CN1306273C - Sample feeding method for micro-current controlling chip based pressure and electric power combination - Google Patents

Sample feeding method for micro-current controlling chip based pressure and electric power combination Download PDF

Info

Publication number
CN1306273C
CN1306273C CNB03134125XA CN03134125A CN1306273C CN 1306273 C CN1306273 C CN 1306273C CN B03134125X A CNB03134125X A CN B03134125XA CN 03134125 A CN03134125 A CN 03134125A CN 1306273 C CN1306273 C CN 1306273C
Authority
CN
China
Prior art keywords
sample
pressure
pool
micro
buffer pool
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CNB03134125XA
Other languages
Chinese (zh)
Other versions
CN1584601A (en
Inventor
盖宏伟
於林芬
马银法
林炳承
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dalian Institute of Chemical Physics of CAS
Original Assignee
Dalian Institute of Chemical Physics of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dalian Institute of Chemical Physics of CAS filed Critical Dalian Institute of Chemical Physics of CAS
Priority to CNB03134125XA priority Critical patent/CN1306273C/en
Publication of CN1584601A publication Critical patent/CN1584601A/en
Application granted granted Critical
Publication of CN1306273C publication Critical patent/CN1306273C/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Automatic Analysis And Handling Materials Therefor (AREA)
  • Sampling And Sample Adjustment (AREA)

Abstract

The present invention relates to a sample injection method for a micro flow control chip on the basis of the combination of pressure and electrodynamic force. The present invention is characterized in that a pressure upper sample is used, and an electrodynamic force sampling is used; the pressure upper sample adopts statical pressure. In the sample injection method for a micro flow control chip on the basis of the combination of pressure and electrodynamic force, the relevant pneumatic element can be avoid being used because of using the pressure upper sample and the electrodynamic force sampling, especially the statical pressure upper sample. One high-voltage power supply is only required, the operation is simplified, and the sample amount is reduced.

