CN1264291C - Polarization mould disporsion compensation system - Google Patents
Polarization mould disporsion compensation system Download PDFInfo
- Publication number
- CN1264291C CN1264291C CNB031501206A CN03150120A CN1264291C CN 1264291 C CN1264291 C CN 1264291C CN B031501206 A CNB031501206 A CN B031501206A CN 03150120 A CN03150120 A CN 03150120A CN 1264291 C CN1264291 C CN 1264291C
- Authority
- CN
- China
- Prior art keywords
- polarization
- optical fiber
- delay line
- optical
- fiber communication
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 230000010287 polarization Effects 0.000 title claims abstract description 81
- 239000013078 crystal Substances 0.000 claims abstract description 63
- 230000003287 optical effect Effects 0.000 claims abstract description 63
- 239000013307 optical fiber Substances 0.000 claims abstract description 55
- 238000004891 communication Methods 0.000 claims abstract description 44
- 239000006185 dispersion Substances 0.000 claims abstract description 18
- 239000000463 material Substances 0.000 claims description 9
- 229910009372 YVO4 Inorganic materials 0.000 claims description 8
- 230000000694 effects Effects 0.000 claims description 4
- 238000004519 manufacturing process Methods 0.000 abstract description 2
- 238000000034 method Methods 0.000 description 16
- 230000005540 biological transmission Effects 0.000 description 5
- 239000004973 liquid crystal related substance Substances 0.000 description 5
- 230000009286 beneficial effect Effects 0.000 description 3
- 239000000835 fiber Substances 0.000 description 3
- 230000003044 adaptive effect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000036632 reaction speed Effects 0.000 description 1
- 230000008054 signal transmission Effects 0.000 description 1
Images
Landscapes
- Optical Communication System (AREA)
Abstract
本发明公开了属于光纤通信领域的一种偏振模色散补偿系统。该系统包括耦合器、偏振控制器、光准直器、可变光延迟线、探测器、计算机及控制系统。光准直器、可变光延迟线以光轴同心摆放在一条直线上;由耦合器、探测器、和计算机串联后,计算机再分别和偏振控制器、可变光延迟线连接组成反馈控制电路。其可变光延迟线采用若干段双折射晶体和PR间隔排列固定,因此结构简单,性能稳定,受外界环境影响小。由计算机、探测器等组成的反馈控制电路,使偏振控制器产生与光纤通信系统的PMD方向相反的偏振态,相互抵消,达到偏振模色散补偿的目的。该装置装配简单,调整方便,既容易制作,又便于携带和施工,从而使其价格下降,具有广阔的应用空间。
The invention discloses a polarization mode dispersion compensation system belonging to the field of optical fiber communication. The system includes a coupler, a polarization controller, an optical collimator, a variable optical delay line, a detector, a computer and a control system. The optical collimator and the variable optical delay line are placed on a straight line with the optical axis concentric; after the coupler, the detector, and the computer are connected in series, the computer is connected to the polarization controller and the variable optical delay line respectively to form a feedback control circuit. Its variable optical delay line adopts several sections of birefringent crystals and PRs arranged and fixed at intervals, so the structure is simple, the performance is stable, and it is less affected by the external environment. The feedback control circuit composed of computer, detector, etc. makes the polarization controller generate the polarization state opposite to the PMD direction of the optical fiber communication system, and cancel each other to achieve the purpose of polarization mode dispersion compensation. The device is simple to assemble, convenient to adjust, easy to manufacture, and convenient to carry and construct, thereby reducing its price and having broad application space.
Description
技术领域technical field
本发明属于光纤通信领域,特别涉及一种偏振模色散补偿系统。The invention belongs to the field of optical fiber communication, in particular to a polarization mode dispersion compensation system.
