CN1293614C - Method for improving interface defects between pure silica glass and phosphosilicate glass and its phosphorus-containing structure - Google Patents
Method for improving interface defects between pure silica glass and phosphosilicate glass and its phosphorus-containing structure Download PDFInfo
- Publication number
- CN1293614C CN1293614C CNB031484484A CN03148448A CN1293614C CN 1293614 C CN1293614 C CN 1293614C CN B031484484 A CNB031484484 A CN B031484484A CN 03148448 A CN03148448 A CN 03148448A CN 1293614 C CN1293614 C CN 1293614C
- Authority
- CN
- China
- Prior art keywords
- sccm
- flow rate
- phosphine gas
- layer
- mentioned
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000005360 phosphosilicate glass Substances 0.000 title claims abstract description 73
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 title claims abstract description 59
- 238000000034 method Methods 0.000 title claims abstract description 43
- 235000012239 silicon dioxide Nutrition 0.000 title claims abstract description 30
- 230000007547 defect Effects 0.000 title claims abstract description 11
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 title claims description 37
- 229910052698 phosphorus Inorganic materials 0.000 title claims description 37
- 239000011574 phosphorus Substances 0.000 title claims description 37
- XYFCBTPGUUZFHI-UHFFFAOYSA-N Phosphine Chemical compound P XYFCBTPGUUZFHI-UHFFFAOYSA-N 0.000 claims abstract description 147
- 229910000073 phosphorus hydride Inorganic materials 0.000 claims abstract description 68
- 239000000377 silicon dioxide Substances 0.000 claims abstract description 26
- 238000005137 deposition process Methods 0.000 claims description 4
- 230000001105 regulatory effect Effects 0.000 claims 1
- 238000009423 ventilation Methods 0.000 claims 1
- BHEPBYXIRTUNPN-UHFFFAOYSA-N hydridophosphorus(.) (triplet) Chemical compound [PH] BHEPBYXIRTUNPN-UHFFFAOYSA-N 0.000 abstract description 4
- 108091000080 Phosphotransferase Proteins 0.000 abstract 1
- 230000001788 irregular Effects 0.000 abstract 1
- 238000013021 overheating Methods 0.000 abstract 1
- 102000020233 phosphotransferase Human genes 0.000 abstract 1
- 239000010410 layer Substances 0.000 description 29
- 239000007789 gas Substances 0.000 description 21
- 238000006243 chemical reaction Methods 0.000 description 16
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 12
- 229910052710 silicon Inorganic materials 0.000 description 12
- 239000010703 silicon Substances 0.000 description 12
- 238000005530 etching Methods 0.000 description 10
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 9
- 229920005591 polysilicon Polymers 0.000 description 9
- 239000000758 substrate Substances 0.000 description 9
- 238000010586 diagram Methods 0.000 description 8
- 239000004065 semiconductor Substances 0.000 description 8
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 7
- 229910052751 metal Inorganic materials 0.000 description 7
- 239000002184 metal Substances 0.000 description 7
- 229910052760 oxygen Inorganic materials 0.000 description 7
- 239000001301 oxygen Substances 0.000 description 7
- 239000003989 dielectric material Substances 0.000 description 6
- 238000000635 electron micrograph Methods 0.000 description 6
- 238000004519 manufacturing process Methods 0.000 description 6
- WQJQOUPTWCFRMM-UHFFFAOYSA-N tungsten disilicide Chemical compound [Si]#[W]#[Si] WQJQOUPTWCFRMM-UHFFFAOYSA-N 0.000 description 6
- 229910021342 tungsten silicide Inorganic materials 0.000 description 6
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 description 4
- 239000011521 glass Substances 0.000 description 4
- 239000011229 interlayer Substances 0.000 description 4
- 239000012495 reaction gas Substances 0.000 description 4
- 229910000077 silane Inorganic materials 0.000 description 4
- 238000000151 deposition Methods 0.000 description 3
- 230000008021 deposition Effects 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 125000006850 spacer group Chemical group 0.000 description 3
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 3
- 229910052721 tungsten Inorganic materials 0.000 description 3
- 239000010937 tungsten Substances 0.000 description 3
- 238000001505 atmospheric-pressure chemical vapour deposition Methods 0.000 description 2
- 239000005380 borophosphosilicate glass Substances 0.000 description 2
- 239000004020 conductor Substances 0.000 description 2
- 229910044991 metal oxide Inorganic materials 0.000 description 2
- 150000004706 metal oxides Chemical class 0.000 description 2
- 238000000623 plasma-assisted chemical vapour deposition Methods 0.000 description 2
- 238000001878 scanning electron micrograph Methods 0.000 description 2
