CN1312747C - 金属氧化物半导体晶体管的制造方法 - Google Patents

金属氧化物半导体晶体管的制造方法 Download PDF

Info

Publication number
CN1312747C
CN1312747C CNB2004100710863A CN200410071086A CN1312747C CN 1312747 C CN1312747 C CN 1312747C CN B2004100710863 A CNB2004100710863 A CN B2004100710863A CN 200410071086 A CN200410071086 A CN 200410071086A CN 1312747 C CN1312747 C CN 1312747C
Authority
CN
China
Prior art keywords
grid structure
substrate
source
metal silicide
pattern block
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CNB2004100710863A
Other languages
English (en)
Other versions
CN1601709A (zh
Inventor
赖二琨
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Macronix International Co Ltd
Original Assignee
Macronix International Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Macronix International Co Ltd filed Critical Macronix International Co Ltd
Publication of CN1601709A publication Critical patent/CN1601709A/zh
Application granted granted Critical
Publication of CN1312747C publication Critical patent/CN1312747C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66568Lateral single gate silicon transistors
    • H01L29/66575Lateral single gate silicon transistors where the source and drain or source and drain extensions are self-aligned to the sides of the gate
    • H01L29/6659Lateral single gate silicon transistors where the source and drain or source and drain extensions are self-aligned to the sides of the gate with both lightly doped source and drain extensions and source and drain self-aligned to the sides of the gate, e.g. lightly doped drain [LDD] MOSFET, double diffused drain [DDD] MOSFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/28008Making conductor-insulator-semiconductor electrodes
    • H01L21/28017Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon
    • H01L21/28026Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon characterised by the conductor
    • H01L21/28035Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon characterised by the conductor the final conductor layer next to the insulator being silicon, e.g. polysilicon, with or without impurities
    • H01L21/28044Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon characterised by the conductor the final conductor layer next to the insulator being silicon, e.g. polysilicon, with or without impurities the conductor comprising at least another non-silicon conductive layer
    • H01L21/28052Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon characterised by the conductor the final conductor layer next to the insulator being silicon, e.g. polysilicon, with or without impurities the conductor comprising at least another non-silicon conductive layer the conductor comprising a silicide layer formed by the silicidation reaction of silicon with a metal layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/665Unipolar field-effect transistors with an insulated gate, i.e. MISFET using self aligned silicidation, i.e. salicide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7833Field effect transistors with field effect produced by an insulated gate with lightly doped drain or source extension, e.g. LDD MOSFET's; DDD MOSFET's

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

一种金属氧化物半导体晶体管的制造方法,此方法是提供一个基底,其中在基底上已形成有一个栅极结构,接着在栅极结构两侧的基底中形成源极/漏极区,再于栅极结构与源极/漏极区表面形成金属硅化物层,然后,在栅极结构顶部的金属硅化物层上形成一图案块,并同时在其余部位的基底上形成一层介电层,其中图案块是形成于对应栅极结构顶部中央,且于图案块两侧暴露出部分的金属硅化物层,其后,以图案块为罩幕,去除部分的金属硅化物层与栅极结构,再在剩余的栅极结构两侧的基底中形成一个源极/漏极延伸区。

