CN1264818A - 利用混合制冷低温液化工业气体 - Google Patents

利用混合制冷低温液化工业气体 Download PDF

Info

Publication number
CN1264818A
CN1264818A CN99127789A CN99127789A CN1264818A CN 1264818 A CN1264818 A CN 1264818A CN 99127789 A CN99127789 A CN 99127789A CN 99127789 A CN99127789 A CN 99127789A CN 1264818 A CN1264818 A CN 1264818A
Authority
CN
China
Prior art keywords
industrial gasses
component refrigrant
component
compression
refrigrant fluid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN99127789A
Other languages
English (en)
Other versions
CN1151353C (zh
Inventor
W·J·奥尔谢夫斯基
B·阿曼
A·阿查亚
J·A·韦伯
M·A·A·拉沙德
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Praxair Technology Inc
Original Assignee
Praxair Technology Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Praxair Technology Inc filed Critical Praxair Technology Inc
Publication of CN1264818A publication Critical patent/CN1264818A/zh
Application granted granted Critical
Publication of CN1151353C publication Critical patent/CN1151353C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/003Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
    • F25J1/0047Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle
    • F25J1/005Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle by expansion of a gaseous refrigerant stream with extraction of work
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/02Materials undergoing a change of physical state when used
    • C09K5/04Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa
    • C09K5/041Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa for compression-type refrigeration systems
    • C09K5/044Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa for compression-type refrigeration systems comprising halogenated compounds
    • C09K5/045Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa for compression-type refrigeration systems comprising halogenated compounds containing only fluorine as halogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
    • F25B9/006Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant the refrigerant containing more than one component
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/06Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point using expanders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/0002Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the fluid to be liquefied
    • F25J1/0012Primary atmospheric gases, e.g. air
    • F25J1/0015Nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/0002Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the fluid to be liquefied
    • F25J1/0012Primary atmospheric gases, e.g. air
    • F25J1/0017Oxygen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/0002Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the fluid to be liquefied
    • F25J1/0012Primary atmospheric gases, e.g. air
    • F25J1/002Argon
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/0002Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the fluid to be liquefied
    • F25J1/0022Hydrocarbons, e.g. natural gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/0002Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the fluid to be liquefied
    • F25J1/0027Oxides of carbon, e.g. CO2
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/003Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
    • F25J1/0032Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration"
    • F25J1/0035Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration" by gas expansion with extraction of work
    • F25J1/0037Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration" by gas expansion with extraction of work of a return stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/003Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
    • F25J1/0032Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration"
    • F25J1/004Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration" by flash gas recovery
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/003Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
    • F25J1/0047Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle
    • F25J1/0052Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle by vaporising a liquid refrigerant stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0211Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a multi-component refrigerant [MCR] fluid in a closed vapor compression cycle
    • F25J1/0219Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a multi-component refrigerant [MCR] fluid in a closed vapor compression cycle in combination with an internal quasi-closed refrigeration loop, e.g. using a deep flash recycle loop
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2205/00Aspects relating to compounds used in compression type refrigeration systems
    • C09K2205/10Components
    • C09K2205/11Ethers
    • C09K2205/112Halogenated ethers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2205/00Aspects relating to compounds used in compression type refrigeration systems
    • C09K2205/10Components
    • C09K2205/12Hydrocarbons
    • C09K2205/128Perfluorinated hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2205/00Aspects relating to compounds used in compression type refrigeration systems
    • C09K2205/10Components
    • C09K2205/13Inert gases
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2205/00Aspects relating to compounds used in compression type refrigeration systems
    • C09K2205/10Components
    • C09K2205/132Components containing nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2290/00Other details not covered by groups F25J2200/00 - F25J2280/00
    • F25J2290/32Details on header or distribution passages of heat exchangers, e.g. of reboiler-condenser or plate heat exchangers

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Health & Medical Sciences (AREA)
  • Emergency Medicine (AREA)
  • Separation By Low-Temperature Treatments (AREA)

