CN1288601C - Method for conducting path planning based on three-dimensional scatter point set data of free camber - Google Patents
Method for conducting path planning based on three-dimensional scatter point set data of free camber Download PDFInfo
- Publication number
- CN1288601C CN1288601C CN 200310103316 CN200310103316A CN1288601C CN 1288601 C CN1288601 C CN 1288601C CN 200310103316 CN200310103316 CN 200310103316 CN 200310103316 A CN200310103316 A CN 200310103316A CN 1288601 C CN1288601 C CN 1288601C
- Authority
- CN
- China
- Prior art keywords
- point
- point set
- triangular
- trajectory
- bernstein
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000000034 method Methods 0.000 title claims abstract description 28
- 230000005484 gravity Effects 0.000 claims description 3
- 230000009466 transformation Effects 0.000 claims description 2
- 230000015572 biosynthetic process Effects 0.000 claims 1
- 238000005542 laser surface treatment Methods 0.000 claims 1
- 230000001131 transforming effect Effects 0.000 abstract description 2
- 238000005728 strengthening Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 2
- 230000033001 locomotion Effects 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 239000013307 optical fiber Substances 0.000 description 1
- 238000009877 rendering Methods 0.000 description 1
- 230000011218 segmentation Effects 0.000 description 1
Images
Landscapes
- Laser Beam Processing (AREA)
- Numerical Control (AREA)
Abstract
本发明涉及一种基于自由曲面的三维散乱点集数据进行路径规划的方法,该方法通过自由曲面的散乱数据插值重构,将三维离散数据点拟合成三角Bernstein-Bézier曲面,再利用三角Bernstein-Bézier曲面对获得的插值曲面进行六维轨迹规划;对于沿任意方向的轨迹规划,可以通过将此方向坐标变换到x-y坐标方向得到轨迹规划;所述的三角Bernstein-Bézier曲面为三次三角Bernstein-Bézier曲面。本发明方法利用三角Bernstein-Bézier曲面,对三维散乱点集数据自由曲面进行拟合以及在插值曲面上规划六维加工轨迹,从而实现了对任意自由曲面的三维散乱点集数据的路径规划。
The invention relates to a method for path planning based on the three-dimensional scattered point set data of the free-form surface. The method uses the interpolation and reconstruction of the scattered data of the free-form surface to fit the three-dimensional discrete data points into a triangular Bernstein-Bézier surface, and then uses the triangular Bernstein -Bézier surface performs six-dimensional trajectory planning on the obtained interpolation surface; for trajectory planning along any direction, the trajectory planning can be obtained by transforming the coordinates of this direction into the xy coordinate direction; the triangular Bernstein-Bézier surface is a cubic triangular Bernstein -Bézier surfaces. The method of the invention utilizes the triangular Bernstein-Bézier surface to fit the free-form surface of the three-dimensional scattered point set data and plans the six-dimensional processing trajectory on the interpolation surface, thereby realizing the path planning of the three-dimensional scattered point set data on the arbitrary free-form surface.
Description
技术领域technical field
本发明涉及集成化激光加工的计算机控制领域,特别涉及一种基于自由曲面的三维散乱点集数据进行路径规划的方法。The invention relates to the field of computer control of integrated laser processing, in particular to a method for path planning based on three-dimensional scattered point set data of a free-form surface.
