CN1289887C - 提供冷量的热虹吸方法 - Google Patents

提供冷量的热虹吸方法 Download PDF

Info

Publication number
CN1289887C
CN1289887C CN02828672.3A CN02828672A CN1289887C CN 1289887 C CN1289887 C CN 1289887C CN 02828672 A CN02828672 A CN 02828672A CN 1289887 C CN1289887 C CN 1289887C
Authority
CN
China
Prior art keywords
coupled fluid
liquid
cooling load
working gas
cold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN02828672.3A
Other languages
English (en)
Other versions
CN1623072A (zh
Inventor
D·P·博纳奎斯特
J·F·比林哈姆
J·齐亚
N·J·林奇
B·阿曼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Praxair Technology Inc
Original Assignee
Praxair Technology Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Praxair Technology Inc filed Critical Praxair Technology Inc
Publication of CN1623072A publication Critical patent/CN1623072A/zh
Application granted granted Critical
Publication of CN1289887C publication Critical patent/CN1289887C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B25/00Machines, plants or systems, using a combination of modes of operation covered by two or more of the groups F25B1/00 - F25B23/00
    • F25B25/005Machines, plants or systems, using a combination of modes of operation covered by two or more of the groups F25B1/00 - F25B23/00 using primary and secondary systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C13/00Details of vessels or of the filling or discharging of vessels
    • F17C13/005Details of vessels or of the filling or discharging of vessels for medium-size and small storage vessels not under pressure
    • F17C13/006Details of vessels or of the filling or discharging of vessels for medium-size and small storage vessels not under pressure for Dewar vessels or cryostats
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02GHOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
    • F02G2243/00Stirling type engines having closed regenerative thermodynamic cycles with flow controlled by volume changes
    • F02G2243/30Stirling type engines having closed regenerative thermodynamic cycles with flow controlled by volume changes having their pistons and displacers each in separate cylinders
    • F02G2243/50Stirling type engines having closed regenerative thermodynamic cycles with flow controlled by volume changes having their pistons and displacers each in separate cylinders having resonance tubes
    • F02G2243/52Stirling type engines having closed regenerative thermodynamic cycles with flow controlled by volume changes having their pistons and displacers each in separate cylinders having resonance tubes acoustic
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02GHOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
    • F02G2243/00Stirling type engines having closed regenerative thermodynamic cycles with flow controlled by volume changes
    • F02G2243/30Stirling type engines having closed regenerative thermodynamic cycles with flow controlled by volume changes having their pistons and displacers each in separate cylinders
    • F02G2243/50Stirling type engines having closed regenerative thermodynamic cycles with flow controlled by volume changes having their pistons and displacers each in separate cylinders having resonance tubes
    • F02G2243/54Stirling type engines having closed regenerative thermodynamic cycles with flow controlled by volume changes having their pistons and displacers each in separate cylinders having resonance tubes thermo-acoustic
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/01Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the phase
    • F17C2223/0146Two-phase
    • F17C2223/0153Liquefied gas, e.g. LPG, GPL
    • F17C2223/0161Liquefied gas, e.g. LPG, GPL cryogenic, e.g. LNG, GNL, PLNG
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2227/00Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
    • F17C2227/01Propulsion of the fluid
    • F17C2227/0128Propulsion of the fluid with pumps or compressors
    • F17C2227/0135Pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2227/00Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
    • F17C2227/03Heat exchange with the fluid
    • F17C2227/0337Heat exchange with the fluid by cooling
    • F17C2227/0341Heat exchange with the fluid by cooling using another fluid
    • F17C2227/0353Heat exchange with the fluid by cooling using another fluid using cryocooler
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B23/00Machines, plants or systems, with a single mode of operation not covered by groups F25B1/00 - F25B21/00, e.g. using selective radiation effect
    • F25B23/006Machines, plants or systems, with a single mode of operation not covered by groups F25B1/00 - F25B21/00, e.g. using selective radiation effect boiling cooling systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/17Re-condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/14Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the cycle used, e.g. Stirling cycle
    • F25B9/145Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the cycle used, e.g. Stirling cycle pulse-tube cycle

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)
  • Containers, Films, And Cooling For Superconductive Devices (AREA)

