度变化而引起叶栅性能变化的影响,分别用轴向速度变化率ξ和流面倾斜参数η来反映:
ξ = W X 2 - W X 2 W X ∞ - - - ( 15 )
η = 2 u * W X 1 + W X 2 ( R 1 2 - R 2 2 R * 2 ) - - - ( 16 )
最后,通过式(14)将叶栅转换到物理面上。
3两类流面准三元迭代
方程(1)、(6)、(12)、(14)构成了基于S1流面的准三维反问题计算的主方程,分别如下:
∂ ∂ r ( 1 rB f ∂ ψ ∂ r ) + ∂ ∂ z ( 1 rB f ∂ ψ ∂ z ) = 1 r ( tgμ ∂ V θ r ∂ r - tgλ ∂ V θ r ∂ z ) - - - ( 1 )
+ 1 W 2 [ ∂ E ∂ r ( W z - W θ tgμ ) - ∂ E ∂ z ( W r - W θ tgλ ) ]
∂ ∂ m ( r h ∂ ψ ∂ m ) + ∂ ∂ θ ( 1 hr ∂ ψ ∂ θ ) = 2 ωr ∂ r ∂ m = 2 sin σ - - - ( 6 )
dX/dm=R*/R,dY/dθ=-R*    (14)
对方程(1)和方程(6)分别建立有限元方程并进行迭代计算,在S1流面计算时,用方程(14)转化到映像面,引入“等价速度三角形”,用轴向速度变化率ξ和流面倾斜参数η来修正因流面倾斜和轴向速度变化而引起叶栅性能变化的影响,再用(14)转化回物理面,继续迭代,直至满足收敛条件。
本发明的优点是:
通过对斜流式水轮机的研究,采用系统设计,综合考虑水轮机性能指标与几何参数各特性间的影响,应用斜流式水轮机的设计方法和优化理论,建立数学模型,利用准三元理论,通过对S1/S2流面进行迭代计算,设计出了具有良好水力性能的斜流式水轮机转轮。该斜流式水轮机改善了轴流式水轮机高水头(30米以上)与混流式水轮机低水头(30-70米)段之间水流能量转换效率低,变负荷运行时效率低,空蚀破坏严重,电站经济效益差等缺陷,使该水头段(30-70米)现有水电站增容技改或新建电站的性价比得到较大提高。

Claims (3)

1、一种斜流式水轮机转轮叶片,其特征在于提出如下流动模型,其设计基本方程式为:
∂ ∂ r ( 1 r B f ∂ ψ ∂ r ) + ∂ ∂ z ( 1 r B f ∂ ψ ∂ z ) = 1 r ( tgμ ∂ V θ r ∂ r - tgλ ∂ V θ r ∂ z )
+ 1 W 2 [ ∂ E ∂ r ( W Z - W θ tgμ ) - ∂ E ∂ z ( W r - W θ thλ ) ] - - - ( 1 )
该方程式为转轮区周向平均的流函数控制方程,式中:z,r,θ为圆柱坐标系,W为相对速度,Wr为相对速度沿径向的分量,Wθ为相对速度沿周向的分量,Wz为相对速度沿轴向的分量;E为相对运动中单位质量流体的能量; B f = BΔθ 2 π ; ψ为流函数;tgλ和tgμ描述流面的几何特性,由 tgλ = n r n θ , tgμ = n z n θ 确定,nr,nθ,nz分别表示流面的径向,周向和轴向的单位矢量;
∂ ∂ m ( r h ∂ ψ ∂ m ) + ∂ ∂ θ ( 1 hr ∂ ψ ∂ θ ) = 2 ωr ∂ r ∂ m = 2 ω r sin σ - - - ( 6 )
该方程式为S1流面相对运动的流函数方程,式中:r为计算流线处半径,m为子午面座标,h为S1流面的流层厚度,ω为角速度, sin σ = ∂ r ∂ m 是关于S1流面的几何形状参数,通过平均S2m流面流动计算给定;
Figure C2004100815150002C8
该方程式为叶型修正方程,式中:rc为计算所得平均转轮半径,rg为给定平均半径,n为迭代次数;
dX/dm=R*/R,dY/dθ=-R*    (14)
该方程式为映象函数方程,式中:X,Y为将倾斜的回转流面在任定基准半径
R*的圆柱展开面上的x-y坐标,R为倾斜回转流面半径。
2、根据权利要求1所述的斜流式水轮机转轮叶片,其特征在于转轮叶片的安装角在进水边为22.97°-31.80°之间,出水边为22.56°-30.64°。
3、根据权利要求1所述的斜流式水轮机转轮叶片,其特征在于转轮叶片数为5片或6片。
CNB2004100815155A 2004-12-17 2004-12-17 斜流式水轮机转轮叶片 Expired - Fee Related CN1321266C (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CNB2004100815155A CN1321266C (zh) 2004-12-17 2004-12-17 斜流式水轮机转轮叶片