Description

金属氧化物半导体晶体管的制造方法
技术领域
本发明是有关于一种半导体组件的制造方法,且特别是有关于一种金属氧化物半导体晶体管的制造方法。
背景技术
随着集成电路的积集度不断的增加,半导体组件的面积逐渐的缩小,金属氧化物半导体晶体管夹着其耗电量非常小,并且适合高密度的积集制造等诸多优点,实为现今半导体制程中,最重要而且应用最广泛的一种基本的电子组件。并且在现今的金属氧化物半导体晶体管中,为了克服由于栅极线宽缩小所导致的栅极与导线的接触电阻增高、电阻-电容延迟(RC Delay)增高,组件操作速度降低等问题,一般而言所采取的对策是在栅极上形成金属硅化物,以期能够降低栅极和金属联机之间的电阻值。
然而,随着金属氧化物半导体晶体管组件持续的缩小化,将会产生下述的问题:
由于栅极线宽的缩小,将会使得定义栅极线宽的微影制程较不易形成正确的线宽,也即是意味着定义栅极线宽的微影制程的难度提高,并且会导致其制程裕度的降低。
而且,当栅极线宽缩小到低于某个尺寸后,对于金属硅化物层的形成步骤而言会产生所谓的线宽效应(line width effect),也即是金属硅化物层将无法良好的形成于线宽较小的栅极结构上。
而且,随着组件的缩小,源极/漏极延伸(extension)区的轮廓也随之缩小,然而,由于金属硅化物层是在源极/漏极延伸区之后形成的,因此源极/漏极延伸区必须承受金属硅化物层的回火制程的热预算,从而使得源极/漏极延伸区的轮廓也较不易控制。
发明内容
因此,本发明的目的就是在提供一种金属氧化物半导体晶体管的制造方法,能够在定义栅极结构线宽的微影制程具有较高的制程裕度。
本发明的另一目的就是在提供一种金属氧化物半导体晶体管的制造方法,能够避免产生金属硅化物层的线宽效应,以在栅极结构上形成良好的金属硅化物层。
本发明的再一目的是提供一种金属氧化物半导体晶体管的制造方法,能够降低源极/漏极延伸区的回火温度,并能够控制源极/漏极延伸区的轮廓。
本发明提供一种金属氧化物半导体晶体管的制造方法,此方法是提供一个基底,其中在基底上已形成有一个栅极结构,接着于栅极结构两侧的基底中形成源极/漏极区,再在栅极结构与源极/漏极区表面形成金属硅化物层,然后,在栅极结构顶部的金属硅化物层上形成一图案块,并同时于其余部位的基底上形成一第一介电层,其中图案块是形成于对应栅极结构顶部中央,且于图案块两侧暴露出部分的金属硅化物层,其后,以图案块为罩幕,去除部分的金属硅化物层与栅极结构,再于剩余的栅极结构两侧的基底中形成一个源极/漏极延伸区。
在上述金属氧化物半导体晶体管的制造方法中,其中图案块与第一介电层的形成方法包括使用高密度电浆化学气相沉积(High DensityPlasma Chemical Vapor Deposition,HDPCVD)法。
在上述金属氧化物半导体晶体管的制造方法中,其中图案块两侧所暴露的金属硅化物层的形状对称且面积相等。
由上述可知,由于本发明是能够借由在栅极结构上形成图案块以缩小栅极结构的线宽,因此在使用微影制程定义栅极结构时,可以将栅极结构的线宽定义的较宽,从而使得定义栅极结构时的微影制程具有较宽的制程裕度。
而且,由于本发明在栅极结构上形成金属硅化物层时,栅极结构尚具有较宽的线宽,因此能够在其上形成良好的金属硅化物层,从而能够避免栅极结构线宽缩小所导致的线宽效应。
而且,由于本发明的源极/漏极延伸区是在形成金属硅化物层的步骤之后形成的,因此能够避开金属硅化物层的高温回火步骤,从而能够降低源极/漏极延伸区的热预算,并能够更容易的控制源极/漏极延伸区的轮廓。
为让本发明的上述和其它目的、特征和优点能更明显易懂,下文特举一个较佳的实施例,并配合所附图式,作详细说明如下。
附图说明
图1A至图1G所绘示为依照本发明的较佳实施例的一种金属氧化物半导体晶体管的制造方法的流程剖面示意图。
符号说明
100:基底;
102、102a:闸氧化层;
104、104a:导体层;
105、105a:栅极结构;
106:源极/漏极区;
108、108a:金属硅化物层;
110:图案块;
114:源极/漏极延伸区;
112、116:介电层
具体实施方式
图1A至图1G所绘示为依照本发明较佳实施例的一种金属氧化物半导体晶体管的制造方法的流程剖面示意图。
首先,请参照图1A,提供一个已形成有栅极结构105的基底100,其中此栅极结构105例如是由闸介电层102与导体层104依序堆栈所形成,基底100的材质例如是硅基底、闸介电层102的材质例如是氧化硅、导体层104的材质例如是多晶硅,并且形成此栅极结构105的方法例如是于基底100上依序形成介电材料层与导体材料层(未图标),再图案化此介电材料层与导体材料层以形成。