Abstract

一种方法,其中如下产生冷量,优选利用一个脉冲管低温冷却器(100)或制冷机产生低温工作气体,用该低温工作气体液化耦合流体(24,18),该耦合流体通过热虹吸效应在耦合流体储液(21)和制冷负荷设备(25,30)比如超导设备之间循环,从而给该制冷负荷提供冷量。

Description

提供冷量的热虹吸方法
技术领域
本发明通常涉及给制冷负荷提供冷量,尤其具有为超导设备提供冷量的优点。
背景技术
超导设备在低温环境下工作,一般在80K以下。为了保证维持超导特性所必须的低温条件,必须连续地给超导设备提供冷却。超导设备通常安置在远程位置,从而引起提供冷量的制冷系统的可靠性问题。最常见的制冷系统要求使用至少一台低温泵将制冷剂流体送给制冷负荷。用制冷系统给超导设备供冷时,制冷系统使用低温泵就有可能带来问题。
因此,本发明的一个目的是提供一种为制冷负荷提供冷量的改进系统,该系统的可靠性高,而且可以很有效地给超导设备之类应用提供冷量。
发明概述
通过本发明可以获得上述和其他目的,本领域的普通技术人员通过阅读本说明书就能够明白这些目的。本发明是:
一种为制冷负荷提供冷量的方法,它包括:
(A)产生低温工作气体,通过与耦合流体蒸气间接热交换来加热该低温工作气体,从而产生耦合流体液体,并且形成具有一个液面的耦合流体存储液;
(B)利用热虹吸效应将来自耦合流体存储液的耦合流体液体送给一个制冷负荷,所述制冷负荷的位置高度低于该耦合流体存储液的液面;并且
(C)将耦合流体液体的冷量提供给该制冷负荷,并使该耦合流体液体蒸发产生耦合流体蒸气,该蒸汽用来与低温工作气体进行间接热交换。
本文中,所用术语“热虹吸”意指这样一种方法,其中通过提供使一部分流体蒸发的热量,使流体升高并接着被冷却并因重力流动返回到可再次蒸发的位置,从而不用机械装置来使流体移动就使流体在一种装置内循环。
本文中,所用术语“制冷机”意指一种多孔分布物质(porousdistributed mass)形式的热装置,比如球形或堆叠式筛板、穿孔金属板等,它们具有良好的热容量,通过与该多孔分布物质直接热交换可以冷却流进来的热气体并加热返回的冷气体。
本文中,所用术语“脉管制冷机”意指一种制冷装置,利用包括脉冲发生器的适合部件产生低温制冷作用。
本文中,所用术语“小孔”意指一种气流限制装置,它位于脉管制冷机的脉管膨胀机热端和气库之间。
本文中,所用术语“压力波”意指以一种循环方式使大量气体按顺序经历高压和低压的能量。
附图说明
图1简化表示了用于实现本发明的一种脉管制冷机的一个实施方案。
图2是本发明一个实施方案的示意图,其中脉管制冷机的冷端热交换器位于耦合流体储箱的内部。
图3是本发明一个实施方案的示意图,其中直接由耦合流体给该超导装置提供冷量。
图4是本发明一个实施方案的示意图,其中脉管制冷机的冷端热交换器位于耦合流体储箱的外部。
图4A-4C为在本发明中用来产生低温工作气体的三种不同制冷循环的温/熵图。
详细说明
本发明包括利用一个制冷循环产生低温工作气体来液化耦合流体。优选该低温工作气体由脉管制冷机产生,除了需要产生压力波外,脉管制冷机没有运动部件,从而产生制冷作用以便提供该低温工作气体来液化该耦合流体。该液化后的耦合流体利用热虹吸效应被送给一个制冷负荷,因此不需要使用低温泵。该装置提高了系统供冷的可靠性,当冷量的接收设备处在远程位置时,这一点尤为有利,比如典型的超导设备。
下面将参考附图并结合利用脉管制冷机的优选制冷系统来详细描述本发明。附图中相同部件的数字标记也相同。
该脉管制冷系统通常是封闭的制冷系统,它使工作气体在一个封闭回路中周期性地振荡,这样做时就将冷端的热负荷传递给热端。振荡的频率和相变由系统的结构决定。脉管制冷机或制冷系统的一个实施方案示意在图1中。
在图1所示脉管制冷系统中,驱动器或者压力波发生器1可以是一个活塞或者其他机械压缩装置,或者是声波或热声波发生装置,或者是任何其他给工作气体提供脉冲或压力波的适当装置。即,脉冲发生器将声能送给工作气体引起压力和速度振荡。氦气是优选的工作气体;然而任何有效的工作气体都可以用在脉管制冷机中,其中这种气体可以是氮气、氧气、氩气、氖气或者是包含其中一种或多种的混合物比如空气。
振荡的工作气体在二次冷却器2中通过与冷却介质比如水50间接热交换而被冷却下来。当工作气体向冷端热交换器移动时,再生器3中的工作气体通过与再生器中的介质热交换而被冷却下来。
脉管制冷系统的几何构形和脉动配置可以这样:冷端热交换器和脉管6的冷端6a中的振荡工作气体因脉冲循环中的摩擦而膨胀,热量通过间接热交换被工作气体吸收,工作气体给所述耦合流体提供冷量。工作气体的冷量通过间接换热被传递给耦合流体,正如下面更充分讨论的那样。一些声能耗散在小孔中,由此得到的热量从热端6b通过热端热交换器7与冷却介质比如水51间接换热而散掉。优选脉管制冷系统采用一个小孔8和气库9来使气体位移和压力脉冲维持在适当相位。气库9的尺寸要足够大以至于脉管中的气体在振荡流动期间发生非常小的压力波动。
