CN1304129C - 一种钢背铝基复合板半固态复合方法 - Google Patents

一种钢背铝基复合板半固态复合方法 Download PDF

Info

Publication number
CN1304129C
CN1304129C CNB2005100121488A CN200510012148A CN1304129C CN 1304129 C CN1304129 C CN 1304129C CN B2005100121488 A CNB2005100121488 A CN B2005100121488A CN 200510012148 A CN200510012148 A CN 200510012148A CN 1304129 C CN1304129 C CN 1304129C
Authority
CN
China
Prior art keywords
steel
aluminium
solid
interface
composite plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CNB2005100121488A
Other languages
English (en)
Other versions
CN1709598A (zh
Inventor
张鹏
杜云慧
刘汉武
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing Jiaotong University
Original Assignee
Beijing Jiaotong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Jiaotong University filed Critical Beijing Jiaotong University
Priority to CNB2005100121488A priority Critical patent/CN1304129C/zh
Publication of CN1709598A publication Critical patent/CN1709598A/zh
Application granted granted Critical
Publication of CN1304129C publication Critical patent/CN1304129C/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Metal Rolling (AREA)
  • Coating With Molten Metal (AREA)

Abstract

一种钢背铝基复合板半固态复合方法,属于钢背铝基复合板固液相轧制复合领域,利用固相率为20-50%的铝基半固态浆料与钢背进行半固态复合,依靠半固态浆料中的液相铝原子与初生固相铝原子之间的扩散能力的差异,来造成铝原子在钢基内横向上扩散浓度的差异,形成由铁铝化合物与铁铝固溶体交替构成的界面结构,从而破坏固液相复合界面上铁铝化合物的厚层结构,削弱复合界面脆化作用,将复合板界面剪切强度提高到65-68MPa,解决了钢背铝基固液相轧制复合方法“存在复合界面脆化”的技术问题。