背景技术Background technique
现有技术中,激光表面强化要求激光光轴即激光加工头垂直于加工表面,这样,在规划加工路径时,不仅需要获得加工点的三维空间位置,而且需要加工点所对应的法矢量。目前,以自由曲面的三维离散数据作为系统的数据来源,实现对自由曲面的激光表面强化的路径规划的主要方法是用B-Spline或NURBS曲面为基础拟合该空间散乱数据的自由曲面,然后,相应地用B-Spline或NURBS曲面完成六维轨迹的规划;但是,以B-Spline或NURBS曲面为基础拟合自由曲面时所用的空间散乱数据必须是等距、均匀的,不能处理任意三维散乱点集数据。因此,采用B-Spline或NURBS曲面为基础拟合曲面的进行路径规划有很大的局限性。In the prior art, laser surface strengthening requires that the laser optical axis, that is, the laser processing head, be perpendicular to the processing surface. In this way, when planning the processing path, not only the three-dimensional spatial position of the processing point, but also the normal vector corresponding to the processing point must be obtained. At present, the three-dimensional discrete data of the free-form surface is used as the data source of the system, and the main method to realize the path planning of the laser surface enhancement of the free-form surface is to use the B-Spline or NURBS surface as the basis to fit the free-form surface of the spatially scattered data, and then , correspondingly use B-Spline or NURBS surface to complete the planning of the six-dimensional trajectory; however, the spatially scattered data used when fitting the free-form surface based on the B-Spline or NURBS surface must be equidistant and uniform, and cannot handle any three-dimensional Scattered point set data. Therefore, path planning using B-Spline or NURBS surface as the basis of fitting surface has great limitations.
例如,专利号US5363479,题目为《SYSTEM AND METHOD FOR RENDERINGBEZIER SPLINES》的美国专利描述了在计算机图形系统中模拟Bézier曲线的系统和方法,该专利通过由矢量加减生成的有限多条直线段逼近Bézier曲线,该方法局限于对曲线的处理,且获得的离散直线段是非等长的,不能应用于激光表面的强化;专利号US5818459,题目为《DATA CONVERSION APPARATUS AND METHODUSING CONTROLPOINTS OF ACURVE》的美国专利描述了一种将三次拟合曲线自动转换为两次拟合曲线的仪器,是对曲线处理的装置,同样不符合激光表面强化的要求;专利号 JP10198812,题目为《APPROXIMATING METHOD FOR FREE-FORMSURFACE》的专利描述了一个用NURBS曲面逼近任意边界的优化自由曲面的方法,该方法是将原始曲面的四条边界曲线变换成三次B-Spline曲线来实现将自由曲面逼近到一个NURBS曲面,专利结合一个节点矢量对应的两条三次B-Spline曲线将所逼近的自由曲面网格化,同时每一个网格被一个三次C1连续Besizer曲面逼近,这样,所有三次Besizer曲面被连接成一个NURBS曲面,该曲面拟合的过程没有涉及路径规划问题。For example, Patent No. US5363479, titled "SYSTEM AND METHOD FOR RENDERING BEZIER SPLINES", describes a system and method for simulating Bézier curves in a computer graphics system. Curve, this method is limited to the processing of the curve, and the obtained discrete straight line segments are non-equal, and cannot be applied to the strengthening of the laser surface; Patent No. US5818459, the description of the US patent titled "DATA CONVERSION APPARATUS AND METHODUSING CONTROLPOINTS OF ACURVE" An instrument that automatically converts the three-time fitting curve into the two-time fitting curve is a device for curve processing, which also does not meet the requirements of laser surface strengthening; patent No. JP10198812, titled "APPROXIMATING METHOD FOR FREE-FORMSURFACE" The patent describes a method for optimizing free-form surfaces with NURBS surfaces approaching arbitrary boundaries. This method transforms the four boundary curves of the original surface into cubic B-Spline curves to realize the approach of free-form surfaces to a NURBS surface. The patent combines a node vector The corresponding two cubic B-Spline curves mesh the approximate free-form surface, and each grid is approximated by a cubic C1 continuous Besizer surface, so that all cubic Besizer surfaces are connected into a NURBS surface, and the surface fitting The procedure does not address the path planning problem.
发明内容Contents of the invention
本发明的目的在于:克服现有的自由曲面的激光表面强化的路径规划的方法只能用等距均匀的空间散乱数据为基础来拟合曲面进行路径规划,不能处理任意三维散乱点集数据,因此,采用B-Spline或NURBS曲面拟合空间三维散乱点的自由曲面在使用上有较大的局限性,从而提供一种用于激光表面处理系统中,基于自由曲面的三维散乱点集数据进行路径规划的方法。The purpose of the present invention is: to overcome the existing free-form surface laser surface enhanced path planning method can only use equidistant uniform space scattered data as a basis to fit the curved surface for path planning, can not handle any three-dimensional scattered point set data, Therefore, the use of B-Spline or NURBS surface to fit the free-form surface of three-dimensional scattered points in space has great limitations in use, so as to provide a laser surface processing system based on the three-dimensional scattered point set data of free-form surface. method of path planning.