图2中脉管制冷机,如参考图1描述的脉管制冷机被大致或者象标记100表示的单元块形式示意出来,只是冷端热交换器4除外,这里对该部件作出了具体说明。现在参考图2,可以都是气体形式或者部分是气体、部分是液体形式的耦合流体18被送进耦合流体储箱13中。在图2所示的本发明实施方案中,耦合流体18为两相流体。液相20在耦合流体储箱13内部向下降落,而气相19通往冷端热交换器4,该热交换器放置在耦合流体储箱13内部的上半部。耦合流体气体19在冷端热交换器4中与前述低温工作气体间接换热,从而产生耦合流体液体11,然后耦合流体液体11从冷端热交换器4出来,并与耦合流体液体20一起在耦合流体储箱13内形成耦合流体储液21。在耦合流体储箱13内部,耦合流体储液21有一个液面22,液面22是耦合流体液体的上表面。
实践本发明时的优选耦合流体是氖。可用作本发明的耦合流体的其他流体包括氦、氢、氮、氧、氩、甲烷、氪、氙、R-14、R-23、R-218以及上面确定物质中的一种或多种的混合物比如空气。
制冷剂26被送到制冷负荷设备25上,该设备在图2所示的实施方案中是一个热交换器。制冷剂26作为制冷负荷并在热交换器25内通过与耦合流体液体间接换热而被冷却。生成的被冷却的制冷剂27又用来给一个比如超导装置提供冷量。制冷剂可以是任何流体或者流体的混合物,混合物中的各流体的凝固点同时都低于超导装置所需的工作温度,而且低于耦合流体的沸点或者起泡点。这包括但不限于氦、氢、氖、氮、氧、氩、甲烷、氪、氙、R-14、R-23、R-218以及上面确定物质中的一种或多种的混合物比如空气。
耦合流体液体以物流24的形式从耦合流体储箱13内的耦合流体储液21中流到制冷负荷装置25,该装置的位置高度低于耦合液体的液面22。通过与热交换器25内的冷却剂间接热交换,至少一部分耦合流体液体汽化,从而给冷却剂提供冷量。所得到的耦合流体蒸气以物流18的形式返回冷端热交换器4,再次液化低温工作气体。如上所述,物流18除了包括耦合流体蒸气之外,还可以包括耦合流体液体。
耦合流体从耦合流体储箱流向制冷负荷装置并返回耦合流体储箱内是通过热虹吸效应完成的,因此不需要用低温或其他机械泵使耦合流体循环,尽管当耦合流体的浓度极低或者存在阻碍耦合流体在重力作用下循环的物理约束时,要用泵来增加热虹吸效应。液面和系统压降设计成可以使热交换器25既不会充满液体也不会没有液体。在某些情形中,可以使用控制回路。液体的压头,即储箱13内液体的高度要维持在足以克服管路和热交换器25内的压力的高度。
图3示出了本发明的另一个实施方案,其中制冷负荷装置是一个超导装置。对于相同的部件,图3中的数字标记与图2中的数字标记相同,而且下面不再详细描述这些相同的部件。
现在参考图3,耦合流体液体流24流向超导装置30,该装置的位置高度低于耦合流体液体的液面22,而且其中的至少一部分发生蒸发并因此给制冷负荷提供冷量。所得到的至少部分汽化了的耦合流体以物流18的形式从超导装置30流到冷端热交换器4中,该热交换器在图3所示的实施方案中被置于耦合流体储箱13内。通常,当保持耦合流体的压力低于临界压力时,耦合流体可以是任何流体或者混合物,其沸点(混合物情况下为起泡点和露点)大大低于需要的冷却剂出口温度,或者大大低于需要的超导装置的工作温度。
图4示出了本发明的另一个实施方案,其中脉管制冷系统的冷端热交换器位于耦合流体储箱的外部。对于相同的部件,图4中的数字标记与图2中的数字标记相同,而且下面不再详细描述这些相同的部件。
现在参考图4,从热交换器25出来的温热耦合流体18流到脉管制冷机100的冷端热交换器4,该温热耦合流体可以全部或部分为蒸汽形式。耦合流体蒸气通过与冷端热交换器4内的低温工作气体间接热交换而冷凝下来,所得到的耦合流体液体以物流33的形式流到耦合流体储箱13中,它在其中形成了具有液面22的耦合流体储液21。
脉管低温冷却器或制冷机优选基于图4B表示的斯特林循环。可选择地,可以使用其他热力制冷循环。作为示例,可以采用分别由图4A和4C表示的理想卡诺循环和布雷顿循环的某些实际变体。在图4A-4C中,“Tr”代表获得冷量的温度。它是理想循环中的最低温度。可用于低温冷却器的其他制冷循环包括采用磁热材料在磁场中工作的磁制冷以及焦耳-汤姆森制冷。其他有用的低温冷却器循环包括斯特林循环的变形比如Gifford-McMahon循环,以及基于朗肯循环的MGR(混合气体制冷)循环。MGR循环涉及由不同气体混合组成的制冷剂,该制冷剂可在普通压缩机内压缩,由一组预冷却的热交换器冷却,并通过焦耳-汤姆森绝热膨胀而膨胀。此外,可以利用低温制冷剂或由另一个制冷机使低温冷却器预冷却。例如,可以利用液氮制冷或通过其他制冷方式比如SGR(单一气体制冷)或者一个MGR朗肯形式的制冷机,使脉管制冷机预冷却。
通过采用本发明,用很少或者不用运动部件而且不需要机械泵就可以产生冷量并将冷量送给制冷负荷比如超导装置,从而提高了可靠性并因此提高了效率。虽然这里参考某些优选实施方案详细描述了本发明,但是本领域普通技术人员应当明白,本发明在权利要求书的精神和范围内还有其他的实施方案。

