CN1251906A - 用非对称耦合器制作的光纤马赫-策德尔干涉仪 - Google Patents

用非对称耦合器制作的光纤马赫-策德尔干涉仪 Download PDF

Info

Publication number
CN1251906A
CN1251906A CN99123929A CN99123929A CN1251906A CN 1251906 A CN1251906 A CN 1251906A CN 99123929 A CN99123929 A CN 99123929A CN 99123929 A CN99123929 A CN 99123929A CN 1251906 A CN1251906 A CN 1251906A
Authority
CN
China
Prior art keywords
optical fiber
zone
mach
propagation constant
asymmetric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN99123929A
Other languages
English (en)
Inventor
科尔姆·V·克里安
Original Assignee
Thomas Bates International Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thomas Bates International Inc filed Critical Thomas Bates International Inc
Publication of CN1251906A publication Critical patent/CN1251906A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B9/00Measuring instruments characterised by the use of optical techniques
    • G01B9/02Interferometers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/293Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means
    • G02B6/29346Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means operating by wave or beam interference
    • G02B6/2935Mach-Zehnder configuration, i.e. comprising separate splitting and combining means
    • G02B6/29352Mach-Zehnder configuration, i.e. comprising separate splitting and combining means in a light guide
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/293Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means
    • G02B6/29346Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means operating by wave or beam interference
    • G02B6/2935Mach-Zehnder configuration, i.e. comprising separate splitting and combining means
    • G02B6/29352Mach-Zehnder configuration, i.e. comprising separate splitting and combining means in a light guide
    • G02B6/29353Mach-Zehnder configuration, i.e. comprising separate splitting and combining means in a light guide with a wavelength selective element in at least one light guide interferometer arm, e.g. grating, interference filter, resonator
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/2804Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals forming multipart couplers without wavelength selective elements, e.g. "T" couplers, star couplers
    • G02B6/2821Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals forming multipart couplers without wavelength selective elements, e.g. "T" couplers, star couplers using lateral coupling between contiguous fibres to split or combine optical signals
    • G02B6/2835Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals forming multipart couplers without wavelength selective elements, e.g. "T" couplers, star couplers using lateral coupling between contiguous fibres to split or combine optical signals formed or shaped by thermal treatment, e.g. couplers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/293Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means
    • G02B6/29304Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means operating by diffraction, e.g. grating
    • G02B6/29316Light guides comprising a diffractive element, e.g. grating in or on the light guide such that diffracted light is confined in the light guide
    • G02B6/29317Light guides of the optical fibre type
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/293Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means
    • G02B6/29331Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means operating by evanescent wave coupling
    • G02B6/29332Wavelength selective couplers, i.e. based on evanescent coupling between light guides, e.g. fused fibre couplers with transverse coupling between fibres having different propagation constant wavelength dependency
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/293Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means
    • G02B6/29346Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means operating by wave or beam interference
    • G02B6/2935Mach-Zehnder configuration, i.e. comprising separate splitting and combining means
    • G02B6/29352Mach-Zehnder configuration, i.e. comprising separate splitting and combining means in a light guide
    • G02B6/29355Cascade arrangement of interferometers

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Instruments For Measurement Of Length By Optical Means (AREA)

Abstract

一种非对称光纤马赫-策德尔干涉仪具有在第一耦接区域和第二耦接区域连结的第一和第二光纤。第一和第二光纤进一步在第一和第二耦接区域之间形成两个干涉臂。为形成非对称,在一个耦接区域中一部分第一光纤的传播常数不同于该耦接区域中一部分第二光纤的传播常数。在较大的波长间隔非对称结构提供了30dB的隔离。