Abstract

一种液化工业气体的方法,其中所需的部分冷量由多组分制冷剂循环产生,部分冷量通过或者使一部分工业气体或者一部分多组分制冷剂透平膨胀来产生。

Description

利用混合制冷低温液化工业气体
本发明总体涉及工业气体的低温液化,更具体地说,本发明涉及为低温液化提供冷量。
工业气体的液化要求为冷却和液化工业气体提供冷量。通常,通过使一部分工业气流透平膨胀(turboexpansion),接着使已经透平膨胀的部分与该工业气体的其余部分换热,来使其余部分液化而提供冷量。透平膨胀是一种能耗很大的步骤,在需要大量冷量时费用相当高。
因此,本发明的一个目的是提供一种为液化工业气体提供冷量的系统,其中,液化工业气体所需的冷量,并非都是通过使一部分工业气体透平膨胀而产生的。
对本领域的普通技术人员而言,通过阅读本发明的说明书,将会更加清楚地了解本发明的上述和其它目的。本发明的一个方面是:
一种液化工业气体的方法,包括:(A)压缩工业气体,冷却压缩后的工业气体,以形成冷却的工业气体,将压缩和冷却后的工业气体的第一部分透平膨胀,来产生冷量,并通过与透平膨胀后的第一部分工业气体间接换热,使压缩和冷却后的工业气体的第二部分至少部分冷凝,产生被液化的工业气体;(B)压缩含有至少两种组分的多组分制冷剂流体,冷却该压缩后的多组分制冷剂流体,使该压缩和冷却后的多组分制冷剂流体膨胀,产生冷量,并通过与所述冷却压缩后的工业气体的过程间接换热而温热该带冷量的膨胀后的多组分制冷剂流体(refrigeration bearing expanded multicomponent refrigerant fluid);及(C)回收液化后的工业气体作为产品。
本发明的另一方面是:
一种液化工业气体的方法,包括:(A)压缩工业气体,将压缩后的工业气体的第一部分透平膨胀,来产生冷量,通过与透平膨胀后的第一部分工业气体间接换热,冷却压缩后的第二部分工业气体,并使该已经冷却后的第二部分工业气体进一步冷却,来产生液化的工业气体;(B)压缩含有至少两种组分的多组分制冷剂流体,冷却该压缩后的多组分制冷剂流体,使该压缩和冷却后的多组分制冷剂流体膨胀,产生冷量,并通过与所述进一步冷却第二部分工业气体的过程间接换热而温热该带冷量的膨胀后的多组分制冷剂流体;及(C)回收液化后的工业气体作为产品。
本发明的又一方面是:
一种液化工业气体的方法,包括:(A)压缩含有至少两种组分的多组分制冷剂流体,使压缩后的第一部分多组分制冷剂流体透平膨胀,来产生冷量,并通过与所述工业气体间接换热而温热该透平膨胀后的第一部分多组分制冷剂流体,以产生冷却的工业气体;(B)进一步压缩已经压缩的多组分制冷剂流体的第二部分,使该进一步压缩后的多组分制冷剂流体第二部分膨胀,来产生冷量,通过与该已经冷却后的工业气体间接换热而温热上述膨胀后的多组分制冷剂流体第二部分,来产生液化的工业气体;及(C)回收液化后的工业气体作为产品。
这里所用的术语“无毒”是指在合格的接触极限(acceptable exposure limit)内处理时,不会引起急性或慢性中毒。
这里所用的术语“非易燃”,是指没有闪点,或者闪点非常高,至少为600°K。
这里所用的术语“无臭氧耗减”,是指臭氧耗减可能性为零,即无氯、溴或者碘原子。
这里所用的术语“可变负荷制冷剂”,指由两种或者多种组分按比例组合的混合物,这些组分的液相可在混和物的气泡点和露点之间经历连续的增温变化。混和物的气泡点是指在给定压力下,混和物全部处于液相时,通过加热使气相与液相开始形成平衡的温度。混和物的露点是指在给定压力下,混和物全部处于气相时,通过放热使液相与气相开始平衡的温度。因此,混和物的气泡点和露点之间的温度区是一个在相平衡下液相和气相两相共存的区域。在本发明的实践中,可变负荷制冷剂的气泡点和露点之间的温差至少为10K,优选为至少20K,最好是至少为50K。
这里所用的术语“碳氟化合物”指下面任意一种:四氟甲烷(CF4)、全氟乙烷(C2F6),全氟丙烷(C3F8)、全氟丁烷(C4F10)、全氟戊烷(C5F12)、全氟乙烯(C2F4)、全氟丙烯(C3F6)、全氟丁烯(C4F8)、全氟戊烯(C5F10)、六氟环丙烷(环C3F6)、八氟环丁烷(环C4F8)。
这里所用的术语“碳氢氟化合物”指下述之一:三氟甲烷(CHF3)、五氟乙烷(C2HF5)、四氟乙烷(C2H2F4)、七氟丙烷(C3HF7)、六氟丙烷(C3H2F6)、五氟丙烷(C3H3F5)、四氟丙烷(C3H4F4)、九氟丁烷(C4HF9)、八氟丁烷(C4H2F8)、十一氟戊烷(C5HF11)、一氟甲烷(CH3F)、二氟甲烷(CH2F2)、一氟乙烷(C2H5F)、二氟乙烷(C2H4F2)、三氟乙烷(C2HF3)、二氟乙烯(C2H2F2)、三氟乙烯(C2HF3)、氟乙烯(C2H3F)、五氟丙烯(C3HF5)、四氟丙烯(C3H2F4)、三氟丙烯(C3H3F3)、二氟丙烯(C3H4F2)、七氟丁烯(C4HF7)、六氟丁烯(C4H2F6)、九氟戊烯(C5HF9)。
这里所用的术语“氟代醚”指下述一种:三氟甲氧基-全氟甲烷(CF3-O-CF3)、二氟甲氧基-全氟甲烷(CHF2-O-CF3)、一氟甲氧基-全氟甲烷(CH2F-O-CF3)、二氟甲氧基-二氟甲烷(CH2-O-CHF2)、二氟甲氧基-全氟乙烷(CHF2-O-C2F5)、二氟甲氧基-1,2,2,2-四氟乙烷(CF3-O-C2H2F4)、二氟甲氧基-1,1,2,2-四氟乙烷(CHF2-O-C2HF4)、全氟乙氧基-一氟甲烷(C2F5-O-CH2F)、全氟甲氧基-1,1,2-三氟乙烷(CF3-O-C2H2F3)、全氟甲氧基-1,2,2-三氟乙烷(CF3-O-C2H2F3)、环-1,1,2,2-四氟丙基醚(cyclo-C3H2F4-O-)、环-1,1,3,3-四氟丙基醚(cyclo-C3H2F4-O-)、全氟甲氧基-1,1,2,2-四氟乙烷(CF3-O-C2HF4)、环-1,1,2,3,3-五氟丙基醚(cyclo-C3H5-O-)、全氟甲氧基-全氟丙酮(CF3-O-CF2-O-CF3)、全氟甲氧基-全氟乙烷(CF3-O-C2F5)、全氟甲氧基-1,2,2,2-四氟乙烷(CF3-O-C2HF4)、全氟甲氧基-2,2,2-三氟乙烷(CF3-O-C2H2F3)、环-全氟甲氧基-全氟丙酮(cyclo-CF2-O-CF2-O-CF2-)及环全氟丙基醚(cyclo-C3F6-O)。