Claims (6)

1.一种为制冷负荷提供冷量的方法,它包括:
(A)产生低温工作气体,通过与耦合流体蒸气(19)间接热交换来加热该低温工作气体,从而产生耦合流体液体(11),并且形成具有一个液面(22)的耦合流体存储液(21);
(B)利用热虹吸效应将来自耦合流体存储液的耦合流体液体送给一个制冷负荷设备(25,30),所述制冷负荷设备(25,30)的位置高度低于该耦合流体存储液的液面;并且
(C)将耦合流体液体的冷量提供给该制冷负荷设备(25,30),并使该耦合流体液体蒸发产生耦合流体蒸气,该蒸汽用来与低温工作气体进行间接热交换。
2.根据权利要求1所述的方法,其中耦合流体包括氖。
3.根据权利要求1所述的方法,其中,利用热虹吸效应,使耦合流体从耦合流体存储液流到制冷负荷设备,之后全部从制冷负荷设备返回到耦合流体存储液中。
4.根据权利要求1所述的方法,其中制冷负荷设备(25)包括热交换器,冷却剂流体(26)作为制冷负荷通过该制冷负荷设备,生成被冷却的制冷剂(27)。
5.根据权利要求1所述的方法,其中制冷负荷设备(30)包括超导设备。
6.根据权利要求1所述的方法,其中通过给工作气体提供脉冲来产生压缩的工作气体,并在脉管的冷端使该压缩的工作气体膨胀,从而产生低温工作气体。
CN02828672.3A 2002-03-28 2002-10-23 提供冷量的热虹吸方法 Expired - Fee Related CN1289887C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US10/107,787 US6477847B1 (en) 2002-03-28 2002-03-28 Thermo-siphon method for providing refrigeration to a refrigeration load
US10/107,787 2002-03-28

