CN1296284C - Process for preparing nano metal oxide material - Google Patents

Process for preparing nano metal oxide material Download PDF

Info

Publication number
CN1296284C
CN1296284C CNB2004100607010A CN200410060701A CN1296284C CN 1296284 C CN1296284 C CN 1296284C CN B2004100607010 A CNB2004100607010 A CN B2004100607010A CN 200410060701 A CN200410060701 A CN 200410060701A CN 1296284 C CN1296284 C CN 1296284C
Authority
CN
China
Prior art keywords
polymer precursor
salt
polymer
metal
calcination
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CNB2004100607010A
Other languages
Chinese (zh)
Other versions
CN1587058A (en
Inventor
曹余良
杨汉西
余丽红
艾新平
肖利芬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wuhan University WHU
Original Assignee
Wuhan University WHU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wuhan University WHU filed Critical Wuhan University WHU
Priority to CNB2004100607010A priority Critical patent/CN1296284C/en
Publication of CN1587058A publication Critical patent/CN1587058A/en
Application granted granted Critical
Publication of CN1296284C publication Critical patent/CN1296284C/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Abstract

The present invention relates to a preparation method for nanometer metallic oxide materials. Acrylate and derivants thereof are used as monomers, the monomers and a metallic ionized water solution are mixed, or the monomers and the metallic ionized water solution are mixed with cross linking agents, a uniform stable solution with moderate stickiness is prepared, initiating agents are added, acrylate generates chemical crosslink reaction, a polymer network structure is formed, metallic ions are bonded with carboxylate radicals and are fixed in the microstructure of a polymer network, polymer precursors are obtained by drying, the polymer precursors are burnt after pyrolyzed, and corresponding nanometer metallic oxide materials are obtained. The present invention has the advantages of simple technology, easy control and convenient mass production.