这里所用的术语“环境气体”指下面的一种:氮气(N2)、氩(Ar)、氪(Kr)、氙(Xe)、氖(Ne)、二氧化碳(CO2)、氧气(O2)和氦(He)。
这里所用的术语“低臭氧耗减”指按蒙特利尔协议(Montreal Protocol)规定的潜在臭氧耗减小于0.15,其中二氯氟甲烷(CCl2F2)的潜在臭氧耗减为1.0。
这里所用的术语“常规沸点”,指在1个标准大气压下的沸腾温度,即绝对压强为每平方英寸14.696磅下的沸腾温度。
这里所用的术语“间接换热”,指使流体之间进行热交换,而流体相互之间不存在直接接触或者掺混。
这里所用的术语“膨胀”指实现减压。
这里所用的术语“透平膨胀”和“透平膨胀机”,分别指高压流体流过透平而减压和降温,从而产生冷量的方法和装置。
这里所用的术语“工业气体”,指氮气、氧气、氩、氢、氦、二氧化碳、一氧化碳、甲烷和含有两种或者两种以上的上述气体的混和物。
这里所用的术语“低温”,指温度等于或者小于150°K。
这里所用的术语“制冷”,指从低于环境温度的系统向周围环境放热的能力。
图1是本发明一个优选实施方案的简图,其中多组分制冷剂为液化提供了较高温度水平的冷量,工业气体的透平膨胀则提供较低温度水平的冷量。
图2是本发明另一个优选实施方案的简图,其中多组分制冷剂为液化提供较低温度水平的冷量,工业气体的透平膨胀则提供较高温度水平的冷量。
图3是本发明又一个优选实施方案的简图,其中多组分制冷剂为液化提供了较低和较高温度水平的制冷量,其中部分冷量由该多组分制冷剂透平膨胀来提供。
在本发明中,透平膨胀用于在一个较宽的温度范围内提供为液化工业气体所需的仅仅一部分冷量,而所需的其余部分冷量由多组分制冷剂提供,上述制冷剂在所需的温度范围内可以变化制冷量,因而提高了总液化效率。除了效率高外,另一个优点是,上述多组分制冷剂优选地无毒、不易燃,并且无臭氧耗减。在本发明的一个优选实施方案中,在由两种或者多种组分构成的多组分制冷剂混合物中,每一种组分都有一个常规沸点,该常规沸点与混和物中的每一种其它组分的常规沸点至少相差5°K。这就提高了在低温下的较宽温度范围内提供制冷的能力。在本发明的另一个优选实施方案中,上述多组分制冷剂混合物中最高沸点组分的常规沸点比多组分制冷剂混合物中最低沸点组分的常规沸点至少高50°K。
下面将参照附图进一步详细讨论本发明。参照图1,多组分制冷剂流80经压缩机33,被压缩至绝对压力通常为每平方英寸100至1000磅(psia)。压缩后的多组分制冷剂流体81在后冷却器5中冷却,放出压缩热,所得到的多组分制冷剂流体82通过热交换器1,受到进一步冷却,最好被冷凝。所得到的多组分制冷剂液体85通过阀86节流、膨胀,压力通常达到15至100psia,从而产生冷量。利用焦耳-汤姆逊效应,流体通过阀86压力膨胀提供了冷量,也就是说,由于等焓降压过程,使流体温度降低。膨胀后的多组分制冷剂流体87的温度通常为150-250°K。多组分制冷剂流体通过阀86的膨胀还引起部分流体蒸发。
带冷量(refrigeration bearing)的多组分两相制冷剂流体流87接着通过热交换器1,在其中被温热并完全蒸发,用以通过间接换热来冷却压缩后的多组分制冷剂流体。如下面将详细描述的那样,流体87的温热过程还可以用于冷却工业气体。蒸汽流80中的所得到的温热后的多组分制冷剂流体,温度通常为280-320°K,此蒸气流再循环到压缩机33,重新开始新的制冷循环。
气流60的工业气体流,如氮,通过压缩机30压缩,压力通常为50-900psia,所获得的工业气体流61通过后冷却器4冷却,放出压缩热。压缩后的工业气体流62接着通过热交换器1,与多组分制冷剂流体87间接换热而被冷却。
所获得的冷却了的工业气体66分成第一部分67和第二部分68。第一部分67通过透平膨胀机32透平膨胀到压力通常为15-150psia,来产生冷量。所获得的透平膨胀后的带冷量的物流73从透平膨胀机32中抽出,以物流77形式流过热交换器2,在该热交换器中与第二部分间接换热而温热,这一点下面将详细描述。所获得的温热后的物流74从热交换器2流过热交换器1,得到进一步温热,然后以物流75形式送至物流60,再循环到压缩机30。
第二部分68流过热交换器2,在该热交换器中与透平膨胀后的第一部分间接换热,被进一步冷却,并且被至少部分冷凝,所获得的流体流69通过阀71后,作为流70进入相分离器10。如果流69全部是液体,流过阀71时将使其中一些液体蒸发,因而流70为两相流。蒸气从相分离器10流出,成为流76,并与流73合并形成流77,流77如前述那样处理。液体从分离器10流出,成为流72,作为液化后的产品工业气体流到使用站,和/或储存起来。
在图2所示的本发明的实施方案中,多组分制冷剂流循环用来主要为工业气体液化提供较低温度水平的冷量。参看图2,多组分制冷剂流体180通过压缩机133通常压缩至100-600psia。压缩后的多组分制冷剂流体181在后冷却器105中放出压缩热而被冷却,所得到的多组分制冷剂流体如所示出的流182、183、184和185通过热交换器101、102、103,在这些交换器中受到进一步冷却,最好被冷凝。所得到的多组分制冷剂流体185经阀186节流,通常膨胀到压力为15-100psia,因而产生冷量。利用焦耳-汤姆逊效应,流体通过阀186的压力膨胀过程提供冷量。膨胀后的多组分制冷剂流体187的温度通常为80-120°K。多组分制冷剂流体通过阀186的膨胀过程还使部分流体蒸发。
带冷量的多组分两相制冷剂流体流187接着通过热交换器103、102和101,如流188和189所示的那样,在上述热交换器中温热,并完全蒸发,因而通过间接换热来冷却压缩后的多组分制冷剂流体。