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CNB2004100815155A CN1321266C (zh) 2004-12-17 2004-12-17 斜流式水轮机转轮叶片

Publications (2)

Publication Number Publication Date
CN1621682A CN1621682A (zh) 2005-06-01
CN1321266C true CN1321266C (zh) 2007-06-13

Family

ID=34765742

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB2004100815155A Expired - Fee Related CN1321266C (zh) 2004-12-17 2004-12-17 斜流式水轮机转轮叶片

Country Status (1)

Country Link
CN (1) CN1321266C (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101070810B (zh) * 2007-06-20 2010-05-19 刘增旺 四环多级中水水轮机

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101615216B (zh) * 2009-07-28 2011-01-05 重庆大学 对翼型尾缘进行流线形增厚的方法
CN102054099B (zh) * 2010-12-16 2012-11-14 清华大学 一种贯流式锥形空间导叶三维密合设计方法和装置
CN102182622B (zh) * 2011-04-07 2013-05-22 清华大学 一种六工况双向潮汐发电水轮机
CN104265548A (zh) * 2014-09-10 2015-01-07 陈瑶 一种水轮粗透机
CN108205607B (zh) * 2017-12-22 2019-12-24 江苏江进泵业有限公司 一种高比转速离心泵叶轮的水力设计方法
CN113969855B (zh) * 2021-10-15 2022-08-02 清华大学 抑制水泵水轮机泵工况驼峰的叶片改型方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2098656C1 (ru) * 1993-08-10 1997-12-10 Уфимский государственный нефтяной технический университет Способ определения профилей лопаток гидравлических турбин турбобуров
CN1088154C (zh) * 1996-08-02 2002-07-24 Ge能源(挪威)公司 弗朗西斯型水轮机的叶轮
CN1414248A (zh) * 2002-07-12 2003-04-30 四川工业学院 轴流泵叶轮叶片
WO2004031573A1 (de) * 2002-09-26 2004-04-15 Va Tech Hydro Gmbh & Co Laufrad einer hydraulischen maschine
CN1147662C (zh) * 2002-08-23 2004-04-28 西安交通大学 一种径、混流式圆柱面割线元素三元叶轮的设计方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2098656C1 (ru) * 1993-08-10 1997-12-10 Уфимский государственный нефтяной технический университет Способ определения профилей лопаток гидравлических турбин турбобуров
CN1088154C (zh) * 1996-08-02 2002-07-24 Ge能源(挪威)公司 弗朗西斯型水轮机的叶轮
CN1414248A (zh) * 2002-07-12 2003-04-30 四川工业学院 轴流泵叶轮叶片
CN1147662C (zh) * 2002-08-23 2004-04-28 西安交通大学 一种径、混流式圆柱面割线元素三元叶轮的设计方法
WO2004031573A1 (de) * 2002-09-26 2004-04-15 Va Tech Hydro Gmbh & Co Laufrad einer hydraulischen maschine

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
〈斜流式水泵水轮机泵工况零流量制动力距的计算〉 于治明,沈阳航空工业学院学报,第17卷第3期 2000 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101070810B (zh) * 2007-06-20 2010-05-19 刘增旺 四环多级中水水轮机