本发明的目的是这样实现的:本发明一种基于自由曲面的三维散乱点集数据进行路径规划的方法,该方法在激光表面处理系统中,通过工控计算机对自由曲面的散乱数据插值重构,将三维离散数据点拟合成三角Bernstein-Bézier曲面,再利用三角Bernstein-Bézier曲面对获得的插值曲面进行六维轨迹规划,最后,由工控计算机输出自由曲面的六维轨迹数据控制机器人运动。The object of the present invention is achieved like this: a kind of method of the present invention carries out path planning based on the three-dimensional scattered point set data of free-form surface, this method, in the laser surface processing system, reconstructs the scattered data interpolation of free-form surface by industrial control computer, Fit the three-dimensional discrete data points into a triangular Bernstein-Bézier surface, and then use the triangular Bernstein-Bézier surface to plan the six-dimensional trajectory of the obtained interpolation surface. Finally, the industrial control computer outputs the six-dimensional trajectory data of the free-form surface to control the movement of the robot.
该方法在激光表面处理系统中,通过工控计算机处理得到六维轨迹数据输出到机器人,并控制机器人带动固定在其手臂上的激光器加工头按照六维轨迹数据运动,其步骤包括:In this method, in the laser surface processing system, the six-dimensional trajectory data obtained through industrial computer processing is output to the robot, and the robot is controlled to drive the laser processing head fixed on its arm to move according to the six-dimensional trajectory data. The steps include:
(1)工控计算机接收到自由曲面的三维散乱点集数据后,利用三角Bernstein-Bézier曲面进行拟合获得三维散乱点集数据的插值曲面,得到空间三角网格面;(1) After the industrial control computer receives the three-dimensional scattered point set data of the free-form surface, the triangular Bernstein-Bézier surface is used to fit the interpolation surface of the three-dimensional scattered point set data, and the spatial triangular mesh surface is obtained;
(2)将该空间三角网格面投影到xy平面,由工控计算机取空间三角网格面上点集中每一点的(x,y)坐标,并以此确定矩形区域(xmin,ymin),(xmax,ymax);(2) Project the spatial triangular mesh surface to the xy plane, and the industrial control computer takes the (x, y) coordinates of each point on the spatial triangular mesh surface, and determines the rectangular area (x min , y min ) , (x max , y max );
(3)以点p′1=(xmin,ymin)为起点,沿y轴方向依次取点形成点集{p′k},p′k=(xmin,ymin+(k-1)×d),(k=1,2,...,n),其中,d是根据不同要求确定的两个点之间的距离,直至点(xmin,ymax);再根据步骤(1)所得到的空间三角网格面,获得p′k在三角网格面上的对应点pk(xk,yk,zk),形成点集{pk};(3) Starting from the point p′ 1 = (x min , y min ), take points in sequence along the y-axis to form a point set {p′ k }, p′ k = (x min , y min + (k-1 )×d), (k=1, 2, ..., n), wherein, d is the distance between two points determined according to different requirements, until the point (x min , y max ); then according to the step ( 1) The obtained spatial triangular mesh surface, obtain the corresponding point p k (x k , y k , z k ) of p′ k on the triangular mesh surface, and form a point set {p k };
(5)根据{pk}点集中的每个点及其计算出的与{pk}点集相应三角域内的重心参数(u,v,w),利用三角Bernstein-Bézier曲面计算出相应三角曲面上的六维点集{lk}={(xk,yk,zk,axk,ayk,azz)};(5) According to each point in the {p k } point set and its calculated barycenter parameters (u, v, w) in the corresponding triangle domain of the {p k } point set, use the triangular Bernstein-Bézier surface to calculate the corresponding triangle Six-dimensional point set {l k }={(x k , y k , z k , ax k , ay k , az z )} on the surface;