- 229910021332 silicide Inorganic materials 0.000 description 2
- FVBUAEGBCNSCDD-UHFFFAOYSA-N silicide(4-) Chemical compound [Si-4] FVBUAEGBCNSCDD-UHFFFAOYSA-N 0.000 description 2
- 239000010936 titanium Substances 0.000 description 2
- 229910052581 Si3N4 Inorganic materials 0.000 description 1
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- -1 USG) Substances 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- YWEUIGNSBFLMFL-UHFFFAOYSA-N diphosphonate Chemical compound O=P(=O)OP(=O)=O YWEUIGNSBFLMFL-UHFFFAOYSA-N 0.000 description 1
- 238000001465 metallisation Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 239000000075 oxide glass Substances 0.000 description 1
- 229910001392 phosphorus oxide Inorganic materials 0.000 description 1
- 239000005368 silicate glass Substances 0.000 description 1
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 1
- VSAISIQCTGDGPU-UHFFFAOYSA-N tetraphosphorus hexaoxide Chemical compound O1P(O2)OP3OP1OP2O3 VSAISIQCTGDGPU-UHFFFAOYSA-N 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
Images
Landscapes
- Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
- Formation Of Insulating Films (AREA)
Abstract
Description
技术领域technical field
本发明涉及一种改善纯硅玻璃(USG)与磷硅玻璃(PSG)界面缺陷的方法及其所形成的含磷结构,特别涉及一种藉由阶段式地控制磷化氢的流量,而改善USG与PSG的界面缺陷的方法。The invention relates to a method for improving interface defects between pure silica glass (USG) and phosphosilicate glass (PSG) and the phosphorous-containing structure formed therein, in particular to a method for improving Method for interface defects of USG and PSG.
背景技术Background technique
在半导体制造工艺中,硅的应用十分广泛。许多制造工艺中常用的材料,不论导体、半导体,或者介电材料,均与元素“硅”有关。如导体中的硅化钨(WSix)、钨(W)及钛(Ti),半导体中的多晶硅,和介电材料中的二氧化硅(SiO2)及氮化硅(Si3N4)等都是以“硅”为基础衍生而来的。以介电材料(dielectric)为例,非掺杂硅玻璃(纯二氧化硅)(Undoped silicate glass,USG)、磷硅玻璃(Phospho-silicate glass,PSG)和硼磷硅玻璃(Borophosphosilicateglass,BPSG)是目前应用最广泛的介电材料。Silicon is used in a wide variety of semiconductor manufacturing processes. Materials commonly used in many manufacturing processes, whether they are conductors, semiconductors, or dielectrics, are related to the element "silicon". Such as tungsten silicide ( WSix ), tungsten (W) and titanium (Ti) in conductors, polysilicon in semiconductors, and silicon dioxide (SiO 2 ) and silicon nitride (Si 3 N 4 ) in dielectric materials, etc. All are based on "silicon". Taking dielectric materials as examples, undoped silica glass (pure silica) (Undoped silicate glass, USG), phospho-silicate glass (PSG) and borophosphosilicate glass (BPSG) It is the most widely used dielectric material at present.
请参照图1,该图示出了硅元素应用于金属氧化半导体晶体管上的位置示意图。在金属氧化物半导体晶体管(Metal-Oxide-Semiconductor Transistor,以下简称MOS)100中,硅基板102上的晶体管栅极(Gate)由栅极氧化层(GateOxide)103、多晶硅(Polysilicon)104和硅化钨(WSix)106层叠而成。一般而言,是以干式氧化法将清洗过后的硅基板102上的有源区域表面的硅氧化成厚度约为100~250_的二氧化硅,以作为MOS的栅极氧化层103。而形成于栅极氧化层103上方的多晶硅104,其厚度约为2000~3000_。至于导电能力比多晶硅104强的硅化金属层(一般多选用硅化钨106)则沉积于多晶硅104上方。由于硅化金属层对二氧化硅的附着能力不佳,且容易产生界面化合物,因此,需要在硅化钨106和栅极氧化层103之间加入一层多晶硅104,故选用多晶硅104和硅化钨106二层作为栅极导电层。另外,应用硅元素的还有位于栅极导电层两侧的间隔氧化物(Spacer Oxide)107。在MOS金属化之前的内层介电层(Inter-Layer Dielectrics)110材料则多选用磷硅玻璃(PSG)。Please refer to FIG. 1 , which shows a schematic diagram of the location where silicon elements are applied to metal oxide semiconductor transistors. In a metal-oxide-semiconductor transistor (Metal-Oxide-Semiconductor Transistor, hereinafter referred to as MOS) 100, the transistor gate (Gate) on the silicon substrate 102 is composed of a gate oxide layer (GateOxide) 103, polysilicon (Polysilicon) 104 and tungsten silicide (WSi x )106 stacked. Generally speaking, silicon on the surface of the active region on the cleaned silicon substrate 102 is oxidized to silicon dioxide with a thickness of about 100-250 mm by dry oxidation method, so as to serve as the gate oxide layer 103 of the MOS. The polysilicon 104 formed on the gate oxide layer 103 has a thickness of about 2000˜3000 mm. As for the silicide metal layer (generally, tungsten silicide 106 ) whose conductivity is stronger than that of the polysilicon 104 is deposited on the polysilicon 104 . Since the silicide metal layer has poor adhesion to silicon dioxide and is prone to produce interface compounds, it is necessary to add a layer of polysilicon 104 between the tungsten silicide 106 and the gate oxide layer 103, so polysilicon 104 and tungsten silicide 106 are selected. layer as the gate conductive layer. In addition, the silicon element is used as well as the spacer oxide (Spacer Oxide) 107 located on both sides of the gate conductive layer. The material of the inter-layer dielectric (Inter-Layer Dielectrics) 110 before the MOS metallization is mostly selected from phosphosilicate glass (PSG).
