CN1271758A - Additive of efficient far infrared powder and its preparing process - Google Patents

Additive of efficient far infrared powder and its preparing process Download PDF

Info

Publication number
CN1271758A
CN1271758A CN 00115746 CN00115746A CN1271758A CN 1271758 A CN1271758 A CN 1271758A CN 00115746 CN00115746 CN 00115746 CN 00115746 A CN00115746 A CN 00115746A CN 1271758 A CN1271758 A CN 1271758A
Authority
CN
Grant status
Application
Patent type
Prior art keywords
oxide
powder
rare earth
far infrared
additive
Prior art date
Application number
CN 00115746
Other languages
Chinese (zh)
Inventor
高铁
Original Assignee
上海维安热电材料有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date

Links

Abstract

An additive of efficient far infrared powder is prepared from natural inorganic ore (70-100 wt.%), alkali metal, transition metal, their oxides, or non-metal compound (0-30 wt.%) and rare-earth oxide(0-5 wt.%). Its advantages are high far infrared radiation coefficient at ordinary temp. widely available raw materials, simple process, and low cost.

Description

一种高效远红外功能粉添加剂及其制备工艺 An efficient far infrared additive powder and its preparation process

本发明涉及一种高效远红外辐射功能粉添加剂组合物及其制备工艺。 The present invention relates to an efficient function of far-infrared radiation powder additive composition and its preparation process.

现有的远红外功能材料及其制备,大都采用经加工处理过的化工原料,通过混料、真空热压或高温绕结的方法得到。 Conventional far infrared material and its preparation, most of the processed treated using chemicals, obtained by mixing, vacuum hot pressing method or a high temperature around the junction. 其热处理煅烧是为了促使其晶型转变来提高红外性能。 Calcination heat treatment in order to induce the phase transformation thereof to improve the performance of IR. 该制备工艺对原材料成份以及处理温度、时间及气氛条件都要求严格,成本较高,用该工艺制得的产品在常温下的远红外辐射率较低。 The composition of the raw material preparation process and the treatment temperature, time and atmospheric conditions are demanding, high cost, low technology with the product obtained in the far-infrared radiance at room temperature.

本发明的目的就是为了克服上述现有技术存在的缺陷而提供一种常温下远红外辐射率高、原材料来源广、成本较低的高效远红外功能粉添加剂及其制备工艺。 The object of the present invention is to overcome the drawbacks existing in the prior art to provide a far infrared radiation rate at Normal Temperature, wide sources of raw materials, low cost and efficient far infrared additive powder and its preparation process.

本发明的目的可以通过以下技术方案来实现:一种高效远红外功能粉添加剂,它的配方如下(重量百分数):天然无机矿物70~100%,碱金属、过渡金属或碱金属、过渡金属氧化物、或非金属化合物0~30%,稀土氧化物0~5%。 The object of the present invention may be achieved by the following technical solution: A high far infrared powder additive which is formulated as follows (percentages by weight): natural inorganic mineral 70 to 100%, an alkali metal, an alkali metal or a transition metal, a transition metal oxide, thereof, or nonmetal compounds 0 to 30%, 0 to 5% rare earth oxides.

所述的天然无机矿物以含铝、硅氧化物为主,也存在有其它金属氧化物及各种复合氧化物,它选自以下矿石的一种或几种:莫来石、堇青石、萤石、方解石、明矾石、水晶石、煤矸石、电气石、绿泥石、凹凸棒石、硅石、金红石、钛铁矿石、滑石、硅灰石、海泡石、麦饭石、冰洲石、白云石、蒙脱石、沸石、累托石、腊石、长石、透辉石、透闪石、独君石、伟晶石、花岗岩石、美酒玉石及高岭土、瓷土、铝土矿、白垩土、云母、硅藻土、膨润土。 The natural inorganic minerals containing aluminum, a silicon oxide-based, there are other metal oxides and complex oxides, it is selected from one or more of the following minerals: mullite, cordierite, firefly stone, calcite, alum stone, crystal stone, coal gangue, tourmaline, chlorite, attapulgite, silica, rutile, ilmenite, talc, wollastonite, sepiolite, stone, Iceland spar , dolomite, montmorillonite, zeolite, rectories, wax, feldspar, diopside, tremolite, alone Jun Shi, Wei spar, granite, jade wine and kaolin, clay, bauxite, chalk, mica, diatomite, bentonite.