(6)当三角网格面上的对应点pk的个数n≥4,以六维点集{lk}为型值点,并以d为步长构造弦长参数样条曲线,得到六维点集{mk(xk,yk,zk,axk,ayk,azk)},作为一条轨迹线;(6) When the number of corresponding points p k on the triangular mesh surface is n≥4, the six-dimensional point set {l k } is used as the type value point, and the chord length parametric spline curve is constructed with d as the step size, and Six-dimensional point set {m k (x k , y k , z k , ax k , ay k , az k )}, as a trajectory line;
当0<n≤3,工控计算机将{mk}={lk}(k=1,2,3)作为一条轨迹;When 0<n≤3, the industrial control computer takes {m k }={l k }(k=1, 2, 3) as a trajectory;
当n=0,工控计算机结束运算;When n=0, the industrial control computer ends the operation;
(7)以上述得到的轨迹线{mk}为参照轨迹线,将其投影到x-y平面上,并在x-y平面上得到与它沿x轴方向的距离为d(xk+1=xk+d)的点集,然后,得到三角网格面上的相应点qk(xk,yk,zk);并将点集{qk}投影到x-y平面上后,沿y轴方向以步长d依次取点直至最小矩形区域(xmin,ymin),(xmax,ymax)的边界,然后,计算出延伸线段的各点在三角网格面上的点集{q′k},再将{qk}和{q′k}合并得到三角网格面上的点集{pk(xk,yk,zk)};(7) Take the trajectory line {m k } obtained above as the reference trajectory line, project it onto the xy plane, and obtain the distance from it along the x-axis direction on the xy plane as d(x k+1 =x k +d) point set, then, get the corresponding point q k (x k , y k , z k ) on the triangular mesh surface; and after projecting the point set {q k } onto the xy plane, along the y-axis direction Take points sequentially with step size d until the boundary of the smallest rectangular area (x min , y min ), (x max , y max ), and then calculate the point set {q′ of each point of the extended line segment on the triangular mesh surface k }, then combine {q k } and {q′ k } to get the point set {p k (x k , y k , z k )} on the triangular mesh surface;
(8)重复上述步骤(5)-(7)得到下一条轨迹线,直到xk+1>xmax时,工控计算机结束运算;(8) Repeat the above steps (5)-(7) to obtain the next track line, until x k+1 > x max , the industrial computer ends the calculation;
(9)由工控计算机将得到的六维轨迹数据输出到机器人控制柜,控制机器人上的激光器加工头对该自由曲面进行加工。(9) The industrial computer outputs the obtained six-dimensional trajectory data to the robot control cabinet, and controls the laser processing head on the robot to process the free-form surface.
对于沿任意方向的轨迹规划,可以通过将此方向坐标变换到x-y坐标方向,再在x-y坐标系中生成轨迹后经过逆变换得到沿任意方向的轨迹规划。For trajectory planning along any direction, the trajectory planning along any direction can be obtained by transforming the coordinates of this direction to the x-y coordinate direction, and then generating the trajectory in the x-y coordinate system and then undergoing inverse transformation.
上述步骤(5)所述的三角Bernstein-Bézier曲面为三次三角Bernstein-Bézier曲面。The triangular Bernstein-Bézier surface described in the above step (5) is a cubic triangular Bernstein-Bézier surface.
本发明的优点:本发明的基于自由曲面的三维散乱点集数据进行路径规划的方法,利用三角Bernstein-Bézier曲面,实现了对任意的三维散乱点集数据自由曲面拟合以及在插值曲面上的六维加工轨迹规划,从而可以对任意自由曲面进行路径规划。Advantages of the present invention: the method for path planning based on free-form surface three-dimensional scattered point set data of the present invention uses triangular Bernstein-Bézier surface to realize free-form surface fitting of any three-dimensional scattered point set data and interpolation surface Six-dimensional processing trajectory planning, so that path planning can be performed on any free-form surface.