图1的右半部显示出了MOS中具有的接触窗结构。用来连结下层金属导线112和硅基板102漏极与源极PN接合相接触的接点,称为接触窗金属、或接触窗插塞(Contact Plug)114,而连结上下两层金属导线的部分则称为仲介窗插塞(Via Plug)(未显示于图中)。在MOS制造过程中,一般以蚀刻方法将部分内层介电层llO挖空至衬底氧化层(Liner Oxide)108,再填入金属钨以形成钨插塞。其中,衬底氧化层108是利用干氧方式在高温下(约900~1100℃)氧化硅表面,而形成厚度约为200~400_的二氧化硅,因此其材料为非掺杂的硅玻璃(USG)。The right half of Figure 1 shows the contact window structure in the MOS. The contact point used to connect the lower metal wire 112 and the silicon substrate 102 drain and source PN junction is called a contact window metal, or a contact plug (Contact Plug) 114, while the part connecting the upper and lower layers of metal wires is Called the Via Plug (not shown in the figure). In the MOS manufacturing process, a part of the inner layer dielectric layer 110 is generally hollowed out to the substrate oxide layer (Liner Oxide) 108 by etching, and then filled with metal tungsten to form a tungsten plug. Wherein, the substrate oxide layer 108 utilizes dry oxygen to oxidize the silicon surface at high temperature (about 900-1100° C.) to form silicon dioxide with a thickness of about 200-400 mm, so its material is non-doped silica glass. (USG).
在传统的MOS制造过程中,以蚀刻方法将部分内层介电层110挖空至衬底氧化层108时,两者之间的界面(interface)因为PSG含磷量过高,蚀刻后界面存在缺陷(interface kink)。而内层介电层1lO与衬底氧化层108界面的PSG的含磷量则与PSG形成的过程有关。In the traditional MOS manufacturing process, when part of the interlayer dielectric layer 110 is hollowed out to the substrate oxide layer 108 by etching, the interface between the two is due to the high phosphorus content of PSG, and the interface exists after etching. Defect (interface kink). The phosphorus content of the PSG at the interface between the inner dielectric layer 110 and the substrate oxide layer 108 is related to the process of forming the PSG.
磷硅玻璃(PSG),是一种含磷的二氧化硅。它可以在产生二氧化硅的反应裹,加入少量的磷化氢(Phosphine,PH3)而得到。反应式如下:Phospho-silicate glass (PSG), is a phosphorus-containing silicon dioxide. It can be obtained by adding a small amount of phosphine (Phosphine, PH 3 ) to the reaction of producing silicon dioxide. The reaction formula is as follows:
此反应一般在常压且温度约400℃下进行,属于常压化学气相沉积(Atmospheric Pressure Chemical Vapor Deposition,APCVD)的一种应用。上述反应亦可采用等离子增强化学气相沉积工序在低压环境中完成。其中,硅烷(Silane,SiH4)和氧反应生成二氧化硅;而磷化氢(PH3)与氧反应生成氧化磷(P205),并包含在二氧化硅的沉积薄膜里面。至于PSG内的磷含量,可通过控制磷化氢(PH3)的流量进行调节。通常使磷化氢通过一质量流量控制器(Mass Flow Controller,MFC),其旁通阀装置(by-pass valve)的开或关可决定磷化氢是否加入反应。This reaction is generally carried out at normal pressure and at a temperature of about 400° C., which is an application of Atmospheric Pressure Chemical Vapor Deposition (APCVD). The above reaction can also be completed in a low-pressure environment by using a plasma-enhanced chemical vapor deposition process. Among them, silane (SiH 4 ) reacts with oxygen to generate silicon dioxide; and phosphine (PH 3 ) reacts with oxygen to generate phosphorus oxide (P 2 0 5 ), which is contained in the deposited film of silicon dioxide. As for the phosphorus content in PSG, it can be adjusted by controlling the flow rate of phosphine (PH 3 ). Phosphine is usually passed through a mass flow controller (Mass Flow Controller, MFC), and the opening or closing of its bypass valve device (by-pass valve) can determine whether phosphine is added to the reaction.