Description

用非对称耦合器制作的光纤马赫—策德尔干涉仪
本申请是1998年9月24号提交的美国专利申请60/101,592的继续申请,该申请公开的内容在此引为参考。
分波倍增器/分离器(wavelength division multiplexer/demultiplexer)可用光纤马赫—策德尔干涉仪(MZI)制作。而MZI则用一对对称耦合器制作。在耦合器之间的干涉臂中写入同一的光纤布喇格光栅。光纤布喇格光栅(FBG)是光纤芯中折射率的一种变化,它把选择的波长反射到光纤上。
在MZI降低或收缩波长的操作中,例如作为一个分离器,向第一耦合器的第一光纤输入载有几个频道或波长λ1,λ2,λ3,λ4和λ5的一个信号。也可以向耦合器中输入其它数量的频道,如4或8频道。信号在耦合器处被分离,沿两臂通过。同一的FBGs以一种选定的频率如λ4振荡。因此,λ4在FBGs上反射,返回通过第一耦合器并可在第一耦合器的第二光纤上提取。其余的波长λ1,λ2,λ3和λ5通过第二耦合器并输出到第二耦合器的第二光纤上。
在波长的相加或插入的操作中,例如作为一个倍增器,具有波长λ4的信号被插到第二耦合器处的第一光纤上。不同波长的信号λ1,λ2,λ3和λ5被输入到第一耦合器的第一光纤中。关于上述的分离器,λ4在FBGs处反射。然后λ4再被输出到第二耦合器的第二光纤上。因此,第二耦合器的输出包括所有的波长λ1,λ2,λ3,λ4和λ5。
在用对称耦合器制作的典型的马赫—策德尔干涉仪中,限定30dB的隔离以便相对于理想波长保持±20nm跨距。
本发明提供了一种用非对称的耦合器制作的光纤马赫—策德尔干涉仪,该干涉仪允许在较宽波长范围内相对于理想波长进行30dB隔离。
具体地说,本发明的非对称光纤马赫—策德尔干涉仪包括在第一耦接区域和第二耦接区域连结的第一和第二光纤。第一和第二光纤在第一和第二耦接区域之间形成两个干涉臂。为了形成不对称的形式,在一个耦接区域例如第一耦接区中一部分第一光纤的传播常数不同于该耦接区域中一部分第二光纤的传播常数。选择第一光纤中的传播常数和第二光纤中的传播常数,在马赫—策德尔干涉仪的穿出端为相对于理想波长超过±20nm并最好超过±60nm的跨距提供30dB隔离。第一耦接区域中的分光比在理想的波长下分离50%的能量。
通过参考如下附图进行的详细描述将能更好地理解本发明:
图1是根据本发明所述非对称马赫—策德尔干涉仪的示意图;
图2是现有技术的对称耦合器测量的光谱响应曲线图;
图3是在由对称耦合器制作的现有马赫—策德尔干涉仪中测量的附加光纤的光谱响应图;
图4是本发明中使用的非对称耦合器测量的光谱响应曲线图;
图5是根据本发明所述马赫—策德尔干涉仪测量的光谱响应曲线;
图6是根据本发明所述点对称马赫—策德尔干涉仪的示意图;
图7A-7E是根据本发明所述点对称马赫—策德尔干涉仪的操作示意图;
图8是根据本发明所述线对称马赫—策德尔干涉仪示意图;
图9A-9E是根据本发明所述线对称马赫—策德尔干涉仪的操作示意图;
图1表示根据本发明所述非对称马赫—策德尔干涉仪(MZI)10的示意图。MZI包括由干涉臂16、18分开的耦接区12、14。尤其是在实施例中所示的,MZI由在第一和第二非对称耦合器24、26处耦合的第一和第二光纤20、22形成。对于本发明的目的,耦合器是一种在两个输出光纤之间分离入射光能量的装置。第一和第二光纤20、22形成连接耦合器24、26的干涉臂16、18。光纤布喇格光栅(FBG)25、27写入两个耦合器24、26之间每个干涉臂16、18的光纤芯28、30中。在操作中,在MZI的一侧,一个光纤,例如光纤20,构成输入或插入端32、而另一个光纤,如光纤22,构成输出或引出端34。在MZI的另一侧,光纤20构成引入或插入端36,而光纤22构成输出或穿出端38。
在本发明中,非对称耦合器以及光纤位置改进了MZI的光谱特性。在对称耦合器中,在耦合端的电场滞后于输入端电场π/2相位。可是,在非对称的耦合器中不保持相同的相位关系。在非对称的耦合器中,电场之间的相位差依赖于耦合强度和非对称度。
在对称耦合器中,组元光纤实际上在耦合区域中具有相同的传播常数以便耦合比达到100%。在马赫—策德尔干涉仪制造中,组元耦合器分光比实际为50%。对称耦合器的分光比为波长的正弦。50%的点发生在波长响应的四等分处并且对波长的很小变化敏感。