Description

一种钢背铝基复合板半固态复合方法
技术领域
本发明涉及一种钢背铝基复合板的固液相轧制复合方法。
背景技术
专利号:00109241.3,发明名称:“液—固相异种金属轧制复合方法及设备”上,阐述了钢背铝基复合板的固液相轧制复合方法,其基本工艺步骤如下:1)制备铝基覆层金属液;2)将表面经过脱脂、除锈、打毛、浸镀等处理的钢板预热至所需温度;3)在复合浇嘴熔池中进行钢背与铝基覆层金属液的扩散反应,形成复合界面;4)利用轧制系统进行铸轧,形成钢背铝基复合板。在该方法中,由于液态铝原子的扩散反应能力强,向钢基内大量扩散,因此在复合界面形成铁铝化合物厚层。铁铝化合物是脆硬金属间化合物,在复合界面形成的是冶金强结合,但当铁铝化合物以厚层状态存在时,可导致复合界面脆化,铁铝化合物层越厚,脆化越严重,因此,钢背铝基固液相复合板的界面剪切强度较低,在40-60MPa之间。
发明内容
本发明所要解决的技术问题是,克服钢背铝基固液相轧制复合方法“存在复合界面脆化”的不足,提供一种能够既发挥铁铝化合物冶金强结合作用又能削弱界面脆化作用的钢背铝基复合板的复合方法,进一步提高钢背铝基复合板的界面剪切强度。
本发明解决其技术问题所采用的技术方案是:在常规钢背铝基固液相轧制复合方法的基础上,将“铝基金属液”换成“铝基半固态浆料”,采用固相率为20-50%的铝基半固态浆料与钢背进行半固态轧制复合,固相率是指初生固相在整个浆料中所占的体积分数。在钢背铝基半固态复合过程中,由于与钢背接触的铝基半固态浆料中的液相铝原子与初生固相铝原子之间的扩散能力存在差异,这样在钢基内横向上造成了铝原子扩散浓度的差异,从而破坏固液相复合界面上铁铝化合物的厚层结构,进而削弱了复合界面脆化作用,进一步提高了复合板界面剪切强度。
本发明的有益效果是:利用本发明,在钢背铝基复合板复合界面上形成了由铁铝化合物与铁铝固溶体交替构成的界面结构,既发挥了铁铝化合物冶金强结合作用,又削弱了铁铝化合物厚层造成的界面脆化作用,复合界面剪切强度提高到65-68MPa。本发明方法达到了削弱复合界面脆化作用、提高复合界面剪切强度的目的。
附图说明
图1为钢背铝基固液相轧制复合板的界面微观组织。
图中,右侧较浅色部分为钢基;左侧较深色部分为铝基覆层;中间层状部分为铁铝化合物厚层。
图2为本发明方法制备的钢背铝基复合板的界面微观组织。
图中,右侧为钢基;左侧为铝基覆层,其中白色呈球状或椭球状部分为半固态浆料中的初生固相颗粒;中间交界部分为复合界面,1、3区为铁铝化合物,2区为含铝量小于3.5%的铁铝固溶体。
具体实施方式
本发明方法,在常规钢背铝基固液相轧制复合方法基础上,具体实施步骤:
步骤1,制备铝基半固态浆料;
步骤2,将表面经过脱脂、除锈、打毛、浸镀处理的钢板预热至所需温度;
步骤3,在复合浇嘴熔池中进行钢背与铝基覆层半固态浆料的扩散反应,形成复合界面;
步骤4,利用轧制系统进行铸轧,形成钢背铝基复合板。
铝基半固态浆料可采用机械搅拌技术或电磁搅拌技术制备。
实例一
步骤1,制备固相率为50%的铝半固态浆料;
步骤2,将表面经过脱脂、除锈、打毛、浸镀处理的1.2mm厚08Al钢板预热至450℃;
步骤3,在长度为200mm复合浇嘴熔池中,进行钢背与铝基覆层半固态浆料的扩散反应,形成复合界面;
步骤4,利用轧辊直径为320mm的轧制系统进行铸轧,铸轧速度为10mm/s,形成3.2mm厚的钢背铝基复合板。得到复合板的界面剪切强度为68MPa。
实例二
在1.2mm厚08Al钢板预热温度为505℃、浇嘴长度为200mm、轧辊直径为320mm、铸轧速度为10mm/s、铝20锡半固态浆料固相率为20%的复合条件下,进行2.5mm厚钢背铝20锡复合板的铸轧复合,得到复合板的界面剪切强度为65MPa。
实例三
在1.2mm厚08Al钢板预热温度为500℃、浇嘴长度为200mm、轧辊直径为320mm、铸轧速度为10mm/s、铝28铅半固态浆料固相率为40%的复合条件下,进行2.5mm厚钢背铝28铅复合板的铸轧复合,得到复合板的界面剪切强度为67MPa。
附图1为钢背铝基固液相轧制复合板的界面微观组织,由图可见,复合界面形成了50μm厚的铁铝化合物厚层,其界面剪切强度为59MPa。图2为本发明方法制备的钢背铝基复合板的界面微观组织,由图可见,复合界面形成了由1、3区的铁铝化合物与2区的铁铝固溶体交替构成的界面结构,这种结构,既发挥了铁铝化合物冶金强结合作用,又有效地削弱了铁铝化合物厚层脆化作用,因此复合界面剪切强度提高到65-68MPa。

Claims (1)

1.一种钢背铝基复合板半固态复合方法,其工艺步骤:
步骤1,制备铝基覆层熔体;
步骤2,将表面经过脱脂、除锈、打毛、浸镀处理的钢板预热至所需温度;
步骤3,在复合浇嘴熔池中进行钢背与铝基覆层熔体的扩散反应,形成复合界面;
步骤4,利用轧制系统进行铸轧,形成钢背铝基复合板;
其特征在于,铝基覆层熔体为铝基半固态浆料,铝基半固态浆料的固相率为20-50%。
CNB2005100121488A 2005-07-12 2005-07-12 一种钢背铝基复合板半固态复合方法 Expired - Fee Related CN1304129C (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CNB2005100121488A CN1304129C (zh) 2005-07-12 2005-07-12 一种钢背铝基复合板半固态复合方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CNB2005100121488A CN1304129C (zh) 2005-07-12 2005-07-12 一种钢背铝基复合板半固态复合方法

