CN1250960A - Discharge system of CO2 pulse laser device - Google Patents

Discharge system of CO2 pulse laser device Download PDF

Info

Publication number
CN1250960A
CN1250960A CN 99116968 CN99116968A CN1250960A CN 1250960 A CN1250960 A CN 1250960A CN 99116968 CN99116968 CN 99116968 CN 99116968 A CN99116968 A CN 99116968A CN 1250960 A CN1250960 A CN 1250960A
Authority
CN
China
Prior art keywords
preionization
discharge
main
pulse
main discharge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN 99116968
Other languages
Chinese (zh)
Other versions
CN1106704C (en
Inventor
程兆谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Institute of Optics and Fine Mechanics of CAS
Original Assignee
Shanghai Institute of Optics and Fine Mechanics of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Institute of Optics and Fine Mechanics of CAS filed Critical Shanghai Institute of Optics and Fine Mechanics of CAS
Priority to CN99116968A priority Critical patent/CN1106704C/en
Publication of CN1250960A publication Critical patent/CN1250960A/en
Application granted granted Critical
Publication of CN1106704C publication Critical patent/CN1106704C/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Lasers (AREA)

Abstract

The discharge system consists of a main discharge unit with main discharge cathode tube and a row of anode strips, and a pulse preionization unit with a row of preionization cathode pins corresponding to the anode strips one-to-one and connected to main thyratron jointed to a pulse signal generator which can transfer high-frequency switch pulse signal. The invention uses preionization pulse group to excite mass gas non-self-maintained discharge to obtain the output of pulse CO2 laser beam with high average power and high recurrence frequency.