图2表示一个典型的对称耦合器测量的光谱响应曲线图。耦合器的额外损耗大约为0.07dB。在FP激光器中尖峰为模型运动中的测量假象。由曲线可见在感兴趣区域(在四等分附近)的波长变化大约为0.125%/nm。对于中央波长处大于±20nm间距的此大波长变化使MZI的隔离降低到30dB以下。
图3表示在用典型的对称耦合器制作的MZI中测量的附加光纤的光谱响应图。由图中可见在波长区间为40nm的附加光纤中可达到30dB隔离,这是窄的波长区间。30dB隔离区域限制间隔是由用于制造MZI的耦合器的波长敏感性引起的。
在非对称耦合器中,光纤的传播常数与耦接区域中的不一样。因此,可达到的最大耦接比小于100%。非对称耦合器的分光比为波长的正弦。可是,可控制最大的分光比。此处,在非对称的耦合器中,50%的点实际上发生在波长响应的最大处并且因此对波长的变化较不敏感。图4表示一个典型的非对称耦合器测量的光谱响应曲线图。耦合器的额外损耗大约为0.09dB。在FP激光器中尖峰为模型运动中的测量假象。由曲线中可见在感兴趣区域的波长变化大约为0.03%/nm。这将减小波长变化并使得在通过光纤使中央波长大于±60nm间距时达到30dB隔离。这实际上大于用上述对称耦合器可达到的±20nm。
制造耦合器的最普遍方法是熔融锥法。例如,将两个光纤的外壳剖成适合的长度。光纤与耦接的区域保持在一起以保持实际上相互平行和接触。将耦接区域加热到大约1700℃的温度直到它们熔融为一体。光纤可用任何稳定的热源加热,例如电弧、氧丁烷火焰或激光。当它们被加热时,光纤也同样被拉制或拉平以产生一个窄的或颈缩的或收缩的区域。收缩使得光纤芯靠近在一起,增加了信号间的相互作用。
非对称可通过对耦接区域中耦合光纤的其中之一进行预收缩、蚀刻或抛光来达到,或通过在光纤平面上弯曲耦合区域达到。非对称还可在耦接区域中通过熔融光纤之一使之成为第三玻璃棒或管来达到。玻璃棒或管提高了附着在耦接区域中的光纤的传播常数。这些技术的结合也可应用。
控制非对称度和耦合强度以便耦合器的最大分光比实际上为50%。图5是用非对称耦合器制造的MZI测量的引入光纤的响应。尖峰为测量假象。从曲线可以看出,在引入或引出光纤中的120nm波长区间可达到30dB隔离,这实际上大于上述现有技术的非对称MZI达到的40nm区间。
在形成两个耦合器后,将光纤布喇格光栅写入两个干涉臂中的光纤芯中。光纤布喇格光栅可以任意方式写入。例如,采用光敏光纤,将以期望的周期性蚀刻有凹槽的硅相模靠近光纤放置。光纤和模采用紫外线(UV)光源照射,例如激光。相模衍射来自UV光源的光,产生多重干涉光束。UV光通过光敏光纤,改变分布在那儿的折射指数并形成FBG。在其它形成FBG的技术中,UV激光束沿光纤长度运动并在其运动时开启和关闭。可采用其它技术写入FBG,例如,干涉全息照相、干涉激光束或振幅模。
在本发明中点对称的MZI和线对称的MZI两个实施例是优选的。两个实施例可用于制造MZI并且都可与光纤布喇格光栅结合使用。
参考图6,点对称的MZI实际上是关于干涉仪臂中部点40对称。耦接区域12中的光纤20有第一传播常数,最好为标准光纤的传播常数。耦接区域12中的光纤22改进为具有不同的传播常数。耦接区域14中的光纤22有第一或标准的传播常数。耦接区域14中的光纤20改进为具有不同的传播常数。
点对称的MZI的操作将参考图7A-7E(耦合器将根据传递矩阵和所有典型值的变量进行描述)作如下所述:λ:=1.25,1.252,1.65
Figure A9912392900091
fa:=.6
Figure A9912392900092
Figure A9912392900093
fb:=fa
Figure A9912392900094
Figure A9912392900095
Δλa:=7.48 λa:=03.665 11:=10000  12:=10000 Δλb:=Δλa  λb:=Δλa  Δl:=l1-l2
Figure A9912392900096
Δl=0
Figure A9912392900097