接着,请参照图1B,在栅极结构105两侧的基底100中形成源极/漏极区106,其形成方式例如是以栅极结构105为罩幕,对基底100进行一离子植入制程,以在栅极结构105两侧的基底100中形成源极/漏极区106,其中植入的离子依组件形态的不同可以是N型或P型离子,其中植入离子为N型时,其例如是磷或砷离子。而植入离子为P型时,其例如是硼或氟化硼离子。
接着,请参照图1C,在栅极结构105、源极/漏极区106上形成金属硅化物层108,其中此金属硅化物层108的材质例如是硅化钴或硅化钛,其形成的方法例如是在基底100上形成一层金属材料层(未图标),接着进行一个回火制程,以使导体层104、源极/漏极区106表面上的硅与金属材料层反应而形成金属硅化物层108,接着再去除未反应部分的金属材料层。
接着,请参照图1D,在栅极结构105顶部形成图案块110,并同时于栅极结构105之外的基底100上形成介电层112,其中此图案块110是形成于对应此栅极结构105顶部中央的位置,且于图案块110两侧暴露出栅极结构105顶部上的部分金属硅化物层108,其中图案块110与介电层112的材质例如是氧化硅,其形成的方法例如是使用高密度化学气相沉积(High Density Plasma Chemical Vapor Deposition,HDPCVD)法,并且在本实施例中,图案块110的形状由横切面观之是三角形。
此处值得注意的是,图案块110是形成于对应栅极结构105顶部正中央的位置,而使得图案块110两侧所暴露的金属硅化物层108的形状对称且面积相等,其中形成能够满足上述条件的图案块110的方法,例如是借由调整/控制高密度电浆化学气相沉积法的蚀刻/沉积比以达成,并且,借由调整/控制高密度电浆化学气相沉积法的蚀刻/沉积比,也能够控制所形成的图案块100的宽度。
接着,请参照图1E,以图案块110与介电层112为罩幕,去除部分的金属硅化物层108与栅极结构105,以形成栅极结构105a与金属硅化物层108a,在此步骤中,所形成的栅极结构105a的线宽是小于先前的栅极结构105的线宽,并且,所形成的金属硅化物层108a,是仅形成于栅极结构105a的顶部上与源极/漏极区106上。
接着,请参照图1F,在栅极结构105a两侧的基底中形成源极/漏极延伸区114,其中此源极/漏极延伸区114的形成方法例如是以图案块110与介电层112为罩幕,对基底100进行一个离子植入制程,以在剩余的栅极结构105a两侧的基底100中形成源极/漏极延伸区114,其中植入的离子依组件形态的不同而可以是N型或P型离子,当植入离子为N型时,其例如是砷离子,另外,植入的离子为P型时,其例如是氟化硼离子。由于此源极/漏极延伸区114是在形成金属硅化物层108之后形成,因此能够避开形成金属硅化物层108的高温回火制程。
接着,请参照图1G,在基底100上形成介电层116,其中此介电层116例如是作为此金属氧化物半导体晶体管组件的内层介电(Inter LayerDielectric,ILD)层,其材质例如是氧化硅,形成此介电层116的方法例如是高密度电浆化学气相沉积法。
在本发明上述较佳实施例中,在图1B至图1C的步骤之间,还可以进行下述的步骤:首先,在栅极结构105表面上与基底100形成一层衬氧化层(linear oxide layer,未图标),接着回蚀衬氧化层,以仅在栅极结构105侧壁残留衬氧化层,然后,再接续图1C的形成金属硅化物层108的步骤,依照此步骤的话,是能够避免在栅极结构105的侧形成金属硅化物层108。
而且,在图1D的步骤中,其中图案块110与介电层112是借由调整高密度电浆化学沉积法的蚀刻/沉积比,直接进行沉积以形成。然而本发明也可以在基底100与栅极结构105(金属硅化物层108)上形成介电材料层后(未图标),回蚀此介电材料层以形成图案块110与介电层112。
而且,在上述较佳实施例中,是披露一个形成金属氧化物半导体晶体管的制程以进行说明,然而本发明并不限定于此,借由上述较佳实施例的披露,熟悉此技术者当知本发明也可应用于对任意的栅极结构进行栅极结构线宽的缩小制程。
综合上述,本发明至少具有下列优点:
(1).由于本发明是能够借由在栅极结构上形成图案块的方式缩小栅极结构的线宽,因此在使用微影制程定义栅极结构时,可以将栅极结构的线宽定义的较宽,也即是本发明在使用微影制程定义栅极结构时,能够具有较宽的制程裕度。
(2).由于本发明在栅极结构上形成金属硅化物层时,栅极结构尚具有较宽的线宽,因此利于在其上形成良好的金属硅化物层,从而能够避免栅极结构线宽缩小所导致的线宽效应
(3).由于本发明的源极/漏极延伸区是在形成金属硅化物层的步骤之后形成的,因此能够避开形成金属硅化物层所需的高温回火步骤,从而能够降低源极/漏极延伸区的热预算,并能够更容易的控制源极/漏极延伸区的轮廓。
虽然本发明已以一个较佳的实施例披露如上,然其并非用以限定本发明,任何熟悉此技术者,在不脱离本发明的精神和范围内,当可作些少许的更动与润饰,因此本发明的保护范围当视上述的权利要求所界定的范围为准。