Description

The preparation method of nano metal oxide materials
Technical field
The present invention relates to a kind of preparation method of nano metal oxide materials, be specially adapted to make the electrode of lithium ion battery, belong to the chemical material field.
Background technology
Lithium ion battery can satisfy miniaturization, the lightweight requirements of portable type electronic product owing to have high-voltage and high-energy-density characteristic, becomes the auxiliary products of the tool market competitiveness in above-mentioned field.Through in a few years Market Selection and competition, lithium ion battery replaces NI-G, nickel metal hydride battery gradually, becomes " 3C " market (camcorder, computer, main flow cellularphone).
The raising of lithium ion battery performance mainly depends on the improvement of electrode materials and the exploitation of novel material.The employed positive electrode material of lithium ion battery is that transition metal oxide is (as LiCoO at present 2, LiNiO 2, LiMn 2O 4Deng), negative material is graphite-like and tin-based oxide class material, and these materials all have the reversible embedding of lithium ion and deviate from performance, thereby reduce the granularity of material, help to reduce the evolving path and the increase electrochemical reaction interface of ion, thereby improve the utilization ratio and the high rate performance of material at material internal.Nano materials generally adopts sol-gel, CVD (Chemical Vapor Deposition) method, and these methods exist shortcomings such as preparation process is numerous and diverse, processing condition harshness, therefore, develop a kind of technology preparation method simple, the easily nano-metal-oxide of control the development and the performance of lithium ion battery material improved the application prospect with reality.
Summary of the invention:
The purpose of this invention is to provide that a kind of technology is simple, the preparation method of manageable nano metal oxide materials, the gained material has nanoscale, big specific surface area.
Technical scheme of the present invention is: the preparation method of nano metal oxide materials is characterized in that:
With acrylate and derivative thereof is monomer, monomer and the mixing of the metal ion aqueous solution or monomer, the metal ion aqueous solution are mixed with linking agent, make the solution of homogeneous, stable, modest viscosity, add initiator then, make acrylate generation chemical crosslink reaction, form polymer network structure, metal ion and carboxylate radical bonding, and be fixed in the microstructure of polymer network, obtain polymer precursor through oven dry; Polymer precursor is calcination after pyrolysis, promptly obtains corresponding nano metal oxide materials.Institute's synthetic oxide material has uniform phase and narrower size range, and particle scale can reach 50~100nm.
The preparation method of aforesaid nano metal oxide materials is characterized in that in the described polymer precursor:
A, polymer monomer are acrylate and derivative thereof, and its structure is CH 2=C (R 1) COOM, wherein R 1The structure of group is H or CH 3, M is H +Or NH 4 +Or Li +, the overall mass fraction of shared polymer precursor material is 5~50wt%;
B, the initiator that is used for initiated polymerization are polyreaction initiators commonly used, be a kind of of hydrogen peroxide, persulphate, persulphate and sulphite or thiosulphate, the overall mass fraction of shared polymer precursor material is 0.01~1.0wt%;
C, linking agent are acrylamide and/or N, N '-methylene-bis (acrylamide), and the overall mass fraction of shared polymer precursor material is greater than 0~1.0wt%;
The metal-salt of d, metal ion is the salt of lithium, aluminium, tin, magnesium, calcium, strontium or gallium, and transition metal salt is the salt of cobalt, nickel, manganese, iron, vanadium, copper, titanium, chromium or zinc, or the mixture of two or more salt wherein, the overall mass fraction of shared polymer precursor material is 50~95wt%; Wherein the negatively charged ion of metal-salt is nitrate radical, chlorion, acetate moiety, hydroxide radical, or two or more anionic mixtures wherein.
The preparation method of aforesaid nano metal oxide materials is characterized in that adopting following processing condition:
A, polymerization: 10~100 ℃ of polymerization temperatures;
B, pyrolysis: polymer precursor is 300-500 ℃ of following pyrolysis;
C, calcination: 400-1000 ℃ of following calcination;
D, calcination time: 2~10 hours.
These processing condition are compared with the common process condition can bring following more benefit:
1, simple, the condition of this method technology is easily controlled, and is convenient to the scale operation nano-substance;
2, starting material are inexpensive, can save industrial cost;
3, high temperature sintering time weak point does not even pass through high temperature sintering, can form the material of complete in crystal formation, thereby has shortened preparation time and reduced energy consumption.