所述的碱金属、过渡金属或碱金属、过渡金属氧化物选自Sr、W、Mo、V、Pt、Zr、Fe、Ti、Mo、Ni、Ta、Ag、Co元素或其氧化物的一种或几种。 An alkali metal of the transition metal or an alkali metal, a transition metal oxide selected from Sr, W, Mo, V, Pt, Zr, Fe, Ti, Mo, Ni, Ta, Ag, Co element or an oxide thereof one or several.

所述的非金属化合物选自C、N、F、O、B族元素氧化物、碳化物、氮化物、氟化物、硼化物中的一种或几种。 The non-metallic compound is selected from C, N, F, O, B group element oxide, carbide, nitride, fluoride, boride of one or more.

所述的稀土氧化物选自Sc、Y以及La系元素氧化物的一种或几种。 The rare earth oxide is selected from one or more of Sc, Y, and La-based element oxide.

一种高效远红外功能粉添加剂的制备工艺,它包括以下工艺步骤:首先将各组原料进行粉碎,然后按天然无机矿物70~100%(重量),碱金属、过渡金属或碱金属、过渡金属氧化物、或非金属氧化物0~30%(重量),稀土氧化物0~5%(重量)的配比进行选配料,再将该料混合后进行煅烧,最后将煅烧好的混合料进一步细磨粉碎得到;所述的煅烧温度为350~1350℃,所述的煅烧时间为0.5~5小时。 An efficient manufacturing process far-infrared functional additive powder, which comprises the following process steps: First, each set material was pulverized, and then press natural inorganic mineral 70 to 100% (by weight), alkali metals, transition metals or alkali metals, transition metals oxides, non-metal oxide, or 0 to 30% (by weight), rare earth oxide 0 to 5% (wt) ratio for the ingredients selected, and then calcining the material after mixing, the final mixture is further calcined good finely pulverized to obtain; the calcination temperature is 350 ~ 1350 ℃, the calcination time is 0.5 to 5 hours.

所述的的稀土氧化物可以在煅烧活化时由稀土金属与氧直接燃烧得到,或者采用加热稀土元素的氢氧化物、碳酸盐、氮化物、草酸盐来制得。 Said rare earth oxide can be obtained when the combustion is activated by calcining a rare earth metal with oxygen directly, or with heating rare earth element hydroxide, carbonate, nitride, oxalates be prepared.

与传统的人造远红外粉,即利用现有技术制造的产品相比,本发明的远红外功能粉作为功能性添加剂使用,其常温的远红外辐射率可高达90%以上,且原材料主要源自天然矿物,产品的性能价格比优于人造远红外粉。 The conventional artificial far infrared powder, i.e. the use of prior art products manufactured compared far infrared powder of the present invention as a functional additive, far-infrared radiance normal temperature may be up to 90%, and the material is primarily derived from natural mineral product cost performance is superior to man-made far-infrared powder.

作为远红外功能粉添加剂使用,它在常温下具有远红外辐射功能,所发出的4~14μm的远红外线与人体所能吸收利用的波长相匹配,它辐射出的远红外线具一定的穿透力和高的辐射率,被人体吸收后有明显的温热效应,它可以促进人体血液循环和改善新陈代谢机能,具有良好的理疗保健作用。 Powder additive as far infrared, far-infrared radiation having a functionality at room temperature, 4 ~ 14μm far infrared wavelength can be absorbed by the body using emitted match, it radiates far-infrared rays with a certain penetration and a high rate of radiation, absorbed by the body after significant thermal effects, which can promote blood circulation and improve metabolic function, good physical health effect.