然而,由于磷化氢(PH3)气体的粘度较高,因此当其流经质量流量控制器一段时间后,阀装置若关闭,会有少许侧漏。当下次要再通入磷化氢气体时,原先已经在阀口处累积的磷化氢气体,因阀装置打开,残余在阀口的磷化氢气体会随着后来通入的磷化氢气体一起冲出,而造成超量(overshooting)。图2A示出了传统方法中反应生成PSG时反应气体与时间的关系。其中,圈圈部分代表磷化氢气体有超量的情况发生。请同时参照图2B,该图为图2A中的磷化氢气体含量与沉积玻璃厚度的相关示意图。当磷化氢气体尚未加入反应时(即磷含量=0%),硅烷(SiH4)和氧反应生成纯二氧化硅,即非掺杂的硅玻璃(USG)208。当磷化氢气体加入反应后,随即生成磷硅玻璃(PSG)210。而USG 208和PSG 210的交界处(相对于磷化氢气体超量处)则生成磷含量较高的PSG 212。此类磷化氢超量(overshooting)问题在质量流量控制器停止一段时间再启用时,更为严重。However, due to the high viscosity of phosphine (PH 3 ) gas, when it flows through the mass flow controller for a period of time, if the valve device is closed, there will be a little side leakage. When the phosphine gas is to be re-introduced next time, the phosphine gas that has accumulated at the valve port, because the valve device is opened, the phosphine gas remaining at the valve port will be released together with the phosphine gas that is introduced later. Rush out, causing overshooting. FIG. 2A shows the relationship between reaction gas and time when PSG is reacted in a conventional method. Among them, the circled part represents the occurrence of excess phosphine gas. Please also refer to FIG. 2B , which is a schematic diagram showing the relationship between the phosphine gas content and the thickness of the deposited glass in FIG. 2A . When phosphine gas has not been added to the reaction (ie, phosphorus content = 0%), silane (SiH 4 ) and oxygen react to form pure silicon dioxide, ie, undoped silica glass (USG) 208 . Phosphosilicate glass (PSG) 210 is formed immediately after phosphine gas is added to the reaction. However, at the junction of
在后续的工序中,如在PSG以蚀刻方法挖出接触窗(图1),磷含量较高的PSG 212硬度较低,会使蚀刻率增加,造成此处过度蚀刻,形成所谓的界面凹陷(Interface Kink),而影响组件特性。如图3所示,其为传统工序中PSG蚀刻后的电子显微照片。电子显微照片(SEM Micrograph)中,深色线条即为界面凹陷处。In the subsequent process, if the contact window is dug out by etching in PSG (Figure 1), the hardness of
发明内容Contents of the invention
据此,本发明要解决的技术问题是提供一种改善纯二氧化硅(USG)与磷硅玻璃(PSG)界面缺陷的方法,通过阶段式地增加磷化氢的流量直至最终设定值,以缓慢带出残留于流量控制器的阀口的磷化氢,而避免磷化氢超量(overshooting),进而改善USG与PSG的界面缺陷(interface kink)。Accordingly, the technical problem to be solved by the present invention is to provide a method for improving interface defects between pure silicon dioxide (USG) and phosphosilicate glass (PSG), by increasing the flow of phosphine in stages until the final set value, The phosphine remaining at the valve port of the flow controller is slowly brought out to avoid overshooting of the phosphine, thereby improving the interface kink between the USG and the PSG.
为解决上述问题,本发明提出了一种改善纯二氧化硅(USG)层与磷硅玻璃(PSG)层的界面缺陷的方法,其中,磷硅玻璃层沉积于纯二氧化硅层上方,通过一流量控制装置调节磷化氢(PH3)气体的流量而形成磷硅玻璃层,进行主要沉积工序(Main Dep.)时,磷化氢(PH3)气体的流量需达X sccm(X为大于1的正数),本发明的方法为:In order to solve the above-mentioned problems, the present invention proposes a method for improving the interface defects between the pure silicon dioxide (USG) layer and the phosphosilicate glass (PSG) layer, wherein the phosphosilicate glass layer is deposited on the pure silicon dioxide layer, through A flow control device adjusts the flow rate of phosphine (PH 3 ) gas to form a phosphosilicate glass layer. During the main deposition process (Main Dep.), the flow rate of phosphine (PH 3 ) gas needs to reach X sccm (X is positive number greater than 1), the method of the present invention is:
将磷化氢(PH3)气体的流量自0 sccm开始阶段式地增加,直至流量达Xsccm为止。The flow rate of phosphine (PH 3 ) gas was increased stepwise from 0 sccm until the flow rate reached X sccm.