流体187的温热还用于冷却和液化工业气体,这一点下面将详细描述。所获得的温热后的多组分制冷剂蒸气流180的温度通常为280-320°K,该气体流再循环到压缩机133,并重新开始新的制冷循环。
工业气体流160,如氮气流,通过压缩机130压缩至通常30-150psia,所获得的工业气体流161在后冷却器104中放出压缩热而被冷却。压缩后的工业气体流162接着作为流163流入压缩机131,被进一步压缩到通常80-900psia。所得到的进一步压缩后的流164在后冷却器105中放出压缩热并被冷却,所得到的流165接着通过热交换器101,在其中与透平膨胀后的第二部分174和多组分制冷剂流189间接换热而被冷却。
所获得的冷却后的工业气体166分成第一部分167和第二部分168。第一部分167经过透平膨胀机132,透平膨胀至压力通常为30-300psia,来产生冷量。所得到的透平膨胀后的带冷量的流173从透平膨胀机132中抽出,通过热交换器102,在该热交换器中与第二部分间接换热而被温热,这一点下面将详细描述。所得到的温热后的流174从热交换器102流到热交换器101,被进一步温热,接着作为流175并入流162,形成流163,并再循环到压缩机130。
第二部分168通过热交换器102,在该热交换器中与透平膨胀后的第一部分间接换热而进一步冷却,也可能被部分冷凝,所得到的流体作为流169通过热交换器103,在该热交换器中与带冷量的多组分制冷剂流体187间接换热而全部冷凝,形成液化的工业气体170。所得到的液化的工业气体接着通过阀171,成为流172,流向使用站和/或储存起来。
尽管图2所示的系统利用透平膨胀主要提供高温度水平的冷量,即热交换器101和102所需的冷量,但是,显然所需的一些冷量可以由多组分制冷剂循环提供。因此,尽管多组分制冷剂主要提供低温水平的冷量,也就是说,提供热交换器103所需的冷量,但是多组分制冷剂也可以为其它热交换器提供一些冷量。而且,尽管图示的多组分制冷剂流循环是单一的封闭循环,但是也可以利用制冷剂液体内部再循环。也可以采用一个中间温度水平的相分离过程来回收和再循环,即再温热制冷剂流体,同时蒸气相部分在再温热之前可进一步冷却。考虑到制冷剂的成分和组成,液体循环的特点提供了非常灵活的方法,并且能够避免任何液体的冻结问题。
在图3所示的本发明的实施方案中,多组分制冷剂流体循环用来为工业气体的液化既提供较高温度水平的冷量,又提供较低温度水平的冷量。参见图3,多组分制冷剂流体201经过压缩机202被压缩到通常100-300psia。所得到的压缩流203的第一部分204经过透平膨胀机205,透平膨胀至压力通常为20-50psia,因而产生冷量。所得到的透平膨胀后的带冷量的流206进入多组分制冷剂冷却回路的热端,并通过热交换器207,在该热交换器中与工业气体间接换热而被温热,从而使工业气体冷却。所得到的温热后的第一部分从热交换器207中抽出,作为流201,再循环至压缩机202。
压缩后的多组分制冷剂流体203的第二部分208,经过压缩机209进一步压缩至通常100-600psia。所得到的进一步压缩后的流210通过后冷却器211放出压缩热而被冷却,所得到的流212通过热交换器207,在该热交换器中与带冷量的透平膨胀后的第一部分多组分制冷剂流体间接换热而被冷却。所得到的冷却的第二部分213通过热交换器214进一步冷却,最好被冷凝。该进一步冷却后的多组分制冷剂流体流215接着通过阀216膨胀,利用焦耳汤姆逊效应产生冷量。如图3所示,优选使流215通过阀216的膨胀过程引起流体部分蒸发,以便所得到的流217是两相流。流217流入相分离器218,蒸气流219和液体流220都从相分离器218流入热交换器214的冷端。在热交换器214中,带冷量的多组分制冷剂流的第二部分与冷却的工业气体间接换热被温热,最好被全部蒸发。如上所述,对多组分制冷剂流体第二部分的温热过程还用于冷却第二部分213。所得到的温热后的第二部分221流出热交换器214,与第一部分206合并,用于流过热交换器207进行温热,然后成为流201,再循环至压缩机202。
工业气体流222经过压缩机225一般被压缩至100-900psia。所得到的经压缩的工业气体流226经过后冷却器227放出压缩热而被冷却,所得到的压缩了的工业气体流228在热交换器207中与透平膨胀后的多组分制冷剂流体第一部分的温热过程,以及与第二部分的温热过程间接换热而被冷却。所获得的冷却的工业气体流229在热交换器214中与膨胀后的多组分制冷剂流体的第二部分的温热过程间接换热被进一步冷却,并至少被部分液化。所得到的至少被部分液化的工业气体230通过阀231,接着成为流232进入相分离器233。来自相分离器233的工业气体蒸气成为流234、235和236,通过热交换器214和207而被温热,用来参与工业气体的冷却和液化,然后并入流222,在液化回路内再循环。液体工业气体从相分离器233抽出成为流237,通过阀238,成为流239送至使用站和/或储存起来。
为了在每一温度下提供所需的冷量,本发明实践中所用的多组分制冷剂流体含有至少两种组分。制冷剂组分的选择取决于特定工艺方法的冷负荷与温度的关系。可依据它们的常规沸点、潜热、可燃性、毒性及潜在臭氧耗减选择合适的组分。
用于本发明的多组分制冷剂流体的优选实施方案包括:取自碳氟化合物、氢氟碳化合物和氟代醚中的至少一种组分,及取自由碳氟化合物、氢氟碳化合物、氟代醚和环境气体中的至少一种组分。
用于本发明的另一个多组分制冷剂流体的优选实施方案包括:取自碳氟化合物、氢氟碳化合物、氟代醚中的至少一种组分,及至少一种环境气体。
用于本发明的另一个多组分制冷剂流体的优选实施方案包括:取自碳氟化合物、氢氟碳化合物、氟代醚中的至少两种组分,及至少一种环境气体。
用于本发明的另一个多组分制冷剂流体的优选实施方案包括:取自碳氟化合物、氢氟碳化合物、氟代醚中的至少两种组分,及至少两种环境气体。
用于本发明的另一个多组分制冷剂流体的优选实施方案包括:至少一种氟代醚,及取自碳氟化合物、氢氟碳化合物、氟代醚、及环境气体的中的至少一种组分。