本发明通过选配无机矿物原料并粉碎加工后,针对不同的原材料配方,可以选用亦可不用后续的如同人造远红外陶瓷粉制造的高温热处理工艺,使得到的相应粒径尺寸的粉体,具有常温(20℃~50℃)的远红外辐射功能,其选材范围广泛,加工处理工艺简单、煅烧无需特殊气氛保护,加工成本较低。 After pulverization of the present invention is processed by an optional inorganic mineral raw materials, raw materials for different formulations, may be selected without subsequent high temperature heat treatment process as artificial far infrared ceramic powder produced, the corresponding particle size of the powder obtained, having at room temperature (20 ℃ ~ 50 ℃) far-infrared radiation function, its wide range of materials processing technology is simple, no special calcining atmosphere protection, lower processing costs.

粉碎处理采用机械粉碎法,粗碎一般用颚式破碎机,中碎采用对辊粉碎机、细碎设备可选择雷兹磨、回转球磨机、干式振动磨、气流粉碎机等手段加工处理。 Pulverization treatment using a mechanical pulverization method, typically by crushing jaw crusher, roll crusher for use in crushing, crushing device can select Alvarez mill, rotary ball mill, a dry vibration mill, a jet mill and other processing means. 对于应用到远红外功能纤维中的粉末添加剂,需要再经过湿式粉碎才能得到符合要求的粉体粒径,湿式粉碎可采用湿式振动磨、砂磨机、湿式搅拌球磨机等设备完成。 For functional fiber far infrared applied to the powder additive, you need to go through to wet pulverization to obtain a powder particle size to meet the requirements, the wet pulverization and a wet vibration mill, a sand mill, and other equipment to complete the wet agitating ball mill.

鉴于原料构成的不同组分对4~14μm的远红外辐射的贡献不同,在后续的活化处理工艺中需要考虑到,部分组分的相变温度较低,结构发生破坏后就保证不了性能的发挥,因而结合不同的原材料,有必要分别处理不同温度、不同煅烧时间后,再混合均匀后使用,可以保证在4~14μm的宽范围内实现高的远红外辐射率,而对某些原料,煅烧是不可忽视的一道工序,通过促进原料的晶型转变,获得性能优良的晶型,并提高其远红外特性。 In view of the different components of the material constituting the contribution of 4 ~ 14μm different far-infrared radiation, in the subsequent activation treatment process needs to be considered, the lower part of the components of the phase transition temperature, the structure can not guarantee the occurrence of damage after the performance of the play thus a combination of different materials, it is necessary to process different temperatures, the calcination time is different, then mixed well before use, ensure high far-infrared radiation rate of 4 ~ 14μm in a wide range, but for some raw materials, the calcination a step can not be ignored, by promoting crystal transition of raw materials, excellent performance is obtained crystalline form, and to improve the characteristics of far infrared.

下面将结合实施例,对本发明作进一步说明。 Below in connection with embodiments of the present invention will be further described.

实施例1 Example 1

选用含铁量高的电气石100公斤,经机械粉碎至325目(如有特殊应用需要,还可粉碎更细至0.1μm),再选配优质麦饭石30公斤,云母1.5公斤,将两者粉碎至与电气石相同目数的细粉,再将三者混料后煅烧处理,温度不超过500℃,时间在1.5小时以内,经处理后用干法球磨均匀,即得到所需产品。 Selection of high iron content of 100 kg tourmaline, mechanically pulverized to 325 mesh (if required for special applications, but also pulverized finer to 0.1 m), and then matching high-quality medical stone 30 kg, 1.5 kg of mica, the two were crushed to a fine powder of tourmaline in the same number, and then mixing the three post-calcination treatment, temperature does not exceed 500 ℃, time within 1.5 hours after treatment with a uniform dry ball milling, to obtain the desired product.