Description

The discharge system of CO 2 pulse laser device
The present invention is a kind of CO 2 pulse (CO that can obtain high-mean-power high-repetition-rate 2) discharge system of laser.
Technical background: high power CO 2A crucial trend of laser development is the operation of high-mean-power high-repetition-rate ground.For example laser radar, laser isotope separate, laser induced chemical reaction, all require to have the output of high power pulsed laser bundle, and pulsewidth is between 0.01~1 microsecond; And,, requiring laser pulse width sometimes between 0.01~1 millisecond such as cutting, welding, texturing, texturing, punching, quenching, surface heat processing etc. to laser processing, this will obtain than the much better processing effect of continuous laser processing.
In the prior art, the fast Axial-flow CO of German Luo Fen-Xi Na (Rofin-Sinar) company 2The structure of modulated RF main discharge that adopts laser realizes the output of pulse laser beam, the fast Axial-flow CO of MIT 2Laser adopts the structure of the noiseless main discharge of modulation to reach the output of pulse laser beam; The SP-810 fast Axial-flow CO of Spectra-Physics 2Laser adopts the structure of switch main discharge to reach the output of pulse laser beam.Shanghai Optics and Precision Mechanics institute, Chinese Academy of Sciences provides the crossing current or the axial flow CO of pulse laser beam output 2The also most structures that adopt Switching Power Supply of laser product.
Above-mentioned pulse output CO 2The structure of the example of laser, especially RF excited and silent discharge excitation main discharge, or pulse switch power supply etc., all be that complex structure, technical difficulty involve great expense greatly.
Purpose of the present invention is the deficiency that overcomes prior art, and a kind of CO 2 pulse (CO is provided 2) discharge system of laser, can reach the output of high-repeat frequency rate high-average power pulse laser beam, the preionization train of impulses of a few hectowatt average powers can only be arranged by modulation, reach tens kilowatts of powerful main discharge pulses of control and inject.Its discharging structure advantages of simple, cheap, the unit volume injecting power is big, and the technical difficulty of making is also lower.
Pulse CO of the present invention 2The discharge system of laser, as shown in Figure 1, it comprises main discharge part 18 and impulse preionization part 19.Wherein main discharge part 18 comprises main discharge cathode tube 8 that places in the laser discharge cavity 17 and the row's anode strap 9 that is embedded in the high temperature insulating material mutually insulated.Main discharge cathode tube 8 links to each other with main discharge DC power supply 10.Every anode strap 9 also links to each other with main discharge DC power supply 10 with filter inductance 12 by current-limiting resistance 13.
Impulse preionization part 19 comprises and the corresponding one by one row's preionization cathode needle 7 of row's anode strap 9 that preionization cathode needle 7 is the upstreams that place the gas flow direction v at relative main discharge cathode tube 8 places.One row's preionization cathode needle 7 links to each other with the plate P of main thyratron 4 with storage capacitor 5 through first capacitance 6.The trigger electrode C of main thyratron 4 is connected with pulse signal generator 16.The plate P of main thyratron 4 is connected with preionization DC power supply 1 by diode 3 and pulsactor 2.
It is that first capacitance 6 and second capacitance 14 separate its two parts that two capacitances are arranged between main discharge part 18 and the impulse preionization part 19.Impulse preionization part 19 is connected with by-pass inductor 15.
The said pulse signal generator 16 that is connected on the main thyratron 4 trigger electrode C contains NAND gate 162, is connected with high-frequency signal source 161 and modulating signal source 165 on the NAND gate 162.The output of NAND gate 162 is amplified the trigger electrode C that switch element 164 is connected to main thyratron 4 through shaping amplifier 163 and pulse.
The electrode structure of above-mentioned laser is for being suitable for the crossing current CO of three (optical axis of gas flow direction v, laser resonant cavity, course of discharge) quadratures 2Laser, main discharge cathode tube 8 is the water-cooled copper about diameter of phi 10mm, places the upstream of the airflow direction v of row's anode strap 9.Anode strap 9 is discrete mutually for being embedded among insulation and the exotic material, mutually insulated and at grade copper bar.Its preionization cathode needle 7 is corresponding one by one with row's main discharge anode strap 9, places the upstream along gas flow direction v of main discharge cathode tube 8.Between preionization cathode needle 7 and the main discharge cathode tube 8, form two preionized discharge loops between preionization cathode needle 7 and the main discharge anode strap 9.Form main discharge circuit between main discharge cathode tube 8 and the anode strap 9.
Main discharge DC power supply 10 is the drive source of main discharge part 18, and filter inductance 12 is the filter inductance of main discharge DC power supply 10, is again the isolator of impulse preionization part 19; Current-limiting resistance 13 is current-limiting resistances of each anode strap 9, promptly is the ballast of gas glow discharge; Capacitance 6 and 14 stops the direct current of main discharge part 18 to enter in the impulse preionization part 19.The optical resonator of great circle 11 expression lasers among Fig. 1, the optical axis of its optical resonator 11 be perpendicular to paper, i.e. the z direction; Airflow direction v as shown in Figure 1 from left to right, i.e. x direction; Course of discharge is the middle above-below direction of Fig. 1, i.e. y direction; Then air-flow, discharge and optical axis three's direction is the orthogonal direction of xyz.
Fig. 1 left part is an impulse preionization part 19, and main thyratron 4 is main pulse switch elements of impulse preionization part 19; Preionization DC power supply 1 provides direct current for impulse preionization part 19; Pulse signal generator 16 provides pulse triggering signal for main thyratron 4.
The NAND gate 162 that concrete is in the pulse signal generator 16 adds high frequency spike signals as the spike greater than 3KHz by high-frequency signal source 161, the other end in NAND gate 162 adds a vibration modulation signal by modulating signal source 165 again, when the cycle and the duty ratio that change the vibration modulation signal, can obtain the pulse-burst signals of cycle and EDM Generator of Adjustable Duty Ratio.This pulse-burst signals triggers main thyratron 4, thus the discharge of control impuls preionization and main discharge.
Description of drawings:
Fig. 1 is CO 2 pulse (CO of the present invention 2) schematic diagram of discharge system of laser.
Fig. 2 is for being connected to the line construction sketch of the pulse signal generator 16 on the main thyratron 4 in the impulse preionization part 19 of the present invention.
Advantage of the present invention: the present invention adopts discharge system as shown in Figure 1. At non-self-holding large volume gas brightness Under the light discharging condition, adopt above-mentioned preionization burst-mode switch structure of the present invention to utilize the gas brightness than prior art The firing voltage of light discharge and keep and exist obvious difference and advantage between the voltage. In the prior art, when adopting With preionization pulse frequency during much larger than the relaxation rate of region of discharge plasma, Laser output is the approximate continuous ripple. For example: the impulse preionization pulsewidth is 50~500 nanoseconds, and the preionization pulse is when repetition rate 5KHz, and is pre-electric , in hundreds of watts of order magnitude range, can be used to control tens of kilowatts of main power source power and inject discharge from average pulse power The district, acquisition be thousands of watts of CW CO2Laser power output.
Discharge system of the present invention is when adopting greater than 3KHz, the repetition rate of 5KHz~10KHz normally, arteries and veins Rush 50~500 nanoseconds of width, the pulse signal that mean power is hundreds of watts is as the triggering signal of preionization, by To the vibration modulation of preionization pulse signal, form the burst-mode switch signal and trigger preionized discharge non-self-holding putting Under the electricity condition, can realize the control to main discharge, so far can reach the pulse of high-repeat frequency rate high-average power The purpose of laser beam output. So, as mentioned above, under similarity condition, just adopt discharge system of the present invention Bigger than the discharge system unit volume injecting power in the prior art, key is that also discharge system of the present invention holds Easily obtain the CO of high-repeat frequency rate high-average power2Laser beam output. And simple in structure, easily control is held Easily make, cheap.
Embodiment:
Adopt as shown in Figure 1 and Figure 2 electrode structure and discharge system.Laser is crossing current CO 2Laser.Main discharge cathode tube 8 is the water-cooled copper of Φ 10mm, anode strap 9 is along airflow direction v length 70mm, anode strap 9 is spaced apart 5mm each other, totally 55 of anode strap 9 one rows, the discharge effective length is 1100mm, arcing distance between main discharge cathode tube 8 and the anode strap 9 is 30mm, preionization cathode needle 7 is a Φ 1mm copper pin, distance from main discharge cathode tube 8 is 10mm, preionization cathode needle 7 tips are 30mm from the distance of anode strap 9, preionization cathode needle 7 is corresponding one by one with anode strap 9, so preionization cathode needle 7 also is 55 of rows.The inflation total gas pressure is 50 millimetress of mercury (closing 6.67KPa) in the laser discharge cavity 17, and charging into gas is CO 2: N 2: He=1: 8: 11, laser was two discharge channels,  type folding optical resonator.
When the impulse preionization repetition rate was 5KHz, pulse duration was 300 nanoseconds, adopted modulating signal source 165 inputs to have out 6 vibration modulation signals that close 6 to give NAND gate 162, and then pulse recurrence rate is 5000 ÷ (6+6) ≌ 420Hz.Under these conditions, when injected pulse preionization average power was about 200W, main discharge current was 21 amperes, and main discharge is kept voltage (mean value) when 2.0KV, obtained 5.0KW pulse CO 2The output of laser beam.This result is more satisfactory.