在本发明的一个优选实施方案中,多组分制冷剂流体只包括碳氟化合物。在本发明的另一个优选实施方案中,多组分制冷剂流体只包括碳氟化合物和氢氟碳化合物。在本发明的又一个优选实施方案中,多组分制冷剂流体只包括碳氟化合物和环境气体。在本发明的再一个优选实施方案中,多组分制冷剂流体只包括碳氟化合物、氢氟碳化合物和氟代醚。在本发明的另一个优选实施方案中,多组分制冷剂流体只包括碳氟化合物、氟代醚和环境气体。
尽管用于本发明的多组分制冷剂流体可以含有其它的组分,如碳氢氯氟化合物,和/或碳氢化合物,但是优选多组分制冷剂流体最好不含碳氢氯氟化合物。在本发明的另一个优选实施方案中,多组分制冷剂流体不含碳氢化合物,最优选的是多组分制冷剂流体既不含碳氢氯氟化合物,又不含碳氢化合物。最优选的是多组分制冷剂流体无毒、不易燃、无臭氧耗减,而最优选的是,多组分制冷剂流体中的每一种或者是碳氟化合物、碳氢氟化合物、氟代醚,或者是环境气体。
本发明特别适用于从环境温度有效地达到低温。表1-5列出了用于本发明的多组分制冷剂流体的优选实施例。表1-5中给出的浓度是摩尔百分数。
              表1
       组分       浓度范围
       C5F12     5-25
       C4F10     0-15
       C3F8      10-40
       C2F6      0-30
       CF4        10-50
       Ar          0-40
       N2         10-80
       Ne          0-10
       He          1-10
             表2
      组分        浓度范围
       C3H35     5-25
       C4F10     0-15
       C3F8      10-40
       CHF3       0-30
       CF4        10-50
       Ar          0-40
       N2         10-80
       Ne          0-10
       He          0-10
           表3
      组分          浓度范围
      C3H3F5       5-25
      C3H2F6       0-15
      C2H2F4       5-20
      C2HF5         5-20
      C2F6          0-30
      CF4            10-50
      Ar              0-40
      N2             10-80
      Ne              0-10
      He              0-10
             表4
      组分          浓度范围
      CHF2-O-C2HF4 5-25
      C4F10         0-15
      CF3-O-CHF2    10-40
      CF3-O-CF3     0-20
      C2F6          0-30
      CF4            10-50
      Ar              0-40
      N2             10-80
      Ne              0-10
      He              0-10
                表5
          组分       浓度范围
          C3H3F5    5-25
          C3H2F6    0-15
          CF3-O-CHF3 10-40
          CHF3        0-30
          CF4         0-25
          Ar           0-40
          N2          10-80
          Ne           0-10
          He           0-10
本发明特别适用于在较宽温度范围内提供冷量,尤其包括提供低温温度范围的冷量。在本发明的一个优选实施方案中,制冷剂混和物的两种或者多种组分中的每一种的常规沸点与制冷剂混和物中每一种其它组分的常规沸点至少相差5°K,较优选的是相差10°K,最好是相差20°K。这就提高了在较宽温度范围内尤其在低温温度范围内的制冷效果。在本发明的一个特别优选的实施方案中,多组分制冷剂流体中最高沸点组分的常规沸点比多组分制冷剂流体中最低沸点组分的常规沸点至少高50°K,优选至少高100°K,最优选至少高200°K。
构成本发明的多组分制冷剂流体的组分和它们的浓度应能形成可变负荷的多组分制冷剂流体,最好该制冷剂流体能够在本发明方法的全部温度范围内保持可变负荷的特性。这就能在较宽的温度范围内更有效地产生和利用冷量。上述规定的优选组分还具有的优点是,能够用于形成无毒、不易燃、低或无臭氧耗减的流体混合物。因此本发明的制冷剂比传统的有毒、易燃、和/或有臭氧耗减的制冷剂具有额外的优点。
用于本发明的一种优选的无毒、不易燃、无臭氧耗减的可变负荷多组分制冷剂流体含有选自以下组分的两种或者多种组分:C5F12、CHF2-O-C2HF4、C4HF9、C3H3F5、C2F5-O-CH2F、C3H3F5、C3H2F6、CHF2-O-CHF2、C4F10、CF3-O-C2H2F3、C3HF7、CH2F-O-CF3、C2H2F4、CHF2-O-CF3、C3F8、C2HF5、CF3-O-CF3、C2F6、CHF3、CF4、O2、Ar、N2、Ne和He。
尽管已经参照某些优选实施方案详细地描述了本发明,显然对本领域的普通技术人员来说,在本发明的权利要求的构思和保护范围内,还可以有其它实施方案。