Ca(1.5)=1.174 Ma ( λ ) : = cos ( Ca ( λ ) ) + φa · i · sin ( Ca ( λ ) ) i · Fa · sin ( Ca ( λ ) ) i · Fa · sin ( Ca ( λ ) ) cos ( Ca ( λ ) ) - φa · i · sin ( Ca ( λ ) ) Leg 4 : = 0 1 IP : = 1 0 Mb ( λ ) : = cos ( Cb ( λ ) ) - φb · i · sin ( Cb ( λ ) ) i · Fb · sin ( Cb ( λ ) ) i · Fb · sin ( Cb ( λ ) ) cos ( Cb ( λ ) ) + φb · i · sin ( Ca ( λ ) ) Leg 2 : = 1 0 OPa(λ):=(|Ma(λ)·IP·Leg2|)2 OPb(λ):=(|Mb(λ)·IP·Leg2|)2 OPa(1.5):=0.49
Figure A9912392900101
OP4(λ):=(|Mb(λ)-Mf(λ)·IP·Leg4|)2IL4(λ):=10·log(1-OP4(λ))
参考图8,线对称的MZI实际上是通过干涉仪臂相对于线42对称。一个光纤,例如光纤20,在耦接区域12和耦接区域14中有第一传播常数,最好为标准光纤的传播常数。另一光纤,光纤22,在耦接区域12和耦接区域14改进为具有不同的传播常数。线对称的MZI的操作将参考图9A-9E(耦合器将根据传递矩阵和所有典型值的变量进行描述)作如下所述:λ:=1.25,1.2512,1.65
Figure A9912392900102
fa:=.6
Figure A9912392900104
fb:=fa
Figure A9912392900105
Figure A9912392900106
Δλa:=7.48 λa:=03.665 11:=10000 12:=10000.32265 Δλb:=Δλa λb:=Δλa Δl:=l1-l2
Figure A9912392900107
Δl=-0.323
Figure A9912392900108
Figure A9912392900109
Ca(1.5)=1.174 Ma ( λ ) : = cos ( Ca ( λ ) ) + φa · i · sin ( Ca ( λ ) ) i · Fa · sin ( Ca ( λ ) ) i · Fa · sin ( Ca ( λ ) ) cos ( Ca ( λ ) ) - φa · i · sin ( Ca ( λ ) ) Leg 4 : = 0 1 IP : = 1 0 Mb ( λ ) : = cos ( Cb ( λ ) ) - φb · i · sin ( Cb ( λ ) ) i · Fb · sin ( Cb ( λ ) ) i · Fb · sin ( Cb ( λ ) ) cos ( Cb ( λ ) ) + φb · i · sin ( Ca ( λ ) ) Leg 2 : = 1 0 OPa(λ):=(|Ma(λ)-IP·Leg2|)2  OPb(λ):=(|Mb(λ)·IP·Leg2|)2  OPa(1.5):=0.49
Figure A99123929001015
OP4(λ):=(|Mb(λ)·Mf(λ)·IP·Leg4|)2           IL4(λ):=10·log(1-OP4(λ))
在上述等式和图7A-7E以及图9A-9E中,符号采用A.W.Snyder和J.DLove著的光波导理论,Chaspman和Hall出版。应注意在线对称实施例中,路径长度是不相等的,由12:=10000.32265和Δl=-0.323表示。
如上所述,一些可替代的实施例可用于本发明。例如,耦合器可采用抛光或D型光纤耦合器制作。再次,非对称可通过对耦接区域中耦合光纤的其中之一进行预收缩、蚀刻或抛光来达到,或通过在光纤平面上弯曲耦合区域达到。也可采用这些技术的结合。
用于制造耦合器的光纤不必要象抛光块耦合器情况中那样熔融在一起。例如,干涉仪可通过采用一个或多个光敏光纤来制造。另外,耦合器可由多于两个光纤来组成。例如,1×3耦合器可通过其中一个或多个光纤为光敏光纤而其余光纤为非光敏光纤来制造。而且,分光比可以不是50%。例如,非对称耦合器的最大分光比可以为40%。
MZI可由对称和非对称耦合器组成。两个耦合器的分光比和最大分光比不必相同。另外,MZI的干涉臂不必平衡。这里,可采用该结构来制造带有或不带有光纤布喇格光栅的分波倍增器。MZI可由三个或多个耦合器构成,其中一个或多个耦合器是非对称的。在另一个实施例中,MZI干涉臂是不相同的。通过控制这些差异,可控制输出的波长响应。
本发明不限于上述的特定描述,而是由权利要求来表示。