其中,磷化氢(PH3)气体的流量可依等差级数(arithmetical progression)方式、等比级数(geometric progression)方式、或随机方式阶段式地增加。Wherein, the flow rate of the phosphine (PH 3 ) gas can be increased stepwise in an arithmetical progression, geometrical progression, or random manner.
另外,依照本发明,所产生的一含磷的界面层位于纯二氧化硅(USG)层与磷硅玻璃(PSG)层之间,其磷含量自0%开始阶段式地增加至100%,且界面层的总厚度至少大于100_。In addition, according to the present invention, a phosphorus-containing interface layer is produced between the pure silicon dioxide (USG) layer and the phosphosilicate glass (PSG) layer, and its phosphorus content increases stepwise from 0% to 100%, And the total thickness of the interface layer is at least greater than 100mm.
附图说明Description of drawings
为使本发明的上述目的、特征、和优点能更明显易懂,特举一优选实施方式并结合附图作详细说明如下:In order to make the above-mentioned purposes, features, and advantages of the present invention more obvious and understandable, a preferred embodiment will be described in detail in conjunction with the accompanying drawings as follows:
图1为硅元素应用于金属氧化半导体晶体管上的位置示意图;FIG. 1 is a schematic diagram of the position of silicon elements applied to metal oxide semiconductor transistors;
图2A是传统方法中反应生成PSG时反应气体与时间的关系图;Fig. 2A is the relationship diagram of reaction gas and time when reaction generates PSG in the traditional method;
图2B是图2A所示的磷化氢气体含量与沉积玻璃厚度的相关示意图;Fig. 2B is a schematic diagram showing the correlation between the phosphine gas content and the thickness of the deposited glass shown in Fig. 2A;
图3为传统工序中PSG蚀刻后的电子显微照片;Fig. 3 is the electron micrograph after PSG etching in the traditional process;
图4A是本发明的方法中反应生成PSG时反应气体与时间的关系图;Fig. 4A is the relationship diagram of reaction gas and time when reaction generates PSG in the method of the present invention;
图4B是图4A所示的磷化氢气体含量与沉积玻璃厚度的关系示意图;Fig. 4B is a schematic diagram of the relationship between the phosphine gas content and the thickness of the deposited glass shown in Fig. 4A;
图5为应用本发明的方法于PSG蚀刻后的电子显微照片。FIG. 5 is an electron micrograph of PSG after etching using the method of the present invention.
附图标号说明Explanation of reference numbers
102:硅基板102: Silicon substrate
103:栅极氧化层(Gate Oxide)103: Gate Oxide
104:多晶硅(Polysilicon)104: Polysilicon
106:硅化钨(WSix)106: Tungsten silicide (WSi x )
107:间隔氧化物(Spacer Oxide)107: Spacer Oxide
108:衬底氧化层(Liner Oxide)108: Liner Oxide
110:内层介电层(Inter-Layer Dielectrics)110: Inter-Layer Dielectrics
112:下层金属导线112: lower layer metal wire
114:接触窗插塞(Contact Plug)114: Contact Plug
208、408:纯硅玻璃(USG)208, 408: pure silica glass (USG)
210、410:磷硅玻璃(PSG)210, 410: phosphosilicate glass (PSG)
212、412:磷含量较高的PSG212, 412: PSG with higher phosphorus content
具体实施方式Detailed ways
本发明的方法是将磷化氢(PH3)的流量自小而大渐渐增加,以改善传统方法在一开始就使磷化氢的流量达到设定值(servo value)所造成的磷超量(Overshooting)现象。下面举一优选实施方式对本发明进行详细说明。The method of the present invention is to gradually increase the flow of phosphine (PH 3 ) from small to large, so as to improve the excess phosphorus caused by making the flow of phosphine reach the set value (servo value) at the beginning of the traditional method (Overshooting) phenomenon. A preferred embodiment is given below to describe the present invention in detail.