Claims (10)

1、一种液化工业气体的方法,包括:
(A)压缩工业气体,冷却压缩后的工业气体,形成冷却的工业气体,将压缩和冷却后的工业气体的第一部分透平膨胀,来产生冷量,并通过与透平膨胀后的第一部分间接换热,使压缩和冷却后的工业气体的第二部分至少部分冷凝,以产生被液化的工业气体;
(B)压缩含有至少两种组分的多组分制冷剂流体,冷却该压缩后的多组分制冷剂流体,使该压缩和冷却后的多组分制冷剂流体膨胀,产生冷量,并通过与所述冷却压缩后的工业气体的过程间接换热而温热该带冷量的膨胀后的多组分制冷剂流体;及
(C)回收液化后的工业气体作为产品。
2、根据权利要求1的方法,其中所述多组分制冷剂流体包括至少两种取自碳氟化合物、氢氟碳化合物、氟代醚中的组分,及至少两种取自环境气体的组分。
3、根据权利要求1的方法,其中多组分制冷剂流体包括至少一种氟代醚,及至少一种取自碳氟化合物、氢氟碳化合物、氟代醚及环境气体中的组分。
4、一种液化工业气体的方法,包括:
(A)压缩工业气体,将压缩后的工业气体的第一部分透平膨胀,来产生冷量,通过与透平膨胀后的第一部分工业气体间接换热使压缩后的第二部分工业气体冷却,并使该已经冷却后的第二部分工业气体进一步冷却,来产生液化的工业气体;
(B)压缩含有至少两种组分的多组分制冷剂流体,冷却该压缩后的多组分制冷剂流体,使该压缩和冷却后的多组分制冷剂流体膨胀,产生冷量,并通过与所述进一步冷却第二部分工业气体的过程间接换热而温热该带冷量的膨胀后的多组分制冷剂流体;及
(C)回收液化后的工业气体作为产品。
5、根据权利要求4的方法,其中,压缩后的工业气体在透平膨胀之前,在多组分制冷剂流体已与所述进一步冷却第二部分工业气体的过程间接换热之后,通过和所述多组分制冷剂流体进行间接换热而冷却。
6、根据权利要求4的方法,其中多组分制冷剂流体包括:至少一种取自碳氟化合物、氢氟碳化合物和氟代醚中的组分,以及至少一种取自碳氟化合物、氢氟碳化合物、氟代醚和环境气体中的组分。
7、一种液化工业气体的方法,包括:
(A)压缩含有至少两种组分的多组分制冷剂流体,使压缩后的多组分制冷剂流体的第一部分透平膨胀,来产生冷量,通过与所述工业气体间接换热温热该透平膨胀后的第一部分多组分制冷剂流体,以产生冷却的工业气体;
(B)进一步压缩已经压缩的多组分制冷剂流体的第二部分,使该进一步压缩后的多组分制冷剂流体第二部分膨胀,来产生冷量,并通过与该已经冷却后的工业气体间接换热而温热上述膨胀后的多组分制冷剂流体的第二部分,来产生液化的工业气体;
(C)回收液化后的工业气体作为产品。
8、根据权利要求7的方法,还包括:在膨胀之前,所述进一步压缩后的多组分制冷剂流体的第二部分通过与所述温热所述多组分制冷剂流体的透平膨胀后的第一部分的过程间接换热而被冷却。
9、根据权利要求7的方法,还包括:在所述多组分制冷剂流体的第二部分与冷却后的工业气体间接换热之后,通过与上述第二部分多组分制冷剂流体间接换热,来预冷工业气体。
10、根据权利要求7的方法,其中多组分制冷剂流体包括:至少两种取自碳氟化合物、氢氟碳化合物和氟代醚中的组分,及至少一种环境气体。
CNB991277899A 1998-12-30 1999-12-28 利用混合制冷低温液化工业气体 Expired - Fee Related CN1151353C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US09/222,814 US6041620A (en) 1998-12-30 1998-12-30 Cryogenic industrial gas liquefaction with hybrid refrigeration generation
US09/222814 1998-12-30