The invention has the advantages that the method that adopts polymerized in-situ, monomer and the polymerization of metal-salt mixing solutions are formed polymeric metal salt, handle through pyrolysis, calcination, preparation has the metal oxide materials of nano-scale.Compare with other preparation methods, this method technology is simple, condition is easily controlled, and ion mixes, and is particularly suitable for preparing many composite oxide of metal and a small amount of adulterated metal oxide materials, and prepared oxide material has uniform phase, narrower size range and nanoscale.And can regulate the granularity of obtained material according to the relative quantity of polymer monomer and metal-salt.Therefore, this method not only can be used to prepare high performance lithium ion battery positive and negative electrode oxide material, and can be widely used in the preparation of other composite oxide materials, thereby provides simpler, practical method for preparing nanometer oxide material.
Description of drawings
Fig. 1 is the high rate performance that the material of the embodiment of the invention 1 is used as anode material for lithium-ion batteries.
Fig. 2, LiNi 0.5Mn 1.5O 2The charging and discharging curve of material.
Fig. 3, Li 4Ti 5O 12The charging and discharging curve of material.
Concrete embodiment
Embodiment 1 lithium ion battery Li[Li 0.12Ni 0.32Mn 0.56] O 2The preparation of nano anode material
With 4.70g LiOHH 2O, 9.30g Ni (NO 3) 26H 2O and 20.04g 50%Mn (NO 3) 2Aqueous solution is made into the uniform aqueous solution, dropwise adds 50mg N again, in N '-methylene-bis (acrylamide) and the acrylic acid mixed solution of 20.75g, after stirring, adds 50mg 4% initiator solution (Na 2SO 3+ K 2S 2O 81: 1wt), at 80 ℃ of following initiated polymerizations, polymkeric substance promptly obtains polymer precursor 120 ℃ of oven dry down then.Polymer precursor at 900 ℃ of following calcination 3h, promptly obtains target product Li[Li then at 450 ℃ of following pyrolysis 5h 0.12Ni 0.32Mn 0.56] O 2
Pyrolysis, calcination temperature and time, can change according to synthetic materials is different.In general, pyrolysis temperature is 300~500 ℃, and calcination temperature is 400~1000 ℃.
Gained Li[Li 0.12Ni 0.32Mn 0.56] O 2Show among the TEM figure of material that this method synthetic material has that uniform grain sizes distributes and nanoscale (~70nm).Fig. 1 is the high rate performance of this material effects anode material for lithium-ion batteries, and as shown in Figure 1, material has high loading capacity (~190mAh/g is under the 50mA/g electric current), even under the current density of 400mA/g, also have higher capacity (~140mAh/g).
Embodiment 2 lithium ion battery LiNi 0.5Mn 1.5O 2The preparation of nano anode material
With 10.20g Li (CH 3COO) H 2O, 14.54g Ni (NO 3) 26H 2O and 36.76g Mn (CH 3COO) 24H 2The O aqueous solution is made into the uniform aqueous solution, dropwise adds 50mg N again, in N '-methylene-bis (acrylamide) and the acrylic acid mixed solution of 21.61g, after stirring, adds 50mg 4% initiator solution (K 2S 2O 8), at 80 ℃ of following initiated polymerizations, polymkeric substance promptly obtains polymer precursor 120 ℃ of oven dry down then.Polymer precursor is at 450 ℃ of following pyrolysis 5h, and at 600 ℃ of following calcination 3h, promptly obtains target product LiNi 0.5Mn 1.5O 2
Gained LiNi 0.5Mn 1.5O 2The TEM figure of material is similar to example 1, and grain graininess is 50nm.Fig. 2 is the discharge performance of this material effects anode material for lithium-ion batteries, and as shown in Figure 2, material has high sparking voltage (4.7V) and higher loading capacity (~120mAh/g is under the 50mA/g current density).
Embodiment 3, lithium ion battery Li 4Ti 5O 12The preparation of nano-electrode material
With 4.20g LiOHH 2O, 128.5g 15%TiCl 3Aqueous solution is made into the uniform aqueous solution, dropwise adds 50mg N again, in N '-methylene-bis (acrylamide) and the acrylic acid mixed solution of 36.03g, after stirring, adds 50mg4% initiator solution (K 2S 2O 8), at 80 ℃ of following initiated polymerizations, polymkeric substance promptly obtains polymer precursor 120 ℃ of oven dry down then.Polymer precursor is at 450 ℃ of following pyrolysis 5h, and at 700 ℃ of following calcination 3h, promptly obtains target product Li 4Ti 5O 12
Gained Li 4Ti 5O 12Material has nanoscale, and loading capacity is 130mAh/g, and good cycle (Fig. 3).
The preparation of embodiment 4, lithium ion battery Sn base oxide nanometer negative material
With 22.6g SnCl 22H 2The O mixing is made into the uniform aqueous solution, dropwise adds 50mg N again, in N '-methylene-bis (acrylamide) and the acrylic acid mixed solution of 14.12g, after stirring, adds 50mg 4% initiator solution (Na 2SO 3+ K 2S 2O 81: 1wt), at 80 ℃ of following initiated polymerizations, polymkeric substance promptly obtains polymer precursor 120 ℃ of oven dry down then.Polymer precursor promptly obtains the target product nano SnO at 450 ℃ of following pyrolysis 5h 2
Gained SnO 2Material has nanoscale, and reversible capacity is 600mAh/g, and good cycle.