形成磷硅玻璃(PSG)的反应式如下:The reaction formula to form phosphosilicate glass (PSG) is as follows:
此反应在常压下进行,且反应温度约400℃。本反应亦可采用等离子增强化学气相沉积工序在低压环境中完成。其中,硅烷(Silane,SiH4)和氧反应生成二氧化硅;而磷化氢(PH3)与氧反应生成氧化磷(P2O5),并包含在二氧化硅的沉积薄膜里面。使磷化氢通过一质量流量控制器(Mass Flow Controller,MFC),其旁通阀装置(by-pass valve)的开或关可决定磷化氢是否加入反应。因此,磷硅玻璃(PSG)内的磷含量,可通过控制磷化氢(PH3)的流量进行调节。This reaction is carried out under normal pressure, and the reaction temperature is about 400°C. This reaction can also be completed in a low-pressure environment by using a plasma-enhanced chemical vapor deposition process. Among them, silane (SiH 4 ) reacts with oxygen to generate silicon dioxide; and phosphine (PH 3 ) reacts with oxygen to generate phosphorus oxide (P 2 O 5 ), which is contained in the deposited film of silicon dioxide. Phosphine is passed through a mass flow controller (Mass Flow Controller, MFC), and the opening or closing of its bypass valve device (by-pass valve) can determine whether phosphine is added to the reaction. Therefore, the phosphorus content in phosphosilicate glass (PSG) can be adjusted by controlling the flow rate of phosphine (PH 3 ).
在传统的制造过程中,进行磷硅玻璃(PSG)沉积时(以下简称主要沉积(Main Dep.)),若磷化氢的流量需要达到10sccm,则直接将质量流量控制器(MFC)设定在10sccm,因此,磷含量就在很短的时间内从0变化至10sccm,而带出原先残余在阀口的磷化氢气体,造成磷含量超量(overshooting),如图2A、2B所示。试验结果显示:若在1秒内,磷含量从0剧增至10sccm,则于USG和PSG的交界处(即图2B中磷含量较高的PSG 212),所形成的界面厚度约100_。In the traditional manufacturing process, when phosphosilicate glass (PSG) is deposited (hereinafter referred to as the main deposition (Main Dep.)), if the flow rate of phosphine needs to reach 10 sccm, the mass flow controller (MFC) is directly set to At 10sccm, therefore, the phosphorus content changes from 0 to 10sccm in a very short period of time, and the phosphine gas remaining in the valve port is brought out, resulting in overshooting of the phosphorus content, as shown in Figure 2A and 2B . The test results show that if the phosphorus content increases sharply from 0 to 10 sccm within 1 second, the thickness of the formed interface is about 100 mm at the junction of USG and PSG (
在本发明中,进行主要沉积(Main Dep.)时,若磷化氢的流量需要达到10sccm,则将质量流量控制器(MFC)按阶段式设定,将流量自0逐步增加至10sccm。例如:In the present invention, when performing the main deposition (Main Dep.), if the flow of phosphine needs to reach 10 sccm, then the mass flow controller (MFC) is set in stages, and the flow is gradually increased from 0 to 10 sccm. For example:
0sccm→2sccm→5sccm→10sccm0sccm→2sccm→5sccm→10sccm
其中,磷化氢流量设定为2sccm时,时间设定为2秒;接着,设定磷化氢流量为5sccm,时间为4秒;最后磷化氢流量才增加至10sccm,进入主要沉积步骤。试验结果显示:于USG 408和PSG 410的交界处(即图4B中磷含量较高的PSG 412)所形成的界面厚度约600_。Wherein, when the phosphine flow rate is set to 2 sccm, the time is set to 2 seconds; then, the phosphine flow rate is set to 5 sccm, and the time is 4 seconds; finally, the phosphine flow rate is increased to 10 sccm, and the main deposition step is entered. The test results show that the thickness of the interface formed at the junction of USG 408 and PSG 410 (that is, PSG 412 with higher phosphorus content in Figure 4B) is about 600 mm.