Claims (7)

1.一种金属氧化物半导体晶体管的制造方法,包括下列步骤:
提供一个基底,其中在该基底上已形成有一个栅极结构;
在该栅极结构两侧的基底中形成一个源极/漏极区;
在该栅极结构与该源极/漏极的表面上形成一层金属硅化物层;
在该栅极结构顶部的该金属硅化物层上形成一图案块,并同时于该栅极结构之外的该基底上形成一层第一介电层,其中该图案块形成于对应该栅极结构顶部中央的位置,且在该图案块两侧暴露出该栅极结构顶部上的部分该金属硅化物层;
以该图案块为罩幕,去除部分的该金属硅化物层与该栅极结构;
在剩余的该栅极结构两侧的该基底中形成一个源极/漏极延伸区。
2.如权利要求1所述的金属氧化物半导体晶体管的制造方法,其特征在于,其中该图案块与该第一介电层的形成方法包括高密度电浆化学气相沉积法。
3.如权利要求1所述的金属氧化物半导体晶体管的制造方法,其特征在于,其中该图案块与该第一介电层的材质包括氧化硅。
4.如权利要求1所述的金属氧化物半导体晶体管的制造方法,其特征在于,其中该图案块两侧所暴露的该金属硅化物层的形状对称且面积相等。
5.如权利要求1所述的金属氧化物半导体晶体管的制造方法,其特征在于,其中该图案块与该第一介电层的形成方法更包括下列步骤:
在该基底上形成一层介电材料层;以及
回蚀该介电材料层。
6.如权利要求1所述的金属氧化物半导体晶体管的制造方法,其特征在于,其中在剩余的该栅极结构两侧的该基底中形成该源极/漏极延伸区的步骤之后,更包括在该基底上形成一层第二介电层。
7.如权利要求1项所述的金属氧化物半导体晶体管的制造方法,其特征在于,其中在该栅极结构两侧的该基底中形成该源极/漏极区的步骤之后,且在该栅极结构与该源极/漏极的表面上形成该金属硅化物层的步骤之前,更包括下列步骤:
在该基底上形成一衬层以覆盖该栅极结构与该源极/漏极区;以及
回蚀该衬层,以使该衬层仅残留于该栅极结构的侧壁。
CNB2004100710863A 2003-09-25 2004-07-28 金属氧化物半导体晶体管的制造方法 Expired - Fee Related CN1312747C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US10/605,360 US6790720B1 (en) 2003-09-25 2003-09-25 Method for fabricating a MOSFET and reducing line width of gate structure
US10/605,360 2003-09-25

Publications (2)

Publication Number Publication Date
CN1601709A CN1601709A (zh) 2005-03-30
CN1312747C true CN1312747C (zh) 2007-04-25

Family

ID=32927852

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB2004100710863A Expired - Fee Related CN1312747C (zh) 2003-09-25 2004-07-28 金属氧化物半导体晶体管的制造方法

Country Status (2)