Claims (2)

1, the preparation method of nano metal oxide materials is characterized in that:
With acrylate and derivative thereof is monomer, monomer and the mixing of the metal ion aqueous solution or monomer, the metal ion aqueous solution are mixed with linking agent, make the solution of homogeneous, stable, modest viscosity, add initiator then, make acrylate generation chemical crosslink reaction, form polymer network structure, metal ion and carboxylate radical bonding, and be fixed in the microstructure of polymer network, obtain polymer precursor through oven dry; Polymer precursor is calcination after pyrolysis, promptly obtains corresponding nano metal oxide materials;
In the described polymer precursor:
A, polymer monomer are acrylate and derivative thereof, and its structure is CH 2=C (R 1) COOM, wherein R 1The structure of group is H or CH 3, M is H +Or NH 4 +Or Li +, the overall mass fraction of shared polymer precursor material is 5~50wt%;
B, the initiator that is used for initiated polymerization are polyreaction initiators commonly used, be a kind of of hydrogen peroxide, persulphate, persulphate and sulphite or thiosulphate, the overall mass fraction of shared polymer precursor material is 0.01~1.0wt%;
C, linking agent are acrylamide and/or N, N '-methylene-bis (acrylamide), and the overall mass fraction of shared polymer precursor material is greater than 0, is less than or equal to 1.0wt%;
The metal-salt of d, metal ion is the salt of lithium, aluminium, tin, magnesium, calcium, strontium or gallium, and transition metal salt is the salt of cobalt, nickel, manganese, iron, vanadium, copper, titanium, chromium or zinc, or the mixture of two or more salt wherein, the overall mass fraction of shared polymer precursor material is 50~95wt%; Wherein the negatively charged ion of metal-salt is nitrate radical, chlorion, acetate moiety, hydroxide radical, or two or more anionic mixtures wherein.
2, the preparation method of nano metal oxide materials as claimed in claim 1 is characterized in that adopting following processing condition:
A, polymerization: 10~100 ℃ of polymerization temperatures;
B, pyrolysis: polymer precursor is 300-500 ℃ of following pyrolysis;
C, calcination: 400-1000 ℃ of following calcination;
D, calcination time: 2~10 hours.
CNB2004100607010A 2004-08-09 2004-08-09 Process for preparing nano metal oxide material Expired - Fee Related CN1296284C (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CNB2004100607010A CN1296284C (en) 2004-08-09 2004-08-09 Process for preparing nano metal oxide material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CNB2004100607010A CN1296284C (en) 2004-08-09 2004-08-09 Process for preparing nano metal oxide material

Publications (2)

Publication Number Publication Date
CN1587058A CN1587058A (en) 2005-03-02
CN1296284C true CN1296284C (en) 2007-01-24

Family

ID=34603542

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB2004100607010A Expired - Fee Related CN1296284C (en) 2004-08-09 2004-08-09 Process for preparing nano metal oxide material

Country Status (1)

Country Link
CN (1) CN1296284C (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103539074A (en) * 2013-09-11 2014-01-29 中国科学院宁波材料技术与工程研究所 Preparation method of transition metal oxide nanopowder

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100368281C (en) * 2005-12-02 2008-02-13 大连交通大学 Preparation method of nanometer metal oxide and composite metal oxide
CN100372759C (en) * 2006-08-25 2008-03-05 南京大学 Preparation method of mesopore metal oxide
CN101989664B (en) * 2009-08-06 2013-06-19 中国科学院宁波材料技术与工程研究所 Method for synthesizing nano-powder used for solid oxide fuel cell on large scale
CN102503417B (en) * 2011-10-11 2014-07-16 武汉钢铁(集团)公司 Preparation method for yttria-partially-stabilized zirconia powder
CN102503416A (en) * 2011-10-11 2012-06-20 武汉钢铁(集团)公司 Preparation method of magnesium oxide partially stabilized zirconia powder
CN102814183B (en) * 2012-09-13 2014-10-29 武汉钢铁(集团)公司 Preparation method of Mn-Fe-Ti oxide system low-temperature selective catalytic reduction (SCR) catalyst
CN102824908B (en) * 2012-09-13 2014-11-05 武汉钢铁(集团)公司 Preparation method of Mn-Ti oxide system low-temperature selective catalytic reduction (SCR) catalyst
CN103508483B (en) * 2013-09-11 2016-03-09 中国科学院宁波材料技术与工程研究所 A kind of preparation method of nano tin oxide powder
CN114242969B (en) * 2021-11-18 2024-04-26 广州大学 Layered cobalt-free manganese-based lithium ion battery anode material and preparation method and application thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1237558A (en) * 1998-05-28 1999-12-08 中国科学技术大学 Method for preparing composite metal oxide ceramic powder material by using organic polymerization auxiliary prosess
CN1315752A (en) * 2000-03-30 2001-10-03 中国科学院物理研究所 Secondary Li ion battery using colloidal polymer as electrolyte and its preparing process
CN1419151A (en) * 2002-12-06 2003-05-21 大连新世纪纳米科技股份有限公司 Resin optical lens containing metal oxide nano particle and making method thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1237558A (en) * 1998-05-28 1999-12-08 中国科学技术大学 Method for preparing composite metal oxide ceramic powder material by using organic polymerization auxiliary prosess
CN1315752A (en) * 2000-03-30 2001-10-03 中国科学院物理研究所 Secondary Li ion battery using colloidal polymer as electrolyte and its preparing process
CN1419151A (en) * 2002-12-06 2003-05-21 大连新世纪纳米科技股份有限公司 Resin optical lens containing metal oxide nano particle and making method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103539074A (en) * 2013-09-11 2014-01-29 中国科学院宁波材料技术与工程研究所 Preparation method of transition metal oxide nanopowder