背景技术Background technique
偏振模色散是高速、大容量光纤通信系统中引起信号展宽的一个重要原因。在理想光纤传输系统中,光纤为圆对称结构。而在实际系统中,光纤由于制造的原因和温度、振动、应力等影响,并不是理想的圆对称结构,从而引起随机双折射。当一束光信号在这样的光纤中传输,光信号将产生分裂,从而引起脉冲展宽,这种脉冲展宽的现象称为偏振模色散(简称PMD)。分析传输系统中PMD时,通常将光纤认为是存在两个正交偏振态的双折射介质,光信号在两正交偏振态上的传输速度不同,从而导致信号展宽。表征系统PMD时,通常将正交偏振态中传播速度较快的偏振态方向定义为PMD的方向,信号在两正交偏振态上传输的群时延差值称为群时延差(简称DGD)。PMD严重影响着信号传输质量,尤其是在采用早期铺设的光缆传输速率大于10Gbps的系统里,由于PMD造成的信号展宽将使信号无法分辨,因此必须进行补偿。Polarization mode dispersion is an important cause of signal broadening in high-speed and large-capacity optical fiber communication systems. In an ideal optical fiber transmission system, the optical fiber has a circular symmetric structure. However, in the actual system, the optical fiber is not an ideal circular symmetric structure due to manufacturing reasons and the influence of temperature, vibration, stress, etc., which causes random birefringence. When a beam of optical signal is transmitted in such an optical fiber, the optical signal will be split, thereby causing pulse broadening. This phenomenon of pulse broadening is called polarization mode dispersion (PMD for short). When analyzing the PMD in the transmission system, the optical fiber is usually considered as a birefringent medium with two orthogonal polarization states, and the transmission speed of the optical signal in the two orthogonal polarization states is different, resulting in signal broadening. When characterizing the PMD of a system, the direction of the polarization state with the fastest propagation speed among the orthogonal polarization states is usually defined as the direction of the PMD, and the group delay difference of the signal transmitted on the two orthogonal polarization states is called the group delay difference (DGD for short). ). PMD seriously affects the quality of signal transmission, especially in systems where the transmission rate of the optical cable laid in the early stage is greater than 10Gbps, the signal broadening caused by PMD will make the signal indistinguishable, so it must be compensated.
由于光纤随机双折射的不可预见性,决定了PMD补偿必须为动态自适应的方式。为此,人们设计了许多补偿方法和装置。除电补偿方法外,这些方法基本基于采用可变或固定光延迟线单元加偏振控制器,加反馈控制电路的方法,人为的产生与系统中的PMD大小相等,方向相反的PMD,两者相互抵消,达到减小系统PMD的目的。但是,在文献(1).D.Sobiski,D.Pikula,etal,“Fast first-orderPMD compensation with low insertion loss for 10Gbit/s system”,Electron.Lett.,Vol.37,No.1,pp 46~48,4th Jan.2001;(2)Hok Yong Pua,etal,“Anadaptive first-order polarization-mode dispersion compensation systemaided by polarization scrambling:theory and demonstration”,J.ofLightwave Technol.,Vol.18,No.6,pp832~841,Jun.2000;(3).FredHeismann,etal,“Automatic compensation of first-order polarization modedispersion in a 10Gb/s transmission system,in Proc.ECOC’98(Madrid),pp529~5301及专利WO 02/35743,2002/5/2中提出的基于双折射光纤的方法和干涉仪的方法,补偿系统不是长度过长,就是器件对环境要求很高。而如专利WO01/61385,2001/8/21中提出的采用偏振分光棱镜和普通的自聚焦透镜作为偏振控制器和准直器的方法,光机零件过多,不利于系统集成。在文献(4)S.Lee,etal,“Adjustable compensation of polarization mode dispersion using ahigh-birefringence nonlinearly chirped fiber Bragg grating”,IEEEPhoton.Technol.Lett.,Vol.11,No.10,pp1277~1279,Oct.1999中提出的采用高双折射非线性啁啾光纤光栅的方法,制作工艺复杂,价格昂贵。文献(5)D.Sandel,etal,“10-Gb/s PMD compensation using deformed-helicalferroelectric liquid crystals”,in Proc.ECOC’98(Madrid),pp555~556及专利US 6,417,948 B1,2002/7/9、中提出了“采用液晶做为偏振控制器的方法”,但它由于液晶的固有性质而使其反应速度受到限制。