应用本发明的方法,阶段式的逐步增加磷化氢流量,渐渐带出原本残留在阀口处的磷化氢气体,以避免传统方法所造成的磷化氢超量(overshooting)。如图4A所示,该图为本发明的方法中反应生成PSG时反应气体与时间的关系图。与图2A相比,原先磷化氢超量的部分在图4A中已呈现缓和。请同时参照图4B,该图为图4A所示的磷化氢气体含量与沉积玻璃厚度的关系示意图。当磷化氢气体尚未加入反应时(即磷含量=0%),硅烷(SiH4)和氧反应生成纯二氧化硅,即非掺杂的硅玻璃(USG)408。当磷化氢气体加入反应后,随即生成磷硅玻璃(PSG)410。而USG 408和PSG 410的交界处,则生成磷含量较高的PSG 412。与图2B相比,本发明的磷含量较高的PSG 412的厚度大于传统的磷含量较高的PSG 212。By applying the method of the present invention, the flow rate of phosphine is gradually increased step by step, and the phosphine gas originally left at the valve port is gradually brought out, so as to avoid overshooting of phosphine caused by the traditional method. As shown in FIG. 4A , this figure is a graph showing the relationship between reaction gas and time when PSG is reacted in the method of the present invention. Compared with Fig. 2A, the excess of phosphine has been alleviated in Fig. 4A. Please also refer to FIG. 4B , which is a schematic diagram of the relationship between the phosphine gas content and the thickness of the deposited glass shown in FIG. 4A . When phosphine gas has not been added to the reaction (ie, phosphorus content = 0%), silane (SiH 4 ) and oxygen react to form pure silicon dioxide, ie, undoped silica glass (USG) 408 . Phosphosilicate glass (PSG) 410 is formed immediately after phosphine gas is added to the reaction. At the junction of USG 408 and PSG 410, PSG 412 with higher phosphorus content is formed. Compared to FIG. 2B , the higher phosphorus content PSG 412 of the present invention is thicker than the conventional higher
图5为应用本发明的方法于PSG蚀刻后的电子显微照片。图5的电子显微照片(SEM Micrograph)显示,已没有如图3所示的深色线条,即界面凹陷(Interface Kink)的现象在应用本发明的方法后已得到较好的改善。FIG. 5 is an electron micrograph of PSG after etching using the method of the present invention. The electron micrograph (SEM Micrograph) of Fig. 5 shows, there is no dark line as shown in Fig. 3, and the phenomenon of interface depression (Interface Kink) has been better improved after applying the method of the present invention.
虽然上面以0sccm-2sccm-5sccm-10sccm为例进行了说明,然而本发明的方法并不限于此种设定组合。也可使用其他组合,例如0sccm-2sccm-5sccm-8sccm-10sccm、或其他组合。只要是阶段式地增加流量至主要沉积工序时的设定值,不论是以等差级数(arithmetical progression)方式、等比级数(geometric progression)方式、或是无特殊规律但是阶段式增加,即符合本发明的技术特征。若再与时间稍微延长相结合,更可消除磷化氢超量的现象。Although 0sccm-2sccm-5sccm-10sccm is described above as an example, the method of the present invention is not limited to this combination of settings. Other combinations may also be used, such as 0 sccm-2 sccm-5 sccm-8 sccm-10 sccm, or other combinations. As long as the flow rate is increased stepwise to the set value of the main deposition process, whether it is in the form of arithmetical progression, geometrical progression, or stepwise increase without special rules, Namely conform to the technical characterictic of the present invention. If it is combined with a slight extension of time, the phenomenon of excess phosphine can be eliminated.
本发明的方法是在磷化氢流量达到最终设定值之前,利用阶段式地增加磷化氢的流量,或(再)使时间略微延长,可缓慢带出残留于阀口的磷化氢,避免了磷化氢在短时间内冲出阀口所造成的磷化氢剧增现象,进而达到改善USG衬底氧化物与PSG的界面缺陷的目的。因此,应用本发明的方法可避免接触窗因过度蚀刻而破裂,从而提高了半导体制造过程中元件在单位时间的输出量(WPH)。The method of the present invention is to increase the flow of phosphine in stages before the flow of phosphine reaches the final set value, or (re)slightly prolong the time, so that the phosphine remaining in the valve port can be slowly taken out, The rapid increase of phosphine caused by phosphine rushing out of the valve port in a short time is avoided, and the purpose of improving the interface defects between the USG substrate oxide and PSG is achieved. Therefore, applying the method of the present invention can prevent the contact window from being broken due to over-etching, thereby improving the output (WPH) of components per unit time in the semiconductor manufacturing process.
综上所述,虽然本发明已以优选实施方式披露如上,但这并非是对本发明的限定,任何所属领域的普通技术人员在不脱离本发明的构思和范围的前提下,均可作出各种更改与润饰,因此本发明的保护范围应以后附的权利要求书所要求保护的范围为准。In summary, although the present invention has been disclosed above in preferred embodiments, this is not a limitation of the present invention, and any person of ordinary skill in the art can make various Changes and modifications, so the scope of protection of the present invention should prevail in the scope of protection required by the appended claims.