Description

A kind of micro-fluidic chip sample injection method based on pressure and electric power coupling
Technical field:
The present invention relates to the micro-fluidic chip technology, a kind of method that realizes the analyte sample introduction on the micro-fluidic chip platform in the mode of pressure and electric power coupling is provided especially.
Background technology:
Analyte is controlled to enter the important step that split tunnel is a microfluidic analysis chip.Except that the factor that analytical effect is produced significant impact such as sample introduction district strip length, sample introduction speed are the feature of good sample injection method, sample injection method simple, repeat, easily and other micro-fluidic unit are integrated etc. that characteristic can not be ignored.Quadrat method can be divided into by the sample introduction strategy on the existing micro-fluidic chip: simple sample introduction [Fan ZH, HarrisonDJ.Anal.Chem.1994,66,177], shrink sample introduction [Jacobson SC, Hergenroder R, Koutny LB, Warmck RJ, Ramsey JM.Anal.Chem.1994,66,1107], door sample introduction [Jacobson SC, Koutny LB, Hergenroder R, Moore AW Jr, Ramsey JM.Anal.Chem.1994,66,3472] etc.Can be sample and electric power sampling on the electric power by the driving force branch, perhaps be pneumatic on sample and pneumatic sampling.Said method is used widely on micro-fluidic chip, and its shortcoming is: inhibition voltage need be provided in addition; With other pneumatic related device coupling difficulties, such as pressure-driven PCR[Kopp MU, de Melo AJ, Manz A.Science, 1998,280,1046], heterogeneous laminar flow spread apart [Weigl BH, Yager P.Science.1999,283,346] etc.; For electric sensitive materials sample introduction difficulty.
Summary of the invention:
The object of the present invention is to provide a kind of method that on the micro-fluidic chip platform, realizes the analyte sample introduction in the mode of pressure and electric power coupling.This method is simple to operate, and the consumption of sample is less.
The present invention specifically provides a kind of micro-fluidic chip sample injection method based on pressure and electric power coupling, it is characterized in that: with sample on the pressure, take a sample with electric power.
The present invention is based in the micro-fluidic chip sample injection method of pressure and electric power coupling, sample preferably adopts sample on the static pressure on the described pressure, thereby can simplify the operation greatly.
The present invention is based in the micro-fluidic chip sample injection method of pressure and electric power coupling, when with the micro-fluidic chip of cross passage during as operating platform, the liquid pool at sample intake passage two ends is respectively sample cell (1) and waste liquid pool (2), and the liquid pool at split tunnel two ends is respectively Buffer Pool I (3) and Buffer Pool II (4);
At first make sample cell (1), Buffer Pool I (3), Buffer Pool II (4) pressure is identical or differ small, the pressure differential that produces between above-mentioned three ponds and the waste liquid pool (2) will drive the middle sample of sample cell (1) and flow to waste liquid pool (2), and the sample flow of right-angled intersection place will be in Buffer Pool I (3), and the pressure effect of II (4) is shunk down;
After treating that right-angled intersection place steady state flow has sample, apply high voltage again between two Buffer Pools, drive right-angled intersection place sample and flow into split tunnel, this high voltage will suppress the sample infiltration split tunnel at sample intake passage two ends simultaneously.
The present invention is based in the micro-fluidic chip sample injection method of pressure and electric power coupling,, particularly adopted sample on the static pressure owing to adopt sample and electric power sampling on the pressure, can avoid using relevant pneumatic device, and only need a high-voltage power supply, simplified operation, reduced the consumption of sample.
Description of drawings:
Fig. 1 is chip structure figure;
Fig. 2 sample drives dirty photo of going into horizontal passage in electric osmose;
Fig. 3 separates sample in the sample intake passage by the high voltage top photo back into the sample passage;
Fig. 4 fluid mechanics Fluid Computation streamline that flows;
Fig. 5 is that the FITC of continuous five sample introductions detects spectrogram.
Embodiment:
With the micro-fluidic chip of cross passage as operating platform, the liquid pool at vertical channel two ends is respectively sample cell (1) and waste liquid pool (2) pond, the liquid pool at two ends, horizontal channel is respectively Buffer Pool I (3) and Buffer Pool II (4), sees Fig. 1, detects with the method for laser-induced fluorescence (LIF).
In Buffer Pool I (3), respectively add 15 microlitre tbe buffer liquid, 15 microlitre tbe buffer liquid and 15 microlitres 10 in II (4) and the sample cell (1) respectively -5M FITC.At this moment, sample cell (1), Buffer Pool I (3), Buffer Pool II (4) pressure is identical or differ small, and the pressure differential that produces between above-mentioned three ponds and the waste liquid pool (2) drives that sample flows to waste liquid pool (2) in the sample cell (1).The sample flow of right-angled intersection place is in Buffer Pool I (3), and (as Fig. 4 signal) shunk in the pressure effect of II (4) down, and do not have voltage to apply between Buffer Pool I (3) and the Buffer Pool II (4) this moment.
Balance is after a few minutes, and in Buffer Pool I (3), II applies voltage 1800V between (4).Use 488nm laser excitation for 3.5 centimetres in distance right-angled intersection place, photomultiplier detects.As seen under electric power drove, the sample area band that right-angled intersection place is shunk entered split tunnel, carries out electrophoretic separation, and the sample flow of sample intake passage is suppressed by this voltage.After treating that first signal writes down fully, only need high voltage is removed, only keep-up pressure, stop high voltage 10s, apply 1800V voltage again.Repeat this process 5 times, the record spectrogram is seen accompanying drawing 5.
Utilize the fluorescent microscope imaging method to verify fluid when pressure and electric power synergy, the flow pattern of cross passage place fluid.Fluorescent dye is joined in the sample cell (1), dyestuff flows to waste liquid pool (2) under pressure, when applying voltage at horizontal two ends, the dyestuff at cross place drives the dirty horizontal passage (seeing accompanying drawing 2) of going in electric osmose, and the dyestuff in the sample intake passage is pushed up back into (seeing accompanying drawing 3) in the sample passage simultaneously.

Claims (1)

1, a kind of micro-fluidic chip sample injection method based on pressure and electric power coupling, it is characterized in that: with the micro-fluidic chip of cross passage as operating platform, the liquid pool at sample intake passage two ends is respectively sample cell (1) and waste liquid pool (2), and the liquid pool at split tunnel two ends is respectively Buffer Pool I (3) and Buffer Pool II (4);
The sample liquid or the damping fluid that in sample cell, Buffer Pool I (3), Buffer Pool II (4), add equal volume at first respectively, make sample cell, Buffer Pool I (3), Buffer Pool II (4) pressure is identical or differ small, the pressure differential that produces between above-mentioned three ponds and the waste liquid pool (2) will drive the middle sample of sample cell (1) and flow to waste liquid pool (2), and the sample flow of right-angled intersection place will be in Buffer Pool I (3), and the pressure effect of II (4) is shunk down;
After treating that right-angled intersection place steady state flow has sample, apply high voltage again between two Buffer Pools, drive right-angled intersection place sample and flow into split tunnel, this high voltage will suppress the sample infiltration split tunnel at sample intake passage two ends simultaneously.
CNB03134125XA 2003-08-20 2003-08-20 Sample feeding method for micro-current controlling chip based pressure and electric power combination Expired - Fee Related CN1306273C (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CNB03134125XA CN1306273C (en) 2003-08-20 2003-08-20 Sample feeding method for micro-current controlling chip based pressure and electric power combination