专利US 2002/0118455A1,2002/8/29中“采用等比长度的高双折射材料进行补偿的方法”,当光纤内没有PMD时,通过PMD补偿器却产生了一定的附加PMD,而WO 01/10811 A2,2002/2/7中虽然通过加电致双折射晶体或液晶产生了PMD为零的状态,但通常驱动电压较高或对环境要求较高。为使PMD补偿器能真正适用于光纤通信系统,有必要设计一种结构简单,性能稳定,体积小,易与系统耦合,反应迅速,功耗小,工程上容易实现且能动态控制的PMD补偿系统。Due to the unpredictability of the random birefringence of the fiber, it is determined that the PMD compensation must be a dynamic adaptive method. For this reason, people have designed many compensation methods and devices. In addition to the electrical compensation method, these methods are basically based on the method of using a variable or fixed optical delay line unit plus a polarization controller and a feedback control circuit. The PMD that is artificially generated is equal to and opposite to the PMD in the system, and the two interact with each other. Offset to achieve the purpose of reducing the system PMD. However, in literature (1). D. Sobiski, D. Pikula, et al, "Fast first-order PMD compensation with low insertion loss for 10Gbit/s system", Electron. Lett., Vol.37, No.1, pp 46 ~48, 4th Jan.2001; (2) Hok Yong Pua, et al, "Anadaptive first-order polarization-mode dispersion compensation systemaided by polarization scrambling: theory and demonstration", J.ofLightwave Technol., Vol.18, No. 6, pp832~841, Jun.2000; (3).FredHeismann, etal, "Automatic compensation of first-order polarization modedispersion in a 10Gb/s transmission system, in Proc.ECOC'98 (Madrid), pp529~5301 and patent In WO 02/35743, the method based on birefringent fiber and the method of interferometer proposed in WO 02/35743, 2002/5/2, the compensation system is either too long in length, or the device has high requirements on the environment. As in patent WO01/61385, 2001/8 Proposed in /21 adopts the polarization splitting prism and common self-focusing lens as the method of polarization controller and collimator, and there are too many optical-mechanical components, which is unfavorable for system integration. In document (4) S.Lee, etal, "Adjustable compensation of polarization mode dispersion using a high-birefringence nonlinearly chirped fiber Bragg grating", IEEE Photon. The grating method is complex and expensive. Literature (5) D.Sandel, etal, "10-Gb/s PMD compensation using deformed-helicalferroelectric liquid crystals", in Proc.ECOC'98 (Madrid), pp555~556 And the patent US 6,417,948 B1, 2002/7/9, proposed "the method of using liquid crystal as a polarization controller", but its reaction speed is limited due to the inherent properties of liquid crystal. Patent US 2002/0118455A1, 2002/8/29 "Compensation method using high birefringence material with equal length", when there is no PMD in the optical fiber, a certain amount of additional PMD is generated through the PMD compensator, while WO 01 In /10811 A2, 2002/2/7, although the state of PMD is zero is produced by adding electric birefringent crystal or liquid crystal, but usually the driving voltage is relatively high or the environmental requirements are relatively high. In order to make the PMD compensator truly applicable to the optical fiber communication system, it is necessary to design a PMD compensation that is simple in structure, stable in performance, small in size, easy to couple with the system, fast in response, low in power consumption, easy to implement in engineering and capable of dynamic control. system.