实施例2选配优质宝石级电气石80公斤,经机械粉碎至325目(如有特殊应用需要,还可粉碎更细至0.1μm)后待用;再选配独君石材料5公斤,将其粉碎至与电气石相同目数,然后在1250℃下进行煅烧处理3.5~4.5小时,再进行球磨粉碎,粒度目数不低于处理前,再将处理后的粉料与上述电气石粉料混合球磨均匀后得到产品。 Example 2 after matching high-quality gem tourmaline 80 kg embodiment, the mechanically pulverized to 325 mesh (if required for special applications, but also pulverized finer to 0.1 m) stand; single further optional Jun stone material 5 kilograms, and pulverized tourmaline to the same number, and then calcination treatment at 1250 deg.] C 3.5 to 4.5 hours, and then ball milling, the particle size is not less than the number of pre-treatment, and then treatment of powder mixed with the tourmaline powder after milling uniformly to obtain a product.

实施例3选配优质硅藻土50公斤,麦饭石30公斤,将以上两者加工成325目细粉,再添加氧化铈135克,干式混合均匀后,放入氧化性气氛炉中加热至1150℃,经3.5小时后炉内冷却至室温,取出后球磨粉碎均匀后即得产品。 Example 3 50 kg embodiment Celite matching high-quality, stone 30 kg, the two or more processed into 325 mesh powder, further added 135 g of cerium oxide, after dry-mixed, placed in an oxidizing atmosphere heating furnace to 1150 ℃, after 3.5 hours the furnace was cooled to room temperature, taken out after ball milling to obtain a uniform product.

实施例4选配优质沸石45公斤,堇青石20公斤,将二者分别粉碎至325目(如有特殊应用需要,还可粉碎更细至0.1μm)后混合,再加入400目ZrO2粉1公斤,干式混合均匀后,放入炉中加热至1300℃,保温4.5小时,开炉冷却至室温,再进行粉碎均匀后即得产品。 Example 4 45 kg matching high-quality zeolite, cordierite 20 kg, the two were pulverized to 325 mesh (if required for special applications, but also pulverized finer to 0.1 m) are mixed, and then added 400 mesh ZrO2 powder 1 kg after dry-mixed, placed in a furnace heated to 1300 ℃, incubated 4.5 hours, furnace cooled to room temperature and opened, and then pulverized to obtain a uniform product after.

实施例5选用优质滑石35公斤,再加入金红石10公斤,将两者混合磨碎至325目细粉,然后加入400目碳化硅(SiC)粉8公斤,放入球磨罐内混合均匀,再放入加热炉中,处理温度选在1280℃,时间为5小时,之后炉内冷却至室温,取出后粉碎混合均匀即得产品。 Example 5 35 kg of high quality talc embodiment, then add 10 kg of rutile, mixed both ground to 325 mesh powder, followed by addition of 400 mesh silicon carbide (SiC) powder 8 kg, tank mixed into the ball mill, add into the furnace, the treatment temperature is selected at 1280 deg.] C, for 5 hours, and then furnace cooling to room temperature, taken out uniformly pulverized and mixed to obtain the product.

Claims (7)