Country Link
US (1) US6790720B1 (zh)
CN (1) CN1312747C (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101777494B (zh) * 2009-01-09 2012-05-30 中芯国际集成电路制造(上海)有限公司 半导体器件的制作方法
CN101908479B (zh) * 2010-06-11 2015-03-18 上海华虹宏力半导体制造有限公司 多晶硅叠层、双栅以及半导体材料叠层刻蚀方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4869781A (en) * 1987-10-30 1989-09-26 International Business Machines Corporation Method for fabricating a semiconductor integrated circuit structure having a submicrometer length device element
US5476802A (en) * 1991-08-26 1995-12-19 Semiconductor Energy Laboratory Co., Ltd. Method for forming an insulated gate field effect transistor
US5776821A (en) * 1997-08-22 1998-07-07 Vlsi Technology, Inc. Method for forming a reduced width gate electrode
US6221704B1 (en) * 1998-06-03 2001-04-24 International Business Machines Corporation Process for fabricating short channel field effect transistor with a highly conductive gate

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6184116B1 (en) * 2000-01-11 2001-02-06 Taiwan Semiconductor Manufacturing Company Method to fabricate the MOS gate
US6200887B1 (en) * 2000-01-24 2001-03-13 Chartered Semiconductor Manufacturing Ltd Method to form a smooth gate polysilicon sidewall in the fabrication of integrated circuits
US6686300B2 (en) * 2000-12-27 2004-02-03 Texas Instruments Incorporated Sub-critical-dimension integrated circuit features
US20040099891A1 (en) * 2001-10-25 2004-05-27 Manoj Mehrotra Sub-critical-dimension integrated circuit features

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4869781A (en) * 1987-10-30 1989-09-26 International Business Machines Corporation Method for fabricating a semiconductor integrated circuit structure having a submicrometer length device element
US5476802A (en) * 1991-08-26 1995-12-19 Semiconductor Energy Laboratory Co., Ltd. Method for forming an insulated gate field effect transistor
US5776821A (en) * 1997-08-22 1998-07-07 Vlsi Technology, Inc. Method for forming a reduced width gate electrode
US6221704B1 (en) * 1998-06-03 2001-04-24 International Business Machines Corporation Process for fabricating short channel field effect transistor with a highly conductive gate

Also Published As

Publication number Publication date
CN1601709A (zh) 2005-03-30
US6790720B1 (en) 2004-09-14

Similar Documents

Publication Publication Date Title
US9548305B2 (en) Semiconductor devices and methods of manufacture thereof
US7118954B1 (en) High voltage metal-oxide-semiconductor transistor devices and method of making the same
US20070066047A1 (en) Method of forming opening and contact
CN102468172B (zh) 半导体器件制造方法
CN110310926A (zh) 解决sram单元器件金属硅化物缺陷形成的方法
US6509264B1 (en) Method to form self-aligned silicide with reduced sheet resistance
KR20040064302A (ko) 집적된, 고기능의, 실리사이드응집퓨즈를 가진 cmos공정
CN1312747C (zh) 金属氧化物半导体晶体管的制造方法
US20050026342A1 (en) Semiconductor device having improved short channel effects, and method of forming thereof
US6291279B1 (en) Method for forming different types of MOS transistors on a semiconductor wafer
CN100435293C (zh) 开口的形成方法以及接触窗的形成方法
TW200303587A (en) Method of forming different silicide portions on different silicon-containing regions in a semiconductor device
US10573725B1 (en) Semiconductor structure and manufacturing method thereof
US9620619B2 (en) Borderless contact structure
CN1255863C (zh) 在半导体器件的夹断的有源区中改善二硅化钛的电阻
CN101271860B (zh) 自行对准接触窗及其制造方法
KR100630769B1 (ko) 반도체 소자 및 그 소자의 제조 방법
KR100388210B1 (ko) 반도체 소자의 금속 게이트 형성방법
CN100423212C (zh) 高压金属氧化物半导体晶体管元件及其制造方法
TWI221626B (en) Method for fabricating a MOSFET and reducing line width of the gate structure
KR100341588B1 (ko) 실리사이드층의 저항 및 누설전류 감소를 위한 반도체소자 제조 방법
US6072213A (en) Transistor having an etchant-scalable channel length and method of making same
CN110085667B (zh) 半导体器件、晶体管及其制造方法
KR100660331B1 (ko) 반도체 소자의 제조방법
KR100481551B1 (ko) 반도체 소자 제조시 게이트 측벽 스페이서 형성방법

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20070425

Termination date: 20190728