发明内容Contents of the invention
本发明的目的是提供易与系统耦合,反应迅速,功耗小,工程上容易实现且能动态控制的一种偏振模色散补偿系统,该系统包括一个耦合器,一个偏振控制器,一对光准直器,一段可变光延迟线及反馈控制电路,其特征在于:所述光准直器、可变光延迟线以光轴同心摆放在一条直线上,所述可变光延迟线位于所述一对光准直器之间;所述反馈控制电路的探测器5和计算机6与耦合器1串联,计算机6再分别和偏振控制器2、可变光延迟线4连接,从偏振模色散补偿系统所应用的光纤通信系统的光纤出射的光束,首先进入耦合器1,由耦合器1出射的光束分为两束,其中一束作为控制信号进入探测器5,通过计算机6进行处理,得到所述光纤通信系统PMD的大小和方向,另一束进入偏振控制器2,从偏振控制器2出射的光束进入光准直器3;计算机6将所述光纤通信系统PMD的方向信息反馈到偏振控制器2的控制电路,使偏振控制器2产生与光纤通信系统PMD方向相反的偏振态;计算机6将所述光纤通信系统PMD的大小信息反馈到可变光延迟线4的控制电路,使可变光延迟线4的DGD值与所述光纤通信系统中DGD相等,从而达到补偿光纤通信系统PMD的目的。The purpose of the present invention is to provide a polarization mode dispersion compensation system that is easy to be coupled with the system, has rapid response, low power consumption, is easy to implement in engineering, and can be dynamically controlled. The system includes a coupler, a polarization controller, a pair of optical A collimator, a variable optical delay line and a feedback control circuit are characterized in that: the optical collimator and the variable optical delay line are concentrically placed on a straight line with the optical axis, and the variable optical delay line is located at Between the pair of optical collimators; the
所述耦合器、偏振控制器和光准直器均为带尾纤器件,有利于与光纤系统连接;其偏振控制器为直流伺服电机控制,便于快速自动控制偏振状态。The coupler, the polarization controller and the optical collimator are all devices with pigtails, which are beneficial to connect with the optical fiber system; the polarization controller is controlled by a DC servo motor, which is convenient for fast and automatic control of the polarization state.
所述可变光延迟线包括n+1段双折射晶体和n个基于磁光效应的偏振旋转器PR,所述晶体和PR间隔排列,排列方式为从前往后依次为最长的晶体,PR,次长的晶体,PR,一直到最短的晶体;其n+1段双折射晶体包括n个长度成倍增长的晶体和另加一块n个双折射晶体中最短长度的晶体;该PR由通电线圈和其内部的磁光晶体构成;通过控制通电线圈中电流的大小和方向,可以控制通过磁光晶体的磁场的大小和方向,使可变光延迟线内前后两晶体的快轴或慢轴重合,从而控制两块晶体DGD值的加、减;其中n为自然数。The variable optical delay line includes n+1 birefringent crystals and n polarization rotators PR based on the magneto-optic effect. The crystals and PRs are arranged at intervals in the order of the longest crystal from front to back, PR , the second-longest crystal, PR, until the shortest crystal; its n+1 segment birefringent crystals include n crystals whose length doubles and an additional crystal with the shortest length among the n birefringent crystals; the PR consists of electrified The coil and its internal magneto-optical crystal are composed; by controlling the magnitude and direction of the current in the energized coil, the magnitude and direction of the magnetic field passing through the magneto-optic crystal can be controlled, so that the fast axis or slow axis of the front and rear crystals in the variable optical delay line Overlap, thereby controlling the addition and subtraction of the DGD values of the two crystals; where n is a natural number.
所述双折射晶体为YVO4,两相邻晶体间快轴或慢轴夹角为45度,PR可使线偏振光偏振态旋转±45度。The birefringent crystal is YVO4, the angle between the fast axis and the slow axis between two adjacent crystals is 45 degrees, and PR can rotate the polarization state of linearly polarized light by ±45 degrees.