Claims (20)

1.非对称光纤马赫—策德尔干涉仪,包括:
在第一耦接区域和第二耦接区域连结的第一和第二光纤,该第一和第二光纤进一步在第一和第二耦接区域之间形成两个干涉臂;
其中,在第一耦接区域中一部分第一光纤的传播常数不同于第一耦接区域中一部分第二光纤的传播常数。
2.根据权利要求1的非对称光纤马赫—策德尔干涉仪,其特征在于第一耦接区域和第二耦接区域包括第一和第二熔融锥耦合器。
3.根据权利要求1的非对称光纤马赫—策德尔干涉仪,其特征在于第一耦接区域的分光比被控制在理想波长处分离50%的能量。
4.根据权利要求1的非对称光纤马赫—策德尔干涉仪,其特征在于选择第一光纤中的传播常数和第二光纤中的传播常数以便在马赫—策德尔干涉仪的穿出端内和在相对于理想波长大于±20nm的范围内提供30dB隔离。
5.根据权利要求4的非对称光纤马赫—策德尔干涉仪,其特征在于选择第一光纤中的传播常数和第二光纤中的传播常数以便在马赫—策德尔干涉仪的穿出端和在相对于理想波长大于±60nm的范围内提供30dB隔离。
6.根据权利要求1的非对称光纤马赫—策德尔干涉仪,其特征在于第二耦接区域中第一光纤的传播常数不同于第二耦接区域中一部分第二光纤的传播常数。
7.根据权利要求1的非对称光纤马赫—策德尔干涉仪,其特征在于:
第一耦接区域中第一光纤的一部分有第一传播常数;以及
第一耦接区域中第二光纤的一部分具有与第一传播常数不同的传播常数。
8.根据权利要求7的非对称光纤马赫—策德尔干涉仪,其特征在于:
第二耦接区域中第一光纤的另一部分有第一传播常数;以及
第二耦接区域中第二光纤的另一部分具有与第一传播常数不同的传播常数。
9.根据权利要求7的非对称光纤马赫—策德尔干涉仪,其特征在于:
第二耦接区域中第一光纤的另一部分具有与第一传播常数不同的传播常数;以及
第二耦接区域中第二光纤的另一部分具有第一传播常数。
10.根据权利要求1的非对称光纤马赫—策德尔干涉仪,其特征在于第二光纤的一部分中的传播常数由对第二光纤的预收缩、蚀刻或抛光部分来提供。
11.根据权利要求1的非对称光纤马赫—策德尔干涉仪,其特征在于在光纤平面上将第一耦接区域中的第一光纤和第二光纤弯曲以提供不同的传播常数。
12.根据权利要求1的非对称光纤马赫—策德尔干涉仪,其特征在于光纤布喇格光栅写入两个干涉臂的每一个中。
13.根据权利要求1的非对称光纤马赫—策德尔干涉仪,其特征在于第一和第二光纤包括抛光的光纤。
14.根据权利要求1的非对称光纤马赫—策德尔干涉仪,其特征在于第一和第二光纤包括具有D型截面的光纤。
15.根据权利要求1的非对称光纤马赫—策德尔干涉仪,还包括在第一和第二耦接区域中的一个区域上与第一和第二光纤耦接的第三光纤。
16.根据权利要求1的非对称光纤马赫—策德尔干涉仪,其特征在于第一和第二光纤的至少一个光纤中包括光敏光纤。
17.根据权利要求1的非对称光纤马赫—策德尔干涉仪,其特征在于第一和第二光纤在第三耦接区域耦接。
18.根据权利要求1的非对称光纤马赫—策德尔干涉仪,其特征在于两个干涉臂是平衡的。
19.根据权利要求1的非对称光纤马赫—策德尔干涉仪,其特征在于两个干涉臂是不平衡的。
20.包括权利要求1所述非对称光纤马赫—策德尔干涉仪的倍增器/分离器。
CN99123929A 1998-09-24 1999-09-24 用非对称耦合器制作的光纤马赫-策德尔干涉仪 Pending CN1251906A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US10159298P 1998-09-24 1998-09-24
US60/101,592 1998-09-24