附图说明Description of drawings
图1是本发明三维散乱点集数据的路径规划的方法的流程示意图Fig. 1 is a schematic flow chart of the method for path planning of three-dimensional scattered point set data of the present invention
图2是利用三角Bernstein-Bézier曲面对插值曲面进行轨迹规划的流程示意图Figure 2 is a schematic flow chart of trajectory planning for interpolation surfaces using triangular Bernstein-Bézier surfaces
图3是本发明实施例的一种激光加工系统示意图Fig. 3 is a schematic diagram of a laser processing system according to an embodiment of the present invention
图4是本发明汽车模具部分区域的激光加工轨迹Fig. 4 is the laser processing trajectory of the automobile mold part area of the present invention
图5是本发明汽车模具的实际加工效果Fig. 5 is the actual processing effect of the automobile mold of the present invention
附图标示Figures
1、激光器 2、工控计算机 3、多轴联动框架式机器人1. Laser 2. Industrial computer 3. Multi-axis linkage frame robot
4、激光加工头4. Laser processing head
具体实施方式Detailed ways
参照附图1-3详细叙述本发明的具体实施方案。Describe the specific embodiment of the present invention in detail with reference to accompanying drawing 1-3.
本实施例所采用的激光加工控制系统是中科院力学所的专利号为98101217.5的一种具有柔性传输和多轴联动的激光加工装置进行,如图3所示,激光加工头4和框架式机器人3手臂固定连接,激光器1的输出端和激光加工头4之间用光纤相连,激光器1的输入端通过现场总线与工控计算机2连接,框架式机器人3为高精度、大范围五轴机器人,该框架式机器人3的控制柜通过串口也与工控计算机2连接,本例采用500W YAG脉冲激光器1(峰值功率可达7KW)对汽车模具进行表面强化,该激光器参数:脉宽24ms,脉冲重复率4Hz;其具体过程如下:The laser processing control system used in this embodiment is a laser processing device with flexible transmission and multi-axis linkage, patent No. 98101217.5 of the Institute of Mechanics, Chinese Academy of Sciences. As shown in Figure 3, the laser processing head 4 and the frame robot 3 The arm is fixedly connected, the output end of the laser 1 is connected to the laser processing head 4 with an optical fiber, the input end of the laser 1 is connected to the industrial control computer 2 through the field bus, and the frame robot 3 is a high-precision, large-scale five-axis robot. The control cabinet of the type robot 3 is also connected to the industrial control computer 2 through the serial port. In this example, a 500W YAG pulse laser 1 (peak power can reach 7KW) is used to strengthen the surface of the automobile mold. The laser parameters: pulse width 24ms, pulse repetition rate 4Hz; The specific process is as follows:
1、如图1所示,工控计算机2在接受到汽车模具的三维散乱点集数据后,通过三维数据投影域剖分方法对三维散乱点集数据进行三角剖分,得到三维空间数据点的三角剖分网格,三角剖分网格的顶点为P1,P2,...,得到点集{Pi},然后,由下述公式计算顶点Pi的法向量及切向量:1. As shown in Figure 1, after the industrial control computer 2 receives the three-dimensional scattered point set data of the automobile mold, it triangulates the three-dimensional scattered point set data through the three-dimensional data projection domain segmentation method, and obtains the triangle of the three-dimensional space data points The grid is subdivided, the vertices of the triangulation grid are P 1 , P 2 ,..., and the point set {P i } is obtained, and then the normal vector and tangent vector of the vertex P i are calculated by the following formula:
Sik=|(Pik-Pi)×(Pi(k+1)-P0)|/2 (2)S ik =|(P ik -P i )×(P i(k+1) -P 0 )|/2 (2)
式中,m为与Pi相邻的三角形数目,Pik、Pi(k+1)为与Pi相邻的第k个三角形的顶点,Nik为与Pi相邻的第k个三角形的法向量,Sik与Pi相邻的第k个三角形的面积,得到各顶点的法向量N(Pi)及切向量Di,i+1、Di,i+2。In the formula, m is the number of triangles adjacent to P i , P ik and P i(k+1) are the vertices of the kth triangle adjacent to P i , Ni ik is the kth triangle adjacent to P i The normal vector of the triangle, the area of the kth triangle adjacent to S ik and P i , the normal vector N(P i ) and the tangent vector D i,i+1 and D i,i+2 of each vertex are obtained.