所述n根据光纤通信系统要求补偿的最大DGD值和光纤通信系统允许残余的DGD值确定,其中设光纤通信系统最大DGD=x,光纤通信系统允许残余的最大DGD=y,则要求补偿系统分辨率小于等于2y,因此要求光延迟线中最小晶体产生的DGD值小于或等于y,因而n的最小值由计算公式2n-1+1≥x/2y确定,由此确定双折射晶体的材料及长度。Said n is determined according to the maximum DGD value required to be compensated by the optical fiber communication system and the allowable residual DGD value of the optical fiber communication system, where the maximum DGD=x of the optical fiber communication system is set, and the maximum DGD=y of the optical fiber communication system allows the residual, then the compensation system is required to distinguish The rate is less than or equal to 2y, so the DGD value produced by the smallest crystal in the optical delay line is required to be less than or equal to y, so the minimum value of n is determined by the
本发明的有益效果:1.可变光延迟线采用若干段晶体和PR按特定方式排列固定,操作过程中没有活动部件,因此结构简单,性能稳定,受外界环境影响小;2.耦合器、偏振控制器和光准直器均为带尾纤器件,有利于与光纤系统连接;其偏振控制器为直流伺服电机控制,便于快速自动控制偏振状态。3.计算机将光纤通信系统的PMD的方向信息反馈到偏振控制器控制电路,使偏振控制器2产生与光纤通信系统PMD方向相反的偏振态。4.工程上容易实现PMD补偿的动态控制,5.系统没有PMD时,不会产生额外的PMD。Beneficial effects of the present invention: 1. The variable optical delay line adopts several segments of crystals and PRs arranged and fixed in a specific way, and there are no moving parts in the operation process, so the structure is simple, the performance is stable, and is less affected by the external environment; 2. The coupler, Both the polarization controller and optical collimator are devices with pigtails, which are beneficial to connect with the optical fiber system; the polarization controller is controlled by a DC servo motor, which is convenient for fast and automatic control of the polarization state. 3. The computer feeds back the direction information of the PMD of the optical fiber communication system to the polarization controller control circuit, so that the
附图说明Description of drawings
图1为偏振模色散补偿系统原理图。Figure 1 is a schematic diagram of a polarization mode dispersion compensation system.
具体实施方式Detailed ways
本发明提供的是易与系统耦合,反应迅速,功耗小,工程上容易实现且能动态控制的一种偏振模色散补偿系统。该系统的光准直器3和由包括n+1段双折射晶体和n个基于磁光效应的偏振旋转器PR组成的可变光延迟线4以光轴同心摆放在一条直线上(n为根据光纤通信系统要求补偿的最大DGD值和系统允许残余的DGD值确定的某自然数)。上述晶体和PR的间隔排列方式为从前往后依次为最长的晶体,PR,次长的晶体,PR,一直到最短的晶体。反馈控制电路包括探测器5和计算机6与耦合器1串联,计算机再分别和偏振控制器2、可变光延迟线4连接(如图1所示),用于将PMD的方向信息反馈到偏振控制器2控制电路,使偏振控制器2产生与光纤通信系统PMD方向相反的偏振态;将所述光纤通信系统PMD的大小信息反馈到可变光延迟线4的控制电路,使可变光延迟线4的DGD值与所述光纤通信系统中DGD相等。上述耦合器1、偏振控制器2、和光准直器3均为带尾纤器件,有利于与光纤系统连接;其偏振控制器2为直流伺服电机控制,便于快速自动控制偏振状态。通过下面的工作原理可进一步对本发明予以说明:The invention provides a polarization mode dispersion compensation system which is easy to be coupled with the system, has quick response, low power consumption, is easy to implement in engineering and can be dynamically controlled. The