Claims (2)

1. the discharge system of a CO 2 pulse laser device, comprise main discharge part (18) and impulse preionization part (19), main discharge part (18) comprises the row's anode strap (9) that places the main discharge cathode tube (8) in the laser discharge cavity (17) and be embedded in the high temperature insulating material mutually insulated, and the every anode strap (9) that main discharge cathode tube (8) reaches by current-limiting resistance (13) and filter inductance (12) links to each other with main discharge DC power supply (10); Impulse preionization part (19) comprises with row's anode strap (9) is corresponding one by one and places the gas flow direction that relative main discharge cathode tube (8) locates (there is row's preionization cathode needle (7) upstream v); It is that first capacitance (6) and second capacitance (14) separate that two capacitances are arranged between main discharge part (18) and the impulse preionization part (19), and impulse preionization part (19) is connected with by-pass inductor (15); It is characterized in that the row's preionization cathode needle (7) in the said impulse preionization part (19) links to each other with the plate (P) of main thyratron (4) with storage capacitor (5) through first capacitance (6), the trigger electrode (C) of main thyratron (4) is connected with pulse signal generator (16), and the plate (P) of main thyratron (4) is connected with preionization DC power supply (1) by diode (3) and pulsactor (2).
2. the discharge system of CO 2 pulse laser device according to claim 1, it is characterized in that said pulse signal generator (16) contains the NAND gate (162) that is connected with high-frequency signal source (161) and modulating signal source (165), the output of NAND gate (162) is amplified the trigger electrode (C) that switch element (164) is connected to main thyratron (4) through shaping amplifier (163) and pulse.
CN99116968A 1999-10-14 1999-10-14 Discharge system of Co2 pulse laser device Expired - Fee Related CN1106704C (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN99116968A CN1106704C (en) 1999-10-14 1999-10-14 Discharge system of Co2 pulse laser device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN99116968A CN1106704C (en) 1999-10-14 1999-10-14 Discharge system of Co2 pulse laser device

Publications (2)

Publication Number Publication Date
CN1250960A true CN1250960A (en) 2000-04-19
CN1106704C CN1106704C (en) 2003-04-23

Family

ID=5279622

Family Applications (1)