最后,利用各顶点的法向量N(Pi)及切向量Di,i+1、Di,i+2对每个三角形进行三次三角Bernstein-Bézier构造,获得三维散乱点集数据的三次插值曲面,得到空间三角网格面;Finally, use the normal vector N(P i ) of each vertex and the tangent vector D i, i+1 , D i, i+2 to perform cubic triangular Bernstein-Bézier construction on each triangle to obtain the cubic interpolation of the three-dimensional scattered point set data curved surface to obtain a spatial triangular mesh surface;
2、如图2所示,通过工控计算机2在三角Bernstein-Bézier曲面上进一步规划机器人进行激光加工的轨迹,具体步骤如下:2. As shown in Figure 2, the trajectory of the robot for laser processing is further planned on the triangular Bernstein-Bézier surface through the industrial computer 2, and the specific steps are as follows:
(1)将步骤1得到的空间三角网格面投影到x-y平面上,并在x-y平面上确定出包含曲面投影的最小矩形区域(xmin,ymin),(xmax,ymax);(1) Project the spatial triangular mesh surface obtained in step 1 onto the xy plane, and determine the minimum rectangular area (x min , y min ), (x max , y max ) containing the surface projection on the xy plane;
(2)指令工控计算机以p′1=(xmin,ymin)为起点,沿y轴方向每间隔d=1.26mm依次取点p′k=(xmin,ymin+(k-1)×d),直到边界终点(xmin,ymax),这里d为两加工点中心之间的间隔,再根据p′k在三角网格面上的对应点Pk(k=1,2,...,n)=(xk,yk,zk);(2) Instruct the industrial control computer to take p′ 1 = (x min , y min ) as the starting point, and take points p′ k = (x min , y min + (k-1) sequentially at intervals of d=1.26mm along the y-axis ×d), until the boundary end point (x min , y max ), where d is the interval between the centers of the two processing points, and then according to the corresponding point P k of p′ k on the triangular mesh surface (k=1, 2, ..., n)=(x k , y k , z k );
(3)根据下列计算公式求出pk相应三角域内的重心参数(u,v,w):(3) Calculate the center of gravity parameters (u, v, w) in the corresponding triangular domain of p k according to the following calculation formula:
pk=ua+vb+wcp k =ua+vb+wc
u+v+w=1u+v+w=1
式中a、b、c为与点pk相应的三角域的三个顶点坐标。In the formula, a, b, c are the coordinates of the three vertices of the triangle domain corresponding to the point p k .
(4)再根据{pk}点集中的每个点及其相应三角域内的重心参数(u,v,w),结合所拟合的三角Bernstein-Bézier曲面得到相应三角曲面上的六维点集{lk}={(xk,yk,zk,axk,ayk,azz)};(4) According to each point in the {p k } point set and its center of gravity parameters (u, v, w) in the corresponding triangular domain, combined with the fitted triangular Bernstein-Bézier surface to obtain the six-dimensional points on the corresponding triangular surface Set {l k }={(x k , y k , z k , ax k , ay k , az z )};
(5)当三角网格面上的对应点pk的个数n≥4,以六维点集{lk}为型值点、以d为步长构造弦长参数样条曲线,得到作为第一条轨迹线的六维点集{mk(xk,yk,zk,axk,ayk,azk)};(5) When the number of corresponding points p k on the triangular mesh surface is n≥4, the chord length parametric spline curve is constructed with the six-dimensional point set {l k } as the value point and the step size as d, and obtained as The six-dimensional point set of the first trajectory {m k (x k , y k , z k , ax k , ay k , az k )};
当三角网格面上的对应点pk的个数0<n≤3,则以{mk}={lk},(k=1,2,3)作为第一条轨迹;When the number of corresponding points p k on the triangular mesh surface is 0<n≤3, then take {m k }={l k }, (k=1, 2, 3) as the first track;
当三角网格面上的对应点pk的个数n=0,工控计算机结束运算;When the number n=0 of the corresponding point pk on the triangular mesh surface, the industrial control computer ends the operation;