Publications (2)

Publication Number Publication Date
CN1264818A true CN1264818A (zh) 2000-08-30
CN1151353C CN1151353C (zh) 2004-05-26

Family

ID=22833807

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB991277899A Expired - Fee Related CN1151353C (zh) 1998-12-30 1999-12-28 利用混合制冷低温液化工业气体

Country Status (7)

Country Link
US (1) US6041620A (zh)
EP (1) EP1016845B1 (zh)
KR (1) KR20000052602A (zh)
CN (1) CN1151353C (zh)
BR (1) BR9905995A (zh)
CA (1) CA2293207C (zh)
DE (1) DE69916224T2 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101852534A (zh) * 2009-03-31 2010-10-06 林德股份公司 用于使富含烃类的馏份液化的方法
CN103487154A (zh) * 2012-06-14 2014-01-01 浙江三花股份有限公司 一种热力膨胀阀的感温包及其充注方法及其制冷系统
CN111156788A (zh) * 2018-11-07 2020-05-15 乔治洛德方法研究和开发液化空气有限公司 氢液化与气体处理单元的一体化
CN111156787A (zh) * 2018-11-07 2020-05-15 乔治洛德方法研究和开发液化空气有限公司 氢液化与气体处理单元的一体化

Families Citing this family (56)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6298688B1 (en) * 1999-10-12 2001-10-09 Air Products And Chemicals, Inc. Process for nitrogen liquefaction
US6308531B1 (en) * 1999-10-12 2001-10-30 Air Products And Chemicals, Inc. Hybrid cycle for the production of liquefied natural gas
US6230519B1 (en) * 1999-11-03 2001-05-15 Praxair Technology, Inc. Cryogenic air separation process for producing gaseous nitrogen and gaseous oxygen
US6266977B1 (en) 2000-04-19 2001-07-31 Air Products And Chemicals, Inc. Nitrogen refrigerated process for the recovery of C2+ Hydrocarbons
US6293106B1 (en) 2000-05-18 2001-09-25 Praxair Technology, Inc. Magnetic refrigeration system with multicomponent refrigerant fluid forecooling
AU7304301A (en) 2000-06-28 2002-01-08 Igc Polycold Systems, Inc. Nonflammable mixed refrigerants (MR) for use with very low temperature throttle-cycle refrigeration systems
US6330811B1 (en) 2000-06-29 2001-12-18 Praxair Technology, Inc. Compression system for cryogenic refrigeration with multicomponent refrigerant
US6327865B1 (en) 2000-08-25 2001-12-11 Praxair Technology, Inc. Refrigeration system with coupling fluid stabilizing circuit
US6668562B1 (en) 2000-09-26 2003-12-30 Robert A. Shatten System and method for cryogenic cooling using liquefied natural gas
US20070107465A1 (en) * 2001-05-04 2007-05-17 Battelle Energy Alliance, Llc Apparatus for the liquefaction of gas and methods relating to same
US7594414B2 (en) * 2001-05-04 2009-09-29 Battelle Energy Alliance, Llc Apparatus for the liquefaction of natural gas and methods relating to same
US7637122B2 (en) * 2001-05-04 2009-12-29 Battelle Energy Alliance, Llc Apparatus for the liquefaction of a gas and methods relating to same
US7591150B2 (en) * 2001-05-04 2009-09-22 Battelle Energy Alliance, Llc Apparatus for the liquefaction of natural gas and methods relating to same
US6415628B1 (en) * 2001-07-25 2002-07-09 Praxair Technology, Inc. System for providing direct contact refrigeration
US6494054B1 (en) * 2001-08-16 2002-12-17 Praxair Technology, Inc. Multicomponent refrigeration fluid refrigeration system with auxiliary ammonia cascade circuit
GB0120272D0 (en) * 2001-08-21 2001-10-10 Gasconsult Ltd Improved process for liquefaction of natural gases
US6438994B1 (en) 2001-09-27 2002-08-27 Praxair Technology, Inc. Method for providing refrigeration using a turboexpander cycle
US7478540B2 (en) * 2001-10-26 2009-01-20 Brooks Automation, Inc. Methods of freezeout prevention and temperature control for very low temperature mixed refrigerant systems
US6427483B1 (en) 2001-11-09 2002-08-06 Praxair Technology, Inc. Cryogenic industrial gas refrigeration system
US6484516B1 (en) * 2001-12-07 2002-11-26 Air Products And Chemicals, Inc. Method and system for cryogenic refrigeration
US6523366B1 (en) 2001-12-20 2003-02-25 Praxair Technology, Inc. Cryogenic neon refrigeration system
FI20020901A (fi) * 2002-05-13 2003-11-14 High Speed Tech Ltd Oy Menetelmä kylmälaitteen yhteydessä ja kylmälaite
US6560989B1 (en) 2002-06-07 2003-05-13 Air Products And Chemicals, Inc. Separation of hydrogen-hydrocarbon gas mixtures using closed-loop gas expander refrigeration
US8033120B2 (en) * 2002-10-25 2011-10-11 Honeywell International Inc. Compositions and methods containing fluorine substituted olefins
US6668581B1 (en) 2002-10-30 2003-12-30 Praxair Technology, Inc. Cryogenic system for providing industrial gas to a use point
US6591632B1 (en) 2002-11-19 2003-07-15 Praxair Technology, Inc. Cryogenic liquefier/chiller
US6694774B1 (en) 2003-02-04 2004-02-24 Praxair Technology, Inc. Gas liquefaction method using natural gas and mixed gas refrigeration
US7127914B2 (en) * 2003-09-17 2006-10-31 Air Products And Chemicals, Inc. Hybrid gas liquefaction cycle with multiple expanders
US7655610B2 (en) * 2004-04-29 2010-02-02 Honeywell International Inc. Blowing agent compositions comprising fluorinated olefins and carbon dioxide
US20050253107A1 (en) * 2004-01-28 2005-11-17 Igc-Polycold Systems, Inc. Refrigeration cycle utilizing a mixed inert component refrigerant
US7228714B2 (en) * 2004-10-28 2007-06-12 Praxair Technology, Inc. Natural gas liquefaction system
US7581411B2 (en) * 2006-05-08 2009-09-01 Amcs Corporation Equipment and process for liquefaction of LNG boiloff gas
CN101443616B (zh) * 2006-05-15 2012-06-20 国际壳牌研究有限公司 液化烃物流的方法和设备
US9574713B2 (en) 2007-09-13 2017-02-21 Battelle Energy Alliance, Llc Vaporization chambers and associated methods
US9254448B2 (en) 2007-09-13 2016-02-09 Battelle Energy Alliance, Llc Sublimation systems and associated methods
US8061413B2 (en) 2007-09-13 2011-11-22 Battelle Energy Alliance, Llc Heat exchangers comprising at least one porous member positioned within a casing
US9217603B2 (en) 2007-09-13 2015-12-22 Battelle Energy Alliance, Llc Heat exchanger and related methods
US8899074B2 (en) 2009-10-22 2014-12-02 Battelle Energy Alliance, Llc Methods of natural gas liquefaction and natural gas liquefaction plants utilizing multiple and varying gas streams
US8555672B2 (en) * 2009-10-22 2013-10-15 Battelle Energy Alliance, Llc Complete liquefaction methods and apparatus
US20090084132A1 (en) * 2007-09-28 2009-04-02 Ramona Manuela Dragomir Method for producing liquefied natural gas
WO2009101127A2 (en) 2008-02-14 2009-08-20 Shell Internationale Research Maatschappij B.V. Method and apparatus for cooling a hydrocarbon stream
US8534094B2 (en) * 2008-04-09 2013-09-17 Shell Oil Company Method and apparatus for liquefying a hydrocarbon stream
FR2957141B1 (fr) * 2010-03-08 2012-08-17 Total Sa Procede de liquefaction de gaz naturel utilisant un melange co2 / hfc en tant que fluide frigorigene
FR2957140B1 (fr) * 2010-03-08 2014-09-12 Total Sa Procede de liquefaction de gaz naturel utilisant de l'azote enrichi en tant que fluide frigorigene
CN101949607B (zh) * 2010-08-27 2012-07-11 郭富强 热力循环装置
FR2972792B1 (fr) * 2011-03-16 2017-12-01 L'air Liquide Sa Pour L'etude Et L'exploitation Des Procedes Georges Claude Procede et appareil de liquefaction de co2
FR2977014B1 (fr) * 2011-06-24 2016-04-15 Saipem Sa Procede de liquefaction de gaz naturel avec un melange de gaz refrigerant.
US10655911B2 (en) 2012-06-20 2020-05-19 Battelle Energy Alliance, Llc Natural gas liquefaction employing independent refrigerant path
GB2512360B (en) * 2013-03-27 2015-08-05 Highview Entpr Ltd Method and apparatus in a cryogenic liquefaction process
JP6377012B2 (ja) * 2015-04-28 2018-08-22 福島Di工業株式会社 二酸化炭素ガス回収装置
DE102015009255A1 (de) * 2015-07-16 2017-01-19 Linde Aktiengesellschaft Verfahren zum Abkühlen eines Prozessstromes
KR20170027103A (ko) * 2015-09-01 2017-03-09 한국가스공사 증발 가스의 재액화 방법
US10788259B1 (en) * 2015-12-04 2020-09-29 Chester Lng, Llc Modular, mobile and scalable LNG plant
CN106315499B (zh) * 2016-10-28 2017-09-19 上海聚宸新能源科技有限公司 一种相变蓄能式油气回收设备和回收方法
WO2018132785A1 (en) * 2017-01-16 2018-07-19 Praxair Technology, Inc. Refrigeration cycle for liquid oxygen densification
GB2575980A (en) * 2018-07-30 2020-02-05 Linde Ag High temperature superconductor refrigeration system