Publications (1)

Publication Number Publication Date
CN1251906A true CN1251906A (zh) 2000-05-03

Family

ID=22285449

Family Applications (1)

Application Number Title Priority Date Filing Date
CN99123929A Pending CN1251906A (zh) 1998-09-24 1999-09-24 用非对称耦合器制作的光纤马赫-策德尔干涉仪

Country Status (8)

Country Link
US (1) US6226091B1 (zh)
EP (1) EP0989423A3 (zh)
JP (1) JP2000161910A (zh)
KR (1) KR20000023464A (zh)
CN (1) CN1251906A (zh)
AR (1) AR023905A1 (zh)
BR (1) BR9913820A (zh)
CA (1) CA2283361C (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100405202C (zh) * 2003-07-04 2008-07-23 日本电信电话株式会社 干涉仪型光开关和可变光衰减器
CN101657746B (zh) * 2007-04-16 2011-08-17 Ppi株式会社 具有多模式的不对称马赫曾德尔结构的波导型分光器
CN103267999A (zh) * 2013-06-01 2013-08-28 青岛农业大学 基于哑铃形光纤结构的mz干涉仪
CN107402489A (zh) * 2016-03-22 2017-11-28 华为技术有限公司 点对称马赫‑曾德尔干涉仪设备

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6563971B1 (en) * 1998-12-16 2003-05-13 Alcoa Fujikura Limited Optical fiber Mach-Zehnder interferometer employing miniature bends
EP1202089A1 (en) * 2000-10-31 2002-05-02 PIRELLI CAVI E SISTEMI S.p.A. Optical fibre filter
CA2363806A1 (en) * 2001-11-27 2003-05-27 David R. Rolston All fiber dynamic optical wavelength switch/filter device
CN1307404C (zh) * 2003-01-28 2007-03-28 电子科技大学 基于马赫-曾德尔干涉原理的干涉式光纤陀螺仪
KR100772557B1 (ko) * 2006-06-15 2007-11-02 경북대학교 산학협력단 마이크로 옵틱 마하젠더 간섭계 기반의 계측 장치
SE531373C2 (sv) * 2007-06-27 2009-03-17 Syntune Ab Mach Zehndermodulator
US8643929B2 (en) * 2010-01-12 2014-02-04 Alcatel Lucent Nested Mach-Zehnder modulator
JP2011253015A (ja) * 2010-06-01 2011-12-15 Olympus Corp 光結合デバイス及び光結合デバイスの実装方法
WO2013052932A1 (en) * 2011-10-06 2013-04-11 Ofs Fitel, Llc Broadband fiber sensor array
CN111998172A (zh) * 2019-05-27 2020-11-27 北京中创为南京量子通信技术有限公司 一种减振隔热装置及减振隔热光纤干涉仪设备

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5048909A (en) * 1990-07-27 1991-09-17 At&T Bell Laboratories Adiabatic reflection apparatus
US5875272A (en) * 1995-10-27 1999-02-23 Arroyo Optics, Inc. Wavelength selective optical devices
US5841920A (en) 1997-03-18 1998-11-24 Lucent Technologies Inc. Fiber grating package