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CNB03134125XA CN1306273C (en) 2003-08-20 2003-08-20 Sample feeding method for micro-current controlling chip based pressure and electric power combination

Publications (2)

Publication Number Publication Date
CN1584601A CN1584601A (en) 2005-02-23
CN1306273C true CN1306273C (en) 2007-03-21

Family

ID=34597128

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB03134125XA Expired - Fee Related CN1306273C (en) 2003-08-20 2003-08-20 Sample feeding method for micro-current controlling chip based pressure and electric power combination

Country Status (1)

Country Link
CN (1) CN1306273C (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100406881C (en) * 2005-06-27 2008-07-30 浙江大学 Micro flow control chip capillary electrophoresis negative pressure sampling method
CN100422731C (en) * 2005-06-27 2008-10-01 浙江大学 Micro flow control chip negative pressure sampling and separating device
CN101887008A (en) * 2010-07-19 2010-11-17 中国科学院长春光学精密机械与物理研究所 Multifunctional detection chip for optical fiber sensor, and manufacturing and packaging method for optical fiber sensor
CN104923321B (en) * 2015-06-04 2016-07-06 湖北大学 Micro-fluidic chip with self-powered function and preparation method thereof
CN105854717B (en) * 2016-05-13 2018-04-03 吉林大学 One kind is based on Piezoelectric Driving integrated form micro-mixer

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020130044A1 (en) * 2001-03-19 2002-09-19 Rossier Joel S. Mechanical control of fluids in micro-analytical devices

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020130044A1 (en) * 2001-03-19 2002-09-19 Rossier Joel S. Mechanical control of fluids in micro-analytical devices

Also Published As

Publication number Publication date
CN1584601A (en) 2005-02-23

Similar Documents

Publication Publication Date Title
Huh et al. Microfluidics for flow cytometric analysis of cells and particles
Lin et al. Sample preconcentration in microfluidic devices
Karlinsey Sample introduction techniques for microchip electrophoresis: A review
Lichtenberg et al. Sample pretreatment on microfabricated devices
Fang et al. Sequential injection sample introduction microfluidic-chip based capillary electrophoresis system
US8070956B2 (en) Method of separation of polymers
Greenwood et al. Sample manipulation in micro total analytical systems
CN102876563B (en) Micro- fluid control chip capable of automatically catching single cells
CN1990093A (en) Multiple-sample microfluid dielectric electrophoretic separation apparatus
CN1306273C (en) Sample feeding method for micro-current controlling chip based pressure and electric power combination
Sun et al. Flexible continuous particle beam switching via external-field-reconfigurable asymmetric induced-charge electroosmosis
WO2002025243A9 (en) Sample injector system and method
Gai et al. Injection by hydrostatic pressure in conjunction with electrokinetic force on a microfluidic chip
CN1737562A (en) Micro flow control chip capillary electrophoresis negative pressure sampling method
CN1869636A (en) Microfluid control chip capillary electrophoresis analysing device of automatic liquid changing and using method
CN101216458B (en) Sampling volume controllable micro-fluidic chip sieving electrophoresis analytical method
US20030057092A1 (en) Microfluidic methods, devices and systems for in situ material concentration
CN101067615B (en) Intelligent electric feeding sample device for electric uncoupling chip cataphoresis
Gong et al. Study of injection bias in a simple hydrodynamic injection in microchip CE
Kinde et al. A microfluidic SPLITT device for fractionating low-molecular weight samples
CN1831537A (en) Micro-fluidic chip negative pressure sample apply method of miniature vacuum pump negative source
Baldock et al. Novel variable volume injector for performing sample introduction in a miniaturised isotachophoresis device
CN102175844A (en) Multifunctional microfluid control device for operating biochemical fluids in microfluid control chip automatically
US11207679B2 (en) DNA extraction device
CN1280625C (en) Simple two-step isoelectric focusing separation analytic device

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20070321