  1. 1.一种高效远红外功能粉添加剂,其特征在于,它的配方如下(重量百分数):天然无机矿物70~100%,碱金属、过渡金属或碱金属、过渡金属氧化物、或非金属化合物0~30%,稀土氧化物0~5%。 A high far-infrared functional additive powder, characterized in that it has the following formulation (percent by weight): natural inorganic mineral 70 to 100%, an alkali metal, an alkali metal or a transition metal, a transition metal oxide, or metalloid compound 0 to 30%, 0 to 5% rare earth oxides.
  2. 2.根据权利要求1所述的高效远红外功能粉添加剂,其特征在于,所述的天然无机矿物以含铝、硅氧化物为主,也存在有其它金属氧化物及各种复合氧化物,它选自以下矿石的一种或几种:莫来石、堇青石、萤石、方解石、明矾石、水晶石、煤矸石、电气石、绿泥石、凹凸棒石、硅石、金红石、钛铁矿石、滑石、硅灰石、海泡石、麦饭石、冰洲石、白云石、蒙脱石、沸石、累托石、腊石、长石、透辉石、透闪石、独君石、伟晶石、花岗岩石、美酒玉石及高岭土、瓷土、铝土矿、白垩土、云母、硅藻土、膨润土。 2. Efficient far infrared powder additive according to claim 1, wherein said aluminum-containing natural inorganic minerals, mainly silicon oxide, and the presence of other metal oxides and complex oxides, selected from one or more of the following minerals: mullite, cordierite, fluorite, calcite, alum stone, rock crystal, gangue, tourmaline, chlorite, attapulgite, silica, rutile, ilmenite ore, talc, wollastonite, sepiolite, mineral, calcite, dolomite, montmorillonite, zeolite, rectories, wax, feldspar, diopside, tremolite, the only king stone, Wei spar, granite, jade wine and kaolin, clay, bauxite, chalk, mica, diatomite, bentonite.
  3. 3.根据权利要求1所述的高效远红外功能粉添加剂,其特征在于,所述的碱金属、过渡金属或碱金属、过渡金属氧化物选自Sr、W、Mo、V、Pt、Zr、Fe、Ti、Mo、Ni、Ta、Ag、Co元素或其氧化物的一种或几种。 3. The high far infrared powder additive according to claim 1, wherein said alkali metal, an alkali metal or a transition metal, a transition metal oxide selected from Sr, W, Mo, V, Pt, Zr, one or more of Fe, Ti, Mo, Ni, Ta, Ag, Co element or an oxide thereof.
  4. 4.根据权利要求1所述的高效远红外功能粉添加剂,其特征在于,所述的非金属化合物选自C、N、F、O、B族元素氧化物、碳化物、氮化物、氟化物、硼化物中的一种或几种。 4. The high far infrared powder additive according to claim 1, wherein said non-metal compound is selected from C, N, F, O, B element oxides, carbides, nitrides, fluorides , one or more of boride.
  5. 5.根据权利要求1所述的高效远红外功能粉添加剂,其特征在于,所述的稀土氧化物选自Sc、Y以及La系元素氧化物的一种或几种。 The efficiency of the far infrared powder additive according to claim 1, wherein said one or more rare earth oxides selected from Sc, Y, and La-based element oxide.
  6. 6.一种高效远红外功能粉添加剂的制备工艺,其特征在于,它包括以下工艺步骤:首先将各组原料进行粉碎,然后按天然无机矿物70~100%(重量),碱金属、过渡金属或碱金属、过渡金属氧化物、或非金属氧化物0~30%(重量),稀土氧化物0~5%(重量)的配比进行选配料,再将该料混合后进行煅烧,最后将煅烧好的混合料进一步细磨粉碎得到;所述的煅烧温度为350~1350℃,所述的煅烧时间为0.5~5小时。 A high far-infrared functional powder preparation additive, characterized in that it comprises the following process steps: First, each set material was pulverized, and then press natural inorganic mineral 70 to 100% (by weight), alkali metals, transition metals or an alkali metal, transition metal oxide, non-metal oxide, or 0 to 30% (by weight), rare earth oxide 0 to 5% (wt) ratio for the ingredients selected, and then the material is calcined after mixing, and finally good calcined material is further finely pulverized mixture obtained; the calcination temperature is 350 ~ 1350 ℃, the calcination time is 0.5 to 5 hours.
  7. 7.根据权利要求6所述的高效远红外功能粉添加剂的制备工艺,其特征在于,所述的的稀土氧化物可以在煅烧活化时由稀土金属与氧直接燃烧得到,或者采用加热稀土元素的氢氧化物、碳酸盐、氮化物、草酸盐来制得。 7. Preparation of high far-infrared functional additive powder according to claim 6, wherein said rare earth oxide can be obtained directly from the combustion of a rare earth metal oxide upon calcination and activation, or by heating a rare earth element hydroxide, carbonate, nitride, oxalates be prepared.
CN 00115746 2000-05-18 2000-05-18 Additive of efficient far infrared powder and its preparing process CN1271758A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 00115746 CN1271758A (en) 2000-05-18 2000-05-18 Additive of efficient far infrared powder and its preparing process

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 00115746 CN1271758A (en) 2000-05-18 2000-05-18 Additive of efficient far infrared powder and its preparing process

Publications (1)

Publication Number Publication Date
CN1271758A true true CN1271758A (en) 2000-11-01