Application Number Title Priority Date Filing Date
CN99116968A Expired - Fee Related CN1106704C (en) 1999-10-14 1999-10-14 Discharge system of Co2 pulse laser device

Country Status (1)

Country Link
CN (1) CN1106704C (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101847819B (en) * 2009-03-25 2011-12-21 中国科学院电子学研究所 Method for reducing initial peak of output laser pulse of transversely excited carbon dioxide laser
CN102025094B (en) * 2009-09-23 2012-06-06 中国科学院电子学研究所 Transverse discharge device for pulsed gas laser
CN105514780A (en) * 2015-12-31 2016-04-20 北京热刺激光技术有限责任公司 Laser for cutting leather and control method for realizing leather cutting
CN115621829A (en) * 2022-12-21 2023-01-17 吉林省永利激光科技有限公司 Radio frequency excitation waveguide CO 2 Laser device

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4143337A (en) * 1968-04-19 1979-03-06 Her Majesty The Queen In Right Of Canada, As Represented By The Minister Of National Defence Method of pumping
CN87204632U (en) * 1987-09-25 1988-06-22 湖南省技术物理研究所 Co2 laser electric source for generating high voltage pulse of transistor
CN1015221B (en) * 1989-08-16 1991-12-25 中国科学院上海光学精密机械研究所 Pulse preionizing tube-strip electron
CN1089496C (en) * 1997-12-15 2002-08-21 中国科学院电子学研究所 Gain switch type high repetitive frequency pulsed CO2 laser

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101847819B (en) * 2009-03-25 2011-12-21 中国科学院电子学研究所 Method for reducing initial peak of output laser pulse of transversely excited carbon dioxide laser
CN102025094B (en) * 2009-09-23 2012-06-06 中国科学院电子学研究所 Transverse discharge device for pulsed gas laser
CN105514780A (en) * 2015-12-31 2016-04-20 北京热刺激光技术有限责任公司 Laser for cutting leather and control method for realizing leather cutting
CN115621829A (en) * 2022-12-21 2023-01-17 吉林省永利激光科技有限公司 Radio frequency excitation waveguide CO 2 Laser device

Also Published As

Publication number Publication date
CN1106704C (en) 2003-04-23

Similar Documents

Publication Publication Date Title
JP3353253B2 (en) Gas pulse laser play-on device
US5107510A (en) Apparatus and method for burst-mode operation of a pulsed laser
CN113316303A (en) Device and method for exciting plasma synthetic jet array driven by direct current arc
CN1106704C (en) Discharge system of Co2 pulse laser device
Den Hartog et al. Pulse-burst operation of standard Nd: YAG lasers
CA1067612A (en) Laser and its method of operation
EP0075282A2 (en) Gas laser apparatus
Bhadani et al. Efficient long pulse TE‐CO2 laser using magnetic‐spiker sustainer excitation
Bushlyakov et al. Solid-state SOS-based generator providing a peak power of 4 GW
Wu et al. Novel long-pulse TE CO2 laser excited by pulser–sustainer discharge
Bhadani et al. Efficient switchless multi‐Joule TE‐CO2 laser
US4130809A (en) Travelling wave laser
Cirkel et al. Excimer lasers with large discharge cross section
Tulip et al. High-repetition-rate TEA-laser discharge using integrated preionization and switching
CN101741001B (en) DC (direct current) discharge slat CO2 laser with pulsed preionization
Trusov Application of an extremely-low-inductance high-voltage capacitance generator to transverse-discharge flashlamp excitation
Yamada et al. 1-ns high-power high-repetitive excimer laser oscillator
CN101847819B (en) Method for reducing initial peak of output laser pulse of transversely excited carbon dioxide laser
CN1095608C (en) Transverse-flow CO2 laser outputting giant-pulse laser beam
Lee et al. Active long pulse shaping technique of pulsed CO2 laser using multi-pulse discharge control
RU2230409C2 (en) Pulsed chemical element vapor laser
Masroon et al. Development of longitudinally excited CO2 laser
Schaefer et al. Pulsed hollow cathode discharge with nanosecond risetime
Moselhy et al. Nanosecond pulse generators for microdischarge excimer lamps
Muller-Horsche et al. Excimer lasers: maturity and beyond

Legal Events

Date Code Title Description
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C06 Publication
PB01 Publication
C14 Grant of patent or utility model
GR01 Patent grant
C19 Lapse of patent right due to non-payment of the annual fee
CF01 Termination of patent right due to non-payment of annual fee