Publications (2)

Publication Number Publication Date
CN1709598A CN1709598A (zh) 2005-12-21
CN1304129C true CN1304129C (zh) 2007-03-14

Family

ID=35705926

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB2005100121488A Expired - Fee Related CN1304129C (zh) 2005-07-12 2005-07-12 一种钢背铝基复合板半固态复合方法

Country Status (1)

Country Link
CN (1) CN1304129C (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101934364A (zh) * 2010-08-23 2011-01-05 十堰市昊平工贸有限公司 一种钢基复合高强度铜合金导板的生产方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1329951A (zh) * 2000-06-19 2002-01-09 东北大学 液-固相异种金属轧制复合方法及设备
CN1426857A (zh) * 2002-12-17 2003-07-02 昆明理工大学 液相轧制法制备金属复合材料

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1329951A (zh) * 2000-06-19 2002-01-09 东北大学 液-固相异种金属轧制复合方法及设备
CN1426857A (zh) * 2002-12-17 2003-07-02 昆明理工大学 液相轧制法制备金属复合材料

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101934364A (zh) * 2010-08-23 2011-01-05 十堰市昊平工贸有限公司 一种钢基复合高强度铜合金导板的生产方法

Also Published As

Publication number Publication date
CN1709598A (zh) 2005-12-21

Similar Documents

Publication Publication Date Title
Dinaharan et al. Microstructural characterization and tensile behavior of friction stir processed AA6061/Al2Cu cast aluminum matrix composites
Jiang et al. Improved steel/aluminum bonding in bimetallic castings by a compound casting process
Fei et al. Microstructure, mechanical properties and wear behaviour of Zn–Al–Cu–TiB2 in situ composites
Taylor Metal-related castability effects in aluminium foundry alloys
US10329651B2 (en) Method of refining metal alloys
Hu et al. Research on the microstructure, fatigue and corrosion behavior of permanent mold and die cast aluminum alloy
CN103331435A (zh) 外加旋转磁场和电流复合控制金属凝固相组织的方法及其熔铸装置
Cheng et al. Effect of Sr addition on the grain refinement of AZ31 magnesium alloys
Gao et al. Metallurgical and mechanical properties of Al–Cu joint by friction stir spot welding and modified friction stir clinching
Aigbodion et al. Microstructural analysis and properties of Al–Cu–Mg/bagasse ash particulate composites
CN1297356C (zh) 一种钢背铝基复合板的复合方法
Dhokey et al. Effect of KBF4 and K2TiF6 on precipitation kinetics of TiB2 in aluminium matrix composite
CN1304129C (zh) 一种钢背铝基复合板半固态复合方法
Moazami et al. Tribological behavior of as-cast and wrought Al–Mg2Si hybrid composites reinforced by Ti-based intermetallics
Yoder et al. Additive friction stir deposition-enabled upcycling of automotive cast aluminum chips
CN1233858C (zh) 铝、铝合金用复合晶粒细化剂及其制备工艺
CN1300357C (zh) 高强抗蠕变变形镁合金的制备工艺
Bakke et al. Improving the strength and ductility of magnesium die-casting alloys via rare-earth addition
VG Effect of ultrasonic treatment during stir casting on mechanical properties of AA6063-SiC composites
Mahmoud et al. On effect of FSP on microstructural and mechanical characteristics of A390 hypereutectic Al–Si alloy
EP3678802A1 (en) Method for forming metal matrix composites
CN1492066A (zh) 一种汽车制动盘用复合材料及其制备方法
Göken et al. New development in magnesium technology for light weight structures in transportation industries
Herbert et al. Investigation on microstructure and mechanical properties of Friction Stir Welded AA6061-4.5 Cu-10SiC composite
Moldovan et al. In situ development of AlBx/AA6060 and AA5083 alloys cast composites

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20070314