Family

ID=4585190

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 00115746 CN1271758A (en) 2000-05-18 2000-05-18 Additive of efficient far infrared powder and its preparing process

Country Status (1)

Country Link
CN (1) CN1271758A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102167571A (en) * 2011-01-06 2011-08-31 肇庆市鼎湖医疗器械厂有限公司 Broadband far-infrared ceramic material as well as preparation method and application thereof
CN102219496A (en) * 2011-03-29 2011-10-19 佛山市康泰威新材料有限公司 Multiphase composite system infrared radiation ceramic powder and preparation method thereof
CN102219495A (en) * 2011-03-29 2011-10-19 佛山市康泰威新材料有限公司 Infrared radiation coating and use method thereof
CN102258965A (en) * 2011-03-25 2011-11-30 武汉科技大学 Infrared radiation energy-saving materials and preparation method of the core-shell heterostructures
CN102633494A (en) * 2012-04-18 2012-08-15 中国科学院上海硅酸盐研究所 Powder material with high infrared radiance in broadband and preparation method of power material
CN102998320A (en) * 2011-09-09 2013-03-27 远东科技大学 Far infrared material analyzing and manufacturing method
CN103132370A (en) * 2011-11-30 2013-06-05 北京中科联众科技股份有限公司 Composition of anti-microbial and healthcare function paper clay, preparation method of anti-microbial and healthcare function paper clay and purposes of anti-microbial and healthcare function paper clay
CN103243403A (en) * 2013-05-17 2013-08-14 江苏宝润科技有限公司 Rock glacier fiber and manufacturing method thereof
CN103288188A (en) * 2013-05-07 2013-09-11 沈礼群 Natural mineral-vitamin health-care drinking water purifying agent and preparation method and applications thereof
CN103525411A (en) * 2013-10-22 2014-01-22 北京化工大学 Aluminum oxide/montmorillonite light-emitting material as well as preparation method thereof
CN104771831A (en) * 2015-04-14 2015-07-15 伍建柏 Method for producing health care paste by utilizing yang nourishing stone and yang nourishing stone health care paste
CN105622060A (en) * 2016-01-12 2016-06-01 傅志勇 Energy ceramic
CN106145210A (en) * 2015-01-22 2016-11-23 李岳桓 Mineral Composition For Generating Small Water Clusters, Small Water Cluster Generating Device,seawater Desalination Equipment Using The Same, And Small Water Cluster Generating Method
CN106278212A (en) * 2016-07-01 2017-01-04 唐山立雄峰汇材料科技有限公司 Egg custard pot

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102167571B (en) 2011-01-06 2013-05-29 肇庆市鼎湖医疗器械厂有限公司 Broadband far-infrared ceramic material as well as preparation method and application thereof
CN102167571A (en) * 2011-01-06 2011-08-31 肇庆市鼎湖医疗器械厂有限公司 Broadband far-infrared ceramic material as well as preparation method and application thereof
CN102258965B (en) 2011-03-25 2013-04-17 武汉科技大学 Infrared radiation energy-saving material with core-shell heterogeneous structure and preparation method thereof
CN102258965A (en) * 2011-03-25 2011-11-30 武汉科技大学 Infrared radiation energy-saving materials and preparation method of the core-shell heterostructures
CN102219495A (en) * 2011-03-29 2011-10-19 佛山市康泰威新材料有限公司 Infrared radiation coating and use method thereof
CN102219496A (en) * 2011-03-29 2011-10-19 佛山市康泰威新材料有限公司 Multiphase composite system infrared radiation ceramic powder and preparation method thereof
CN102998320A (en) * 2011-09-09 2013-03-27 远东科技大学 Far infrared material analyzing and manufacturing method
CN103132370B (en) * 2011-11-30 2015-11-25 北京中科联众科技股份有限公司 An antibacterial health function paper clay composition and preparation and use
CN103132370A (en) * 2011-11-30 2013-06-05 北京中科联众科技股份有限公司 Composition of anti-microbial and healthcare function paper clay, preparation method of anti-microbial and healthcare function paper clay and purposes of anti-microbial and healthcare function paper clay
CN102633494A (en) * 2012-04-18 2012-08-15 中国科学院上海硅酸盐研究所 Powder material with high infrared radiance in broadband and preparation method of power material
CN103288188A (en) * 2013-05-07 2013-09-11 沈礼群 Natural mineral-vitamin health-care drinking water purifying agent and preparation method and applications thereof
CN103243403A (en) * 2013-05-17 2013-08-14 江苏宝润科技有限公司 Rock glacier fiber and manufacturing method thereof
CN103525411A (en) * 2013-10-22 2014-01-22 北京化工大学 Aluminum oxide/montmorillonite light-emitting material as well as preparation method thereof
CN106145210A (en) * 2015-01-22 2016-11-23 李岳桓 Mineral Composition For Generating Small Water Clusters, Small Water Cluster Generating Device,seawater Desalination Equipment Using The Same, And Small Water Cluster Generating Method
CN104771831A (en) * 2015-04-14 2015-07-15 伍建柏 Method for producing health care paste by utilizing yang nourishing stone and yang nourishing stone health care paste
CN104771831B (en) * 2015-04-14 2016-03-02 伍建柏 One kind is hereby posted positive-health
CN105622060A (en) * 2016-01-12 2016-06-01 傅志勇 Energy ceramic
CN106278212A (en) * 2016-07-01 2017-01-04 唐山立雄峰汇材料科技有限公司 Egg custard pot