Publications (2)

Publication Number Publication Date
CN1623072A CN1623072A (zh) 2005-06-01
CN1289887C true CN1289887C (zh) 2006-12-13

Family

ID=22318466

Family Applications (1)

Application Number Title Priority Date Filing Date
CN02828672.3A Expired - Fee Related CN1289887C (zh) 2002-03-28 2002-10-23 提供冷量的热虹吸方法

Country Status (8)

Country Link
US (1) US6477847B1 (zh)
EP (1) EP1488179A4 (zh)
JP (1) JP2005521852A (zh)
CN (1) CN1289887C (zh)
AU (1) AU2002365085A1 (zh)
CA (1) CA2481230C (zh)
MX (1) MXPA04009344A (zh)
WO (1) WO2003083391A1 (zh)

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4392740B2 (ja) * 2001-08-30 2010-01-06 株式会社ルネサステクノロジ 半導体記憶回路
JP2003214750A (ja) * 2002-01-23 2003-07-30 Twinbird Corp サーモサイフォン
US6666033B1 (en) * 2002-06-06 2003-12-23 The Regents Of The University Of California Method and apparatus for fine tuning an orifice pulse tube refrigerator
US6668581B1 (en) * 2002-10-30 2003-12-30 Praxair Technology, Inc. Cryogenic system for providing industrial gas to a use point
TW575158U (en) * 2003-03-20 2004-02-01 Ind Tech Res Inst Heat transfer structure for magnetic heat energy
US6732536B1 (en) 2003-03-26 2004-05-11 Praxair Technology, Inc. Method for providing cooling to superconducting cable
US6865897B2 (en) * 2003-07-10 2005-03-15 Praxair Technology, Inc. Method for providing refrigeration using capillary pumped liquid
US7059138B2 (en) * 2003-09-23 2006-06-13 Praxair Technology, Inc. Biological refrigeration system
GB0426838D0 (en) * 2004-12-07 2005-01-12 Oxford Instr Superconductivity Magnetic apparatus and method
DE102004061869B4 (de) * 2004-12-22 2008-06-05 Siemens Ag Einrichtung der Supraleitungstechnik und Magnetresonanzgerät
US20060260329A1 (en) * 2005-05-17 2006-11-23 Rampersad Bryce M Cryogenic biological preservation unit with integrated cryocooler and nitrogen supply
US20070000258A1 (en) * 2005-07-01 2007-01-04 Bonaquist Dante P Biological refrigeration sytem
CN1847744B (zh) * 2006-04-18 2011-01-19 康健 太阳能反季节蓄热采暖蓄冷降温技术
US9234691B2 (en) * 2010-03-11 2016-01-12 Quantum Design International, Inc. Method and apparatus for controlling temperature in a cryocooled cryostat using static and moving gas
CN103282734A (zh) * 2010-05-27 2013-09-04 江森自控科技公司 用于具有冷却塔的冷却系统的热虹吸冷却器
DE102010041194A1 (de) * 2010-09-22 2012-03-22 Siemens Aktiengesellschaft Vorrichtung und Verfahren zur Kühlung einer supraleitenden Maschine
DE102011002622A1 (de) * 2011-01-13 2012-07-19 Siemens Aktiengesellschaft Kühleinrichtung für einen Supraleiter und supraleitende Synchronmaschine
DE102011082352A1 (de) 2011-09-08 2013-03-14 Siemens Aktiengesellschaft Vorrichtung und Verfahren zum Kühlen einer Einrichtung
CN102331109B (zh) * 2011-10-08 2013-10-02 中科力函(深圳)热声技术有限公司 低温热声制冷机
CN104048445B (zh) * 2013-03-14 2016-01-06 中国科学院理化技术研究所 一种无惯性管和气库的低温热声制冷机
DE102014205086B3 (de) 2014-03-19 2015-07-23 Areva Gmbh Passiver Zweiphasen-Kühlkreislauf
US9552025B2 (en) 2014-09-23 2017-01-24 Google Inc. Cooling electronic devices in a data center
US10448543B2 (en) 2015-05-04 2019-10-15 Google Llc Cooling electronic devices in a data center
US10462935B2 (en) 2015-06-23 2019-10-29 Google Llc Cooling electronic devices in a data center
US10349561B2 (en) 2016-04-15 2019-07-09 Google Llc Cooling electronic devices in a data center
CN106091463A (zh) * 2016-05-09 2016-11-09 南京航空航天大学 基于可控热管的4k热耦合回热式低温制冷机及其制冷方法
US10156385B1 (en) 2017-08-15 2018-12-18 Christopher Kapsha Multistage refrigeration system