(6)以上述得到的轨迹线{mk}为参照轨迹线,将其投影到x-y平面上,并在x-y平面上得到与它沿x轴方向的距离为d(xk+1=xk+d)的点集,然后,得到三角网格面上的相应点qk(xk,yk,zk);并将点集{qk}投影到x-y平面上后,沿y轴方向以步长d依次取点直至最小矩形区域(xmin,ymin),(xmax,ymax)的边界,然后,计算出延伸线段的各点在三角网格面上的点集{q′k},再将{qk}和{q′k}合并得到三角网格面上的点集{pk(xk,yk,zk)};(6) Take the trajectory line {m k } obtained above as the reference trajectory line, project it onto the xy plane, and obtain the distance from it along the x-axis direction on the xy plane as d(x k+1 =x k +d) point set, then, get the corresponding point q k (x k , y k , z k ) on the triangular mesh surface; and after projecting the point set {q k } onto the xy plane, along the y-axis direction Take points sequentially with step size d until the boundary of the minimum rectangular area (x min , y min ), (x max , y max ), and then calculate the point set {q′ of each point of the extended line segment on the triangular mesh surface k }, then combine {q k } and {q′ k } to get the point set {p k (x k , y k , z k )} on the triangular mesh surface;
(7)重复上述步骤(3)-(6)得到下一条轨迹线,直到xk+1>xmax时,工控计算机结束运算。(7) Repeat the above steps (3)-(6) to obtain the next trajectory until x k+1 >x max , the industrial computer ends the operation.
3、工控计算机2将得到轨迹线数据转换成机器人运动指令,再通过工控计算机2的串口输出到机器人3的控制柜,由机器人控制柜控制激光加工头4按照规划的轨迹线数据对汽车模具进行加工。3. The industrial control computer 2 converts the obtained trajectory data into robot motion instructions, and then outputs it to the control cabinet of the robot 3 through the serial port of the industrial control computer 2, and the robot control cabinet controls the laser processing head 4 to carry out the automobile mold according to the planned trajectory data. processing.
汽车模具部分区域的激光表面加工路径规划的结果如图4所示,激光加工后的效果如图5所示。Figure 4 shows the results of laser surface processing path planning in some areas of the automobile mold, and Figure 5 shows the effect after laser processing.
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN 200310103316 CN1288601C (en) | 2003-09-12 | 2003-10-28 | Method for conducting path planning based on three-dimensional scatter point set data of free camber |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN03157071 | 2003-09-12 | ||
CN03157071.2 | 2003-09-12 | ||
CN 200310103316 CN1288601C (en) | 2003-09-12 | 2003-10-28 | Method for conducting path planning based on three-dimensional scatter point set data of free camber |
Publications (2)
Publication Number | Publication Date |
---|---|
CN1612166A CN1612166A (en) | 2005-05-04 |
CN1288601C true CN1288601C (en) | 2006-12-06 |
Family
ID=34756618
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN 200310103316 Expired - Fee Related CN1288601C (en) | 2003-09-12 | 2003-10-28 | Method for conducting path planning based on three-dimensional scatter point set data of free camber |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN1288601C (en) |
Families Citing this family (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102207736B (en) * | 2010-03-31 | 2013-01-02 | 中国科学院自动化研究所 | Robot path planning method and apparatus thereof based on Bezier curve |
CN102527554B (en) * | 2012-02-29 | 2013-10-30 | 清华大学 | Spray gun track planning method for free-form surface spraying robot |
CN102749048B (en) * | 2012-06-25 | 2015-05-20 | 长安大学 | Method for assessing road surface three-dimensional structure |
CN103412514B (en) * | 2013-07-08 | 2015-09-23 | 华中科技大学 | Paths planning method in a kind of multi-shaft interlocked belt sanding processing |
CN103473473B (en) * | 2013-09-26 | 2018-03-02 | 深圳市华傲数据技术有限公司 | A kind of data quality checking method and system based on scatter diagram |
CN104134227B (en) * | 2014-06-30 | 2017-02-01 | 南京航空航天大学 | Method for generating Z-pin embedding path on free curve surface |
CN104392491B (en) * | 2014-12-15 | 2017-02-22 | 中南大学 | Rotating surface based goaf laser scanning point cloud triangulation method |
CN104950883A (en) * | 2015-05-14 | 2015-09-30 | 西安电子科技大学 | Mobile robot route planning method based on distance grid map |