Also Published As

Publication number Publication date
CN1587058A (en) 2005-03-02

Similar Documents

Publication Publication Date Title
JP7158595B2 (en) Positive electrode additive and manufacturing method thereof, positive electrode and manufacturing method thereof, and lithium ion battery
JP5565465B2 (en) Nonaqueous electrolyte secondary battery
CN111509210B (en) Modified high-voltage positive electrode material and preparation method and application thereof
TW201136001A (en) High capacity lithium-ion electrochemical cells
CN1907844A (en) High density ultrafine composite ferric lithium phosphate anode material and preparation method
JP6428342B2 (en) Binder composition for lithium ion secondary battery electrode, slurry composition for lithium ion secondary battery electrode, electrode for lithium ion secondary battery, and lithium ion secondary battery
CN1242501C (en) Surface covering material of lithium ion battery positive electrode and its technology
TW200401467A (en) Method for preparing positive electrode active material for non-aqueous secondary battery
US9923199B2 (en) Method for preparing carbon-coated lithium titanate
CN1296284C (en) Process for preparing nano metal oxide material
WO2016075946A1 (en) Binder composition for secondary cell electrode, slurry composition for secondary cell electrode, secondary cell electrode, and secondary cell
JPWO2019167730A1 (en) Slurry composition for lithium ion secondary battery and electrode for lithium ion secondary battery
CN1850609A (en) Method for preparing LimMn(XO4)y Lithium ion cell electrode material
KR20060085085A (en) Cathode active material for a lithium secondary battery and a lithium secondary battery containing the same
JP2013206616A (en) Cathode active material for lithium-ion secondary battery and method for producing the same
JP6674315B2 (en) Method for producing lithium-containing composite oxide
CN113594456A (en) Positive electrode slurry, preparation method thereof, positive plate and lithium ion battery
CN113346086A (en) Binder, preparation method and application thereof, negative plate and lithium ion battery
CN111740108A (en) High-nickel ternary cathode aqueous binder for lithium ion battery and preparation method thereof
CN105355855B (en) A kind of method that explosion method prepares high-voltage anode material LiNiVO4
JP6455015B2 (en) Secondary battery binder composition, secondary battery electrode slurry composition, secondary battery electrode and secondary battery
JP7336055B1 (en) Positive electrode active materials for lithium ion batteries, positive electrode for lithium ion batteries, lithium ion batteries, positive electrode active materials for all-solid-state lithium-ion batteries, positive electrodes for all-solid-state lithium-ion batteries, all-solid-state lithium-ion batteries, positive electrode active materials for lithium-ion batteries Manufacturing method and manufacturing method of positive electrode active material for all-solid-state lithium-ion battery
CN114695852B (en) Organic matter coated multi-element positive electrode material, preparation method and application thereof, and lithium ion battery
WO2023115289A1 (en) Nickel-rich material and preparation method therefor, positive electrode plate, battery and electric equipment
JP6579250B2 (en) Secondary battery binder composition, secondary battery electrode slurry composition, secondary battery electrode and secondary battery

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C19 Lapse of patent right due to non-payment of the annual fee
CF01 Termination of patent right due to non-payment of annual fee