Claims (21)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNB031484484A CN1293614C (en) | 2003-06-30 | 2003-06-30 | Method for improving interface defects between pure silica glass and phosphosilicate glass and its phosphorus-containing structure |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNB031484484A CN1293614C (en) | 2003-06-30 | 2003-06-30 | Method for improving interface defects between pure silica glass and phosphosilicate glass and its phosphorus-containing structure |
Publications (2)
Publication Number | Publication Date |
---|---|
CN1567545A CN1567545A (en) | 2005-01-19 |
CN1293614C true CN1293614C (en) | 2007-01-03 |
Family
ID=34472285
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CNB031484484A Expired - Fee Related CN1293614C (en) | 2003-06-30 | 2003-06-30 | Method for improving interface defects between pure silica glass and phosphosilicate glass and its phosphorus-containing structure |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN1293614C (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101593724B (en) * | 2008-05-30 | 2012-04-18 | 中芯国际集成电路制造(北京)有限公司 | Through hole forming method |
CN103560080A (en) * | 2013-11-13 | 2014-02-05 | 上海华力微电子有限公司 | Method for reducing high-density plasma phosphorosilicate glass particles |
CN105448706A (en) * | 2014-07-09 | 2016-03-30 | 中芯国际集成电路制造(上海)有限公司 | Boron phosphorous doped silicate glass (BPSG) dielectric layer preparation method, semiconductor device and electronic device |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0212916A (en) * | 1988-04-26 | 1990-01-17 | Siemens Ag | Manufacture of boron-doped and/or phosphorus-doped silicate glass layer for semiconductor super integrated circuit |
JPH1050955A (en) * | 1996-07-31 | 1998-02-20 | Nec Corp | Manufacturing method of semiconductor device |
JP2000058851A (en) * | 1998-08-17 | 2000-02-25 | Sanyo Electric Co Ltd | Thin film transistor, its manufacture, and display device |
JP2000164885A (en) * | 1990-11-10 | 2000-06-16 | Semiconductor Energy Lab Co Ltd | Manufacture of insulated-gate type semiconductor device |
-
2003
- 2003-06-30 CN CNB031484484A patent/CN1293614C/en not_active Expired - Fee Related
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0212916A (en) * | 1988-04-26 | 1990-01-17 | Siemens Ag | Manufacture of boron-doped and/or phosphorus-doped silicate glass layer for semiconductor super integrated circuit |
JP2000164885A (en) * | 1990-11-10 | 2000-06-16 | Semiconductor Energy Lab Co Ltd | Manufacture of insulated-gate type semiconductor device |
JPH1050955A (en) * | 1996-07-31 | 1998-02-20 | Nec Corp | Manufacturing method of semiconductor device |
JP2000058851A (en) * | 1998-08-17 | 2000-02-25 | Sanyo Electric Co Ltd | Thin film transistor, its manufacture, and display device |
Also Published As
Publication number | Publication date |
---|---|
CN1567545A (en) | 2005-01-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN1282993C (en) | Combined method and apparatus for preventing lateral oxidation in transistors using an ultrathin oxygen diffusion barrier | |
CN1308772A (en) | ULSI MOS with high dielectric constant insulator | |
CN103094325A (en) | Semiconductor device and manufacturing method thereof | |
CN1713384A (en) | Semiconductor device and manufacturing method thereof | |
US20060024959A1 (en) | Thin tungsten silicide layer deposition and gate metal integration | |
CN1823414A (en) | PECVD silicon-rich oxide layer to reduce UV charging in EEPROM | |
JPH0653337A (en) | Method for manufacturing semiconductor device | |
CN1293614C (en) | Method for improving interface defects between pure silica glass and phosphosilicate glass and its phosphorus-containing structure | |
CN100416766C (en) | Gate forming method of flash memory device | |
JPH10242076A (en) | Film laminated structure and method of forming the same | |
CN1377064A (en) | Method for forming layer of tungsten silicate | |
CN1700418A (en) | Method for manufacturing T-shaped polysilicon gate using dual damascene process | |
CN1202003A (en) | Semiconductor storage device manufacturing method and semiconductor storage device for preventing oxidation of bit lines | |
CN1050228C (en) | Thin film transistor and method of fabrication | |
CN1241026A (en) | Improved SAC process flow method using isolating spacer | |
CN100339955C (en) | Method and structure for preventing barrier layer from being over-etched and application thereof | |
JP3793179B2 (en) | Nitride film quality improving method and semiconductor device manufacturing method | |
KR100846391B1 (en) | Method for manufacturing tungsten silicide gate of semiconductor device | |
CN1195319C (en) | Method of forming transistor with metal silicide on source and drain | |
CN1158693C (en) | Method for forming polysilicon layer by deuterium in semiconductor manufacturing process | |
KR0135223B1 (en) | Gate electrode formation method of semiconductor device | |
US20040106281A1 (en) | Re-oxidation process of semiconductor device | |
CN1450601A (en) | Method for making upper contact plug on silicon-on-insulator material substrate | |
CN1851868A (en) | Method of manufacture semiconductor device | |
CN1716537A (en) | Method of forming a polysilicon layer in a semiconductor device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20070103 Termination date: 20190630 |