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3848424A (en) * 1972-09-22 1974-11-19 L Rhea Refrigeration system and process
US3953971A (en) * 1975-01-02 1976-05-04 Parker Sidney A Power generation arrangement
US4680936A (en) * 1985-12-24 1987-07-21 Ga Technologies Inc. Cryogenic magnet systems
GB2233750B (en) 1989-06-21 1993-02-03 Hitachi Ltd Cryostat with cryo-cooler
DE4312830A1 (de) * 1993-04-20 1994-10-27 Privates Inst Fuer Luft Und Ka Vorrichtung zur Kühlung von hochtemperatursupraleitenden, mikroelektronischen Bauelementen, vorzugsweise Sensoren
DE19548273A1 (de) 1995-12-22 1997-06-26 Spectrospin Ag NMR-Meßeinrichtung mit Pulsrohrkühler
JPH10282200A (ja) 1997-04-09 1998-10-23 Aisin Seiki Co Ltd 超電導磁石システムの冷却装置
US5848532A (en) * 1997-04-23 1998-12-15 American Superconductor Corporation Cooling system for superconducting magnet
GB2329700B (en) 1997-09-30 2001-09-19 Oxford Magnet Tech Improvements in or relating to cryostat systems
US6205812B1 (en) 1999-12-03 2001-03-27 Praxair Technology, Inc. Cryogenic ultra cold hybrid liquefier
US6336331B1 (en) 2000-08-01 2002-01-08 Praxair Technology, Inc. System for operating cryogenic liquid tankage

Also Published As

Publication number Publication date
EP1488179A1 (en) 2004-12-22
EP1488179A4 (en) 2007-08-29
MXPA04009344A (es) 2005-01-25
US6477847B1 (en) 2002-11-12
JP2005521852A (ja) 2005-07-21
WO2003083391A1 (en) 2003-10-09
CA2481230A1 (en) 2003-10-09
AU2002365085A1 (en) 2003-10-13
CA2481230C (en) 2007-08-14
CN1623072A (zh) 2005-06-01

Similar Documents

Publication Publication Date Title
CN1289887C (zh) 提供冷量的热虹吸方法
CN103062951B (zh) 斯特林/脉管复合型制冷机预冷的低温j-t节流制冷机
US6293106B1 (en) Magnetic refrigeration system with multicomponent refrigerant fluid forecooling
CN1336530A (zh) 低温液体贮罐的操作系统
US6415611B1 (en) Cryogenic refrigeration system using magnetic refrigerator forecooling
CN1620583A (zh) 用脉冲管制冷的低温容器系统
JP3123126B2 (ja) 冷却機付き真空容器
CA2437739A1 (en) System for providing cryogenic refrigeration
JPS61256158A (ja) 冷凍装置
CN203231579U (zh) 斯特林/脉管复合型制冷机预冷的低温j-t节流制冷机
US6484516B1 (en) Method and system for cryogenic refrigeration
JPH10246524A (ja) 冷凍装置
JP2666664B2 (ja) 超流動ヘリウムを製造する方法及び装置
Gao IGC-APD advanced two-stage pulse tube cryocoolers
Shire et al. Investigation of microscale cryocoolers
JP2008215783A (ja) 極低温冷凍機および極低温冷凍方法
de Waele Millikelvin Cooling by Expansion of ³He in 4He
JP2636240B2 (ja) ヘリウム液化方法
Raut Study of refrigeration system for achieving cryogenic temperature
JP2004211935A (ja) ガス液化装置
Thirumaleshwar et al. Cryogenic refrigeration methods for low and ultra-low temperatures—a review
JPH0452467A (ja) 極低温冷凍機
JPH06323664A (ja) 冷凍装置
Strobridge Refrigeration at 4 K
Kakaç Introduction to the Institute

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20061213

Termination date: 20121023