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3690114A (en) * 1969-11-17 1972-09-12 Judson S Swearingen Refrigeration process for use in liquefication of gases
CA925786A (en) * 1971-01-14 1973-05-08 J. F. Pritchard And Company Single mixed refrigerant, closed loop process for liquefying natural gas
US3733845A (en) * 1972-01-19 1973-05-22 D Lieberman Cascaded multicircuit,multirefrigerant refrigeration system
US3932154A (en) * 1972-06-08 1976-01-13 Chicago Bridge & Iron Company Refrigerant apparatus and process using multicomponent refrigerant
US3970441A (en) * 1973-07-17 1976-07-20 Linde Aktiengesellschaft Cascaded refrigeration cycles for liquefying low-boiling gaseous mixtures
US4325231A (en) * 1976-06-23 1982-04-20 Heinrich Krieger Cascade cooling arrangement
DE3313171A1 (de) * 1983-04-12 1984-10-18 Linde Ag, 6200 Wiesbaden Verfahren und vorrichtung zur gewinnung von rein-co
US4548629A (en) * 1983-10-11 1985-10-22 Exxon Production Research Co. Process for the liquefaction of natural gas
JP3208151B2 (ja) * 1991-05-28 2001-09-10 三洋電機株式会社 冷凍装置
US5157925A (en) * 1991-09-06 1992-10-27 Exxon Production Research Company Light end enhanced refrigeration loop
US5605882A (en) * 1992-05-28 1997-02-25 E. I. Du Pont De Nemours And Company Azeotrope(like) compositions of pentafluorodimethyl ether and difluoromethane
JPH06159928A (ja) * 1992-11-20 1994-06-07 Chiyoda Corp 天然ガス液化方法
US5441658A (en) * 1993-11-09 1995-08-15 Apd Cryogenics, Inc. Cryogenic mixed gas refrigerant for operation within temperature ranges of 80°K- 100°K
US5408848A (en) * 1994-02-25 1995-04-25 General Signal Corporation Non-CFC autocascade refrigeration system
US5566555A (en) * 1995-03-27 1996-10-22 Hewitt; J. Paul Vapor recovery system with refrigeration and regeneration cycles
US5579654A (en) * 1995-06-29 1996-12-03 Apd Cryogenics, Inc. Cryostat refrigeration system using mixed refrigerants in a closed vapor compression cycle having a fixed flow restrictor
CA2232674A1 (en) * 1995-09-21 1997-03-27 George H. Goble Drop-in substitutes for dichlorodifluoromethane refrigerant
US5755114A (en) * 1997-01-06 1998-05-26 Abb Randall Corporation Use of a turboexpander cycle in liquefied natural gas process
GB9712304D0 (en) * 1997-06-12 1997-08-13 Costain Oil Gas & Process Limi Refrigeration cycle using a mixed refrigerant

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101852534A (zh) * 2009-03-31 2010-10-06 林德股份公司 用于使富含烃类的馏份液化的方法
CN103487154A (zh) * 2012-06-14 2014-01-01 浙江三花股份有限公司 一种热力膨胀阀的感温包及其充注方法及其制冷系统
CN111156788A (zh) * 2018-11-07 2020-05-15 乔治洛德方法研究和开发液化空气有限公司 氢液化与气体处理单元的一体化
CN111156787A (zh) * 2018-11-07 2020-05-15 乔治洛德方法研究和开发液化空气有限公司 氢液化与气体处理单元的一体化
CN111156787B (zh) * 2018-11-07 2022-06-03 乔治洛德方法研究和开发液化空气有限公司 氢液化与气体处理单元的一体化
CN111156788B (zh) * 2018-11-07 2022-06-24 乔治洛德方法研究和开发液化空气有限公司 氢液化与气体处理单元的一体化

Also Published As

Publication number Publication date
DE69916224T2 (de) 2005-04-14
KR20000052602A (ko) 2000-08-25
BR9905995A (pt) 2001-03-27
CN1151353C (zh) 2004-05-26
EP1016845A3 (en) 2000-09-20
EP1016845A2 (en) 2000-07-05
US6041620A (en) 2000-03-28
EP1016845B1 (en) 2004-04-07
DE69916224D1 (de) 2004-05-13
CA2293207C (en) 2003-08-26
CA2293207A1 (en) 2000-06-30

Similar Documents

Publication Publication Date Title
CN1151353C (zh) 利用混合制冷低温液化工业气体
CN1263243A (zh) 带内循环的多组分致冷剂冷却
CN1153038C (zh) 工业气体的单回路低温液化
CN1140737C (zh) 在封闭循环中使用可变负荷的制冷剂混合物的制冷方法
CN1151352C (zh) 用于冷却工业气体的方法
CN1179169C (zh) 制冷方法
CN1122798C (zh) 为低温精馏装置提供致冷的方法和设备
CN1165736C (zh) 分离流体混合物的方法
US6881354B2 (en) Multicomponent refrigerant fluids for low and cryogenic temperatures
CN1295229A (zh) 生产气态氮和气态氧的低温空气分离法
MXPA99011766A (es) Sistema de refrigeracion de carga variable particularmente para temperaturas criogenicas
CN109780817A (zh) 工业气体的多回路低温液化

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
ASS Succession or assignment of patent right

Owner name: PLEX TECHNOLOGIES CORP.

Free format text: FORMER OWNER: PLACER TECHNOLOGY CO., LTD.

Effective date: 20010824

C41 Transfer of patent application or patent right or utility model
TA01 Transfer of patent application right

Effective date of registration: 20010824

Applicant after: Praxair Technology, Inc.

Applicant before: Praxair Technology Inc.

C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C19 Lapse of patent right due to non-payment of the annual fee
CF01 Termination of patent right due to non-payment of annual fee