1)从偏振模色散补偿系统所应用的光纤通信系统的光纤出射的光束,首先进入耦合器1,由耦合器1出射的光束分为两束,其中一束作为控制信号进入探测器5,通过计算机6进行处理,得到所述光纤通信系统的PMD的大小和方向。2)计算机将所述光纤通信系统PMD的方向信息反馈到偏振控制器2控制电路,使偏振控制器2产生与所述光纤通信系统PMD方向相反的偏振态。3)光束从偏振控制器2进入准直器3,使光束成为准直光束射出。该准直器3工作距离应大于可变光延迟线4的长度。4)光束从准直器3出射后,进入可变光延迟线4,计算机6将所述光纤通信系统PMD的大小信息反馈到可变光延迟线4的控制电路,使可变光延迟线4的DGD值与所述光纤通信系统中DGD相等。5)可变光延迟线4是由包括n+1段双折射晶体和n个基于磁光效应的偏振旋转器组成的。两相邻晶体间快轴或慢轴夹角为45度,PR可使线偏振光偏振态旋转±45度,当PR使线偏振光偏振态旋转+45度时,前面晶体的快轴与后面晶体的慢轴重合,光延迟线的DGD值为单独两块晶体的DGD值相减,反之,当PR使线偏振光偏振态旋转-45度时,前面晶体的快轴与后面晶体的快轴重合,光延迟线的DGD值为两块晶体的DGD值相加。通过控制晶体的长度或选择适当的双折射晶体材料,可产生具有不同分辨率的光延迟线,通过控制双折射晶体的段数,可以产生足够多的DGD状态和足够大的DGD值,因此可以满足不同场合的要求。n为根据光纤通信系统中最大DGD值和系统允许残余的DGD值确定的某自然数,由系统允许的残余DGD值确定。计算公式如下:设某光纤通信系统中最大DGD=x,系统允许最大DGD=y,则要求补偿系统分辨率小于等于2y(按4舍5入原则,补偿器分辨率的一半为通信系统允许的残余DGD),因此要求光延迟线中最小晶体产生的DGD值小于或等于y,由此确定双折射晶体的材料及长度;补偿系统需要产生N≥x/2y种DGD值,即2n-1+1≥x/2y,由此确定n的最小值。6)光束从光延迟线4出射后进入带尾纤的准直器3,连接进入光纤通信系统。该发明由于只是采用若干段双折射晶体和PR按特定方式排列固定,操作过程中没有活动部件,因此结构简单,性能稳定,受外界环境影响小。由于高双折射晶体可以在很短的长度内产生很大的DGD值,因此在产生同样的DGD的条件下,它的体积相对很小,例如,一种最大可产生45ps的DGD的延迟线其长度仅为150mm。由于耦合器、偏振控制器2、准直器均采用带尾纤的器件,因此光机零件少,受外界环境影响小,易与光纤通信系统耦合。延迟线内采用控制磁光晶体偏振旋光角的变化得到不同DGD值的方法与采用机械或液晶等方式调整DGD值的方法相比,速度更快,而且稳定。该延迟线单元中由于将一般延迟线中一个最小双折射材料增加为两个,并在两个最小双折射材料之间增加了一个PR,从而解决了一般基于双折射材料的补偿系统中没有DGD=0状态的情况,因此不会增加系统中的PMD。电控部分中,偏振控制器2驱动电压12V,电流为0.65A,每个PR驱动电流为50mA,2KHz下驱动电压为2.5V,因此功耗小。整个系统为通过反馈信号自动补偿系统中PMD,因此也是自适应和动态的。1) The beam emitted from the optical fiber of the optical fiber communication system used in the polarization mode dispersion compensation system first enters the
例举一个计算实例:设为了补偿DGD值在45ps以内的光纤通信系统,系统允许的DGD为0.75ps。计算得到,为满足要求,需要最小长度双折射晶体产生的DGD≤0.75ps,至少需要有30种DGD状态,根据2n-1+1≥30,得到n≥5.85,取n=6,即双折射晶体为7段,偏振旋转器为6个。该系统PMD值较大,分辨率要求不高,选取高双折射晶体,如YVO4。1mmYVO4产生的DGD值为0.72ps,因此它的分辨率可达到1.44ps,该计算结果表明,从前往后按照32mmYVO4,PR,16mmYVO4,PR,8mm YVO4,PR,4mm YVO4,PR,2mm YVO4,PR,1mm YVO4,PR,1mm YVO4排列的光延迟线满足系统要求,可产生0,1.44,2.88,4.32,……,46.08ps共33种状态,残余DGD≤0.72ps。磁光晶体选取响应速度快,饱和磁场小的磁光薄膜等,线圈采用电感小的漆包线或其他材料,以增加系统响应速度和降低功耗。耦合器采用适当分光比的耦合器,以尽量减小光信号的损耗且探测器接收信号不会被噪声湮没为宜。Give an example of calculation: it is assumed that the optical fiber communication system whose compensation DGD value is within 45ps, the allowable DGD of the system is 0.75ps. It is calculated that in order to meet the requirements, the DGD produced by the minimum length birefringent crystal is required to be ≤0.75ps, and there must be at least 30 DGD states. According to 2 n-1 +1≥30, n≥5.85 is obtained, and n=6, that is, double There are 7 segments of refracting crystals and 6 polarization rotators. The PMD value of this system is relatively large, and the resolution requirements are not high. Select high birefringent crystals, such as YVO4. The DGD value produced by 1mmYVO4 is 0.72ps, so its resolution can reach 1.44ps. The calculation results show that from front to back according to Optical delay lines arranged in 32mmYVO4, PR, 16mmYVO4, PR, 8mm YVO4, PR, 4mm YVO4, PR, 2mm YVO4, PR, 1mm YVO4, PR, 1mm YVO4 meet the system requirements and can produce 0, 1.44, 2.88, 4.32,… …, 33 states in 46.08ps, residual DGD≤0.72ps. Magneto-optic crystals use magneto-optic films with fast response speed and small saturation magnetic field, and coils use enameled wires or other materials with low inductance to increase system response speed and reduce power consumption. The coupler adopts a coupler with an appropriate splitting ratio to minimize the loss of the optical signal and it is advisable that the signal received by the detector will not be obliterated by noise.