Similar Documents

Publication Publication Date Title
US3758318A (en) Production of mullite refractory
Nagano et al. Sintering behavior of Al2TiO5 base ceramics and their thermal properties
Martín-Márquez et al. Mullite development on firing in porcelain stoneware bodies
Das et al. Shrinkage and strength behaviour of quartzitic and kaolinitic clays in wall tile compositions
US3106452A (en) Method for reducing the soda content of alumina
Temuujin et al. The effect of water vapour atmospheres on the thermal transformation of kaolinite investigated by XRD, FTIR and solid state MAS NMR
Kakiage et al. Low-temperature synthesis of boron carbide powder from condensed boric acid–glycerin product
Lee et al. Sintering behavior of Al2O3-TiC composite powder prepared by SHS process
CN101050107A (en) Ultrathin polished brick in porcelain character, and fabricating technique
Kurama et al. Investigation of borax waste behaviour in tile production
Naskar et al. A novel process for the synthesis of lithium aluminum silicate powders from rice husk ash and other water-based precursor materials
Zhang et al. Synthesis of Mg-α SiAlON powders from talc and halloysite clay minerals
Ngamjarurojana et al. Effect of calcination conditions on phase formation and particle size of zinc niobate powders synthesized by solid-state reaction
CN101591165A (en) Chromium-zirconium far-infrared radiation material and preparation method and application thereof
Lee et al. Effects of precursor pH and sintering temperature on synthesizing and morphology of sol–gel processed mullite
CN101050105A (en) Polished brick in porcelain character, and fabricating technique
CN101122049A (en) Method for preparing mullite crystal whisker from coal refuse and aluminum oxide
Furlani et al. Sintering and characterisation of ceramics containing paper sludge, glass cullet and different types of clayey materials
CN1109454A (en) High tonghness reinforced porcelain and producing method
Sarangi et al. Effect of temperature on nano-crystalline silica and carbon composites obtained from rice-husk ash
CN101219910A (en) Method for producing color blank glaze archaizing brick by using iron mine tailing
Khaghani-Dehaghani et al. Mechanochemical synthesis of Al2O3–TiB2 nanocomposite powder from Al–TiO2–H3BO3 mixture
Tripathi et al. Synthesis and thermo-mechanical properties of mullite–alumina composite derived from sillimanite beach sand: effect of ZrO2
CN102363286A (en) Steel blank grinding abrasion wheel adopting microcrystal ceramic bonding agents
Kong et al. Zinc niobate derived from mechanochemically activated oxides

Legal Events

Date Code Title Description
C06 Publication
C10 Request of examination as to substance
C02 Deemed withdrawal of patent application after publication (patent law 2001)