CN105046751B (en) * | 2015-06-29 | 2018-10-23 | 山东理工大学 | Keep the Cocone curve reestablishing methods of surface in kind sampling point seamed edge feature |
CN108062073B (en) * | 2016-11-08 | 2020-06-23 | 沈阳高精数控智能技术股份有限公司 | Circular arc smooth compression interpolation method for high-quality machining |
CN106873522B (en) * | 2017-02-13 | 2019-05-24 | 武汉理工大学 | A kind of numerical control turning cutter path planing method of non-axis symmetry sweeping surface |
CN107464287B (en) * | 2017-08-14 | 2021-04-27 | 电子科技大学 | Surface reconstruction method based on multi-objective optimization |
CN110000793B (en) * | 2019-04-29 | 2024-07-16 | 武汉库柏特科技有限公司 | Robot motion control method and device, storage medium and robot |
CN113607171B (en) * | 2021-08-04 | 2023-05-26 | 清华大学建筑设计研究院有限公司 | Evacuation path planning method, device, equipment and storage medium |
-
2003
- 2003-10-28 CN CN 200310103316 patent/CN1288601C/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
CN1612166A (en) | 2005-05-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN1288601C (en) | Method for conducting path planning based on three-dimensional scatter point set data of free camber | |
Wang et al. | Research and implementation of a non-supporting 3D printing method based on 5-axis dynamic slice algorithm | |
Gregory et al. | intouch: Interactive multiresolution modeling and 3d painting with a haptic interface | |
Martin et al. | Sweeping of three-dimensional objects | |
CN106041928B (en) | A kind of robot manipulating task task generation method based on part model | |
CN103778301A (en) | Mechanical arm simulation method based on virtual prototype technology | |
CN108582071A (en) | A kind of method of industrial robot programming route diagnosis and speed-optimization | |
CN109571480A (en) | A kind of automobile washing machine people Trajectory Planning System and method | |
CN110561421A (en) | Mechanical arm indirect dragging demonstration method and device | |
Kry et al. | Continuous contact simulation for smooth surfaces | |
Pan et al. | Collision-free and curvature-continuous path smoothing in cluttered environments | |
Joshi et al. | Repoussé: Automatic Inflation of 2D Artwork. | |
CN103970033B (en) | The method realizing robot solid modelling and the emulation of blade laser detection based on MATLAB | |
CN111283682B (en) | A Geometric Projection Solution for Forward Kinematics of a 4-UPU Parallel Robot | |
Chai et al. | Virtual clay modeling using the isu exoskeleton | |
Yingjie et al. | Adaptive tool-path generation on point-sampled surfaces | |
CN105279788B (en) | A kind of method for generating object floodlight scanning body | |
CN1920885A (en) | Network topology model construction based three-dimensional human face cartoon making method | |
JP6942915B2 (en) | Curve coordinate generator, object curve generator and program | |
CN113688557B (en) | Particle position dynamics-based soft body real-time cutting simulation method | |
CN203164681U (en) | Trajectory generation system for complex curved surface processing | |
CN113343326B (en) | Three-dimensional modeling method based on multi-view geometric concept design | |
Lin et al. | Dual-RBF based surface reconstruction | |
CN103345201A (en) | NURBS curve order reduction and interpolation motion control system | |
CN112614046B (en) | Method and device for drawing three-dimensional model on two-dimensional plane |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
C17 | Cessation of patent right | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20061206 Termination date: 20091130 |