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNB031501206A CN1264291C (en) | 2003-07-18 | 2003-07-18 | Polarization mould disporsion compensation system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNB031501206A CN1264291C (en) | 2003-07-18 | 2003-07-18 | Polarization mould disporsion compensation system |
Publications (2)
Publication Number | Publication Date |
---|---|
CN1476185A CN1476185A (en) | 2004-02-18 |
CN1264291C true CN1264291C (en) | 2006-07-12 |
Family
ID=34156433
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CNB031501206A Expired - Fee Related CN1264291C (en) | 2003-07-18 | 2003-07-18 | Polarization mould disporsion compensation system |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN1264291C (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1333285C (en) * | 2005-03-25 | 2007-08-22 | 清华大学 | A Polarization Controller and Its Application |
CN101834673B (en) * | 2010-05-13 | 2013-09-04 | 武汉邮电科学研究院 | Polarization mode dispersion compensation method |
CN102044835B (en) * | 2010-12-09 | 2012-07-25 | 中国电子科技集团公司第四十四研究所 | Narrow-pulse polarization controller |
CN102170312B (en) * | 2011-04-26 | 2013-10-30 | 聊城大学 | Self-adaptive polarization mode optical dispersion compensation method |
-
2003
- 2003-07-18 CN CNB031501206A patent/CN1264291C/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
CN1476185A (en) | 2004-02-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6417948B1 (en) | Variable delay device for an optical component such as a polarization mode dispersion compensator | |
CN1135728C (en) | Equalization method and device for optical domain interference and distorted electrical signal | |
JPH07202798A (en) | Light communication system | |
JP2002520665A (en) | Method and compensator for compensating polarization mode dispersion | |
CN1241043C (en) | Emulator and compensator for polarization mode dispersion | |
US20020015547A1 (en) | Compact multi-channel polarization mode dispersion compensator | |
CN1264291C (en) | Polarization mould disporsion compensation system | |
EP0652450A1 (en) | Low-loss dual-mode optical fiber compensators | |
KR100395659B1 (en) | Polarization Mode Dispersion Emulator | |
CN100388058C (en) | Polarization transformer and polarization mode dispersion compensator | |
CN114584224B (en) | Quantum key distribution phase encoding device | |
US6282333B1 (en) | Method and device to compensate for polarization mode dispersion in an optical transmission link | |
US20020018267A1 (en) | Methods and apparatus for adaptive optical distortion compensation using magneto-optic device | |
CN1284994C (en) | Method and apparatus for reducing system degradation caused by polarization effects | |
CN1482480A (en) | Polarization mode dispersion compensation process and compensator thereof | |
CN1238750C (en) | Variable birefringence cell and dispersion compensator in polarization mode | |
CN1313853C (en) | Polarized mode dispersion compensator | |
Cai et al. | Equalization of nonuniform EDFA gain using a fiber-loop mirror | |
CN102314002B (en) | Polarization controller | |
CN1236338C (en) | Polarization mode dispersion compensator based on fiber bragg grating and preparation method thereof | |
CN101324735B (en) | Device for Improving Laser Signal-to-Noise Ratio | |
CN1239932C (en) | Polarizing mould dispersion simulator | |
US20030223759A1 (en) | Device and method for compensation of polarization mode dispersion | |
CN1182434C (en) | Light intensity controlled variable birefringence fiber all-optical switch | |
Lin et al. | A novel couple-type power divider with large-angle low-loss characteristics |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
C17 | Cessation of patent right | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20060712 |