Also Published As

Publication number Publication date
CN1621682A (zh) 2005-06-01

Similar Documents

Publication Publication Date Title
CN103366067B (zh) 仿真预测液力变矩器性能的方法
Kang et al. Experimental study on the three-dimensional flow within a compressor cascade with tip clearance: Part I—Velocity and pressure fields
Anagnostopoulos et al. Flow modeling and runner design optimization in Turgo water turbines
Gallego et al. Experimental analysis on the performance of a pico-hydro Turgo turbine
CN103047173A (zh) 获得离心泵蜗壳的高效低噪叶轮方法
CN1321266C (zh) 斜流式水轮机转轮叶片
Hara et al. Predicting double-blade vertical axis wind turbine performance by a quadruple-multiple streamtube model
CN108301955A (zh) 轴流式pat发电模式最优效率点参数和性能曲线预估方法
Muis et al. Design and simulation of very low head axial hydraulic turbine with variation of swirl velocity criterion
Janjua et al. Blade profile optimization of kaplan turbine using CFD analysis
Zhu et al. Pump selection and performance prediction for the technical innovation of an axial-flow pump station
Cacciali et al. Free Surface Double Actuator Disc Theory and Double Multiple Streamtube Model for In-Stream Darrieus Hydrokinetic Turbines
CN205779882U (zh) 一种叶片泵及用于叶片泵的叶轮叶片
CN110610034B (zh) 一种混流式水轮机水力特性的生成方法
Jemal et al. COMPREHENSIVE REVIEW OF PUMP AS TURBINE (PAT).
Ghimire et al. Design of Francis turbine for micro hydropower applications
CN203809057U (zh) 汽轮机末级长叶片
Ivanell et al. Validation of methods using EllipSys3D
Zidonis et al. Experimental investigation and analysis of the spear valve design on the performance of Pelton turbines: 3 case studies
Jiang et al. Computational analysis of oil pumps with an implicit pressure based method using unstructured mixed element grids
CN105526038A (zh) 一种水马达
Liu et al. Transient simulations in hydropower stations based on a novel turbine boundary
Khoryev et al. Experimental Studies of Pump-Turbine Flow Part Models at Heads of 80–120 m
Rogowski et al. Performance analysis of a Darrieus-type wind turbine for a series of 4-digit NACA airfoils
Fernando et al. Torque performance analysis of a hydrokinetic turbine in a tank set-up using CFD

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
ASS Succession or assignment of patent right

Owner name: ZHEJIANG FUCHUNJIANG WATER POWER EQUIPMENT CO., L

Free format text: FORMER OWNER: XIHUA UNIV.

Effective date: 20080926

C41 Transfer of patent application or patent right or utility model
TR01 Transfer of patent right

Effective date of registration: 20080926

Address after: Hongqi Industrial Zone, the Fuchun River Town, Tonglu County, Hangzhou, Zhejiang

Patentee after: Zhejiang Fuchunjiang Hydropower Equipment Co., Ltd.

Address before: Department of science and technology, Xihua University, Chengdu City, Sichuan Province

Patentee before: Xihua University

ASS Succession or assignment of patent right

Owner name: XIHUA UNIVERSITY

Free format text: FORMER OWNER: ZHEJIANG FUCHUNJIANG HYDROPOWER EQUIPMENT CO., LTD.

Effective date: 20140422

C41 Transfer of patent application or patent right or utility model
COR Change of bibliographic data

Free format text: CORRECT: ADDRESS; FROM: 311504 HANGZHOU, ZHEJIANG PROVINCE TO: 610039 CHENGDU, SICHUAN PROVINCE

TR01 Transfer of patent right

Effective date of registration: 20140422

Address after: 610039 Department of science and technology, Xihua University, Chengdu City, Sichuan Province

Patentee after: Xihua University

Address before: 311504 Hongqi Industrial Zone, the Fuchun River Town, Tonglu County, Hangzhou, Zhejiang

Patentee before: Zhejiang Fuchunjiang Hydropower Equipment Co., Ltd.

C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20070613

Termination date: 20131217