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100405202C (zh) * 2003-07-04 2008-07-23 日本电信电话株式会社 干涉仪型光开关和可变光衰减器
CN101657746B (zh) * 2007-04-16 2011-08-17 Ppi株式会社 具有多模式的不对称马赫曾德尔结构的波导型分光器
CN103267999A (zh) * 2013-06-01 2013-08-28 青岛农业大学 基于哑铃形光纤结构的mz干涉仪
CN103267999B (zh) * 2013-06-01 2018-02-06 青岛农业大学 基于哑铃形光纤结构的马赫增德干涉仪
CN107402489A (zh) * 2016-03-22 2017-11-28 华为技术有限公司 点对称马赫‑曾德尔干涉仪设备
CN107402489B (zh) * 2016-03-22 2020-03-20 华为技术有限公司 点对称马赫-曾德尔干涉仪设备

Also Published As

Publication number Publication date
CA2283361A1 (en) 2000-03-24
US6226091B1 (en) 2001-05-01
KR20000023464A (ko) 2000-04-25
CA2283361C (en) 2002-12-24
BR9913820A (pt) 2001-11-20
EP0989423A2 (en) 2000-03-29
EP0989423A3 (en) 2001-11-07
JP2000161910A (ja) 2000-06-16
AR023905A1 (es) 2002-09-04

Similar Documents

Publication Publication Date Title
US6826343B2 (en) Multi-core waveguide
US5636309A (en) Article comprising a planar optical waveguide mach-zehnder interferometer device, and method of making same
Bilodeau et al. An all-fiber dense wavelength-division multiplexer/demultiplexer using photoimprinted Bragg gratings
Bilodeau et al. Low-loss highly overcoupled fused couplers: Fabrication and sensitivity to external pressure
Pang et al. In-fiber Mach–Zehnder interferometer based on double cladding fibers for refractive index sensor
CN1251906A (zh) 用非对称耦合器制作的光纤马赫-策德尔干涉仪
US5940556A (en) Fiber-optic mode-routed add-drop filter
US5703975A (en) Interferometric switch
US20030053783A1 (en) Optical fiber having temperature independent optical characteristics
EP0652452B1 (en) Optical fibre elements
US6836599B2 (en) All-fiber Mach-Zehnder interferometer and method of making the same
JPH08304664A (ja) 波長分波素子
JP2002031729A (ja) アレイ導波路回折格子型光合分波器
Erdogan et al. Integrated-optical Mach–Zehnder add–drop filter fabricated by a single UV-induced grating exposure
DE69802911T2 (de) Vorrichtung zum demultiplexen von in einem optischen spektrum enthaltenen spektrallinien
Whalen et al. Demonstration of a narrow-band Bragg-reflection filter in a single-mode fiber directional coupler
Kohnke et al. Silica based Mach-Zehnder add-drop filter fabricated with UV-induced gratings
US6850654B2 (en) Passive thermal compensation of all-fiber Mach-Zehnder interferometer
EP1057056B1 (en) Optical fibre filters
US20060002653A1 (en) Apparatus for an optical circuit having a flat wavelength response
CN2322325Y (zh) 非平衡马赫-曾德光纤干涉波分复用器
Cozens et al. Special fibres for sensing
CN1388390A (zh) 阵列波导干涉器
Chen et al. Wideband tunable wavelength-selective coupling in asymmetric side-polished fiber coupler with dispersive interlayer
Arkwright et al. Variable demultiplexing using a twin-core fiber Mach-Zehnder interferometer

Legal Events

Date Code Title Description
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C06 Publication
PB01 Publication
ASS Succession or assignment of patent right

Owner name: ALCOA FUJI KULA CO., LTD.

Free format text: FORMER OWNER: THOMAS + BETTS INTERNATIONA, INC.

Effective date: 20020906

C41 Transfer of patent application or patent right or utility model
TA01 Transfer of patent application right

Effective date of registration: 20020906

Address after: American Tennessee

Applicant after: Alcoa Fuskura Ltd

Address before: Nevada

Applicant before: Thomas Bates International Inc

AD01 Patent right deemed abandoned
C20 Patent right or utility model deemed to be abandoned or is abandoned