CN1248664A - 在利用一不旋转的套筒进行钻进的同时进行岩层压力测量 - Google Patents
在利用一不旋转的套筒进行钻进的同时进行岩层压力测量 Download PDFInfo
- Publication number
- CN1248664A CN1248664A CN99111951A CN99111951A CN1248664A CN 1248664 A CN1248664 A CN 1248664A CN 99111951 A CN99111951 A CN 99111951A CN 99111951 A CN99111951 A CN 99111951A CN 1248664 A CN1248664 A CN 1248664A
- Authority
- CN
- China
- Prior art keywords
- downhole tool
- stabilizer component
- fluid
- borehole wall
- fin
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000015572 biosynthetic process Effects 0.000 title claims abstract description 26
- 239000011435 rock Substances 0.000 title claims description 52
- 238000005553 drilling Methods 0.000 title abstract description 28
- 239000003381 stabilizer Substances 0.000 claims abstract description 67
- 238000000034 method Methods 0.000 claims abstract description 15
- 239000012530 fluid Substances 0.000 claims description 79
- 239000000523 sample Substances 0.000 claims description 46
- 230000033001 locomotion Effects 0.000 claims description 13
- 238000007789 sealing Methods 0.000 claims description 8
- 238000005520 cutting process Methods 0.000 claims description 3
- 230000008961 swelling Effects 0.000 claims description 3
- 230000000149 penetrating effect Effects 0.000 abstract 1
- 238000012360 testing method Methods 0.000 description 13
- 238000003860 storage Methods 0.000 description 11
- 230000008901 benefit Effects 0.000 description 9
- 230000005540 biological transmission Effects 0.000 description 6
- 238000005259 measurement Methods 0.000 description 6
- 238000005457 optimization Methods 0.000 description 3
- 238000005070 sampling Methods 0.000 description 3
- 238000012546 transfer Methods 0.000 description 3
- 239000011469 building brick Substances 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000012467 final product Substances 0.000 description 2
- 230000002706 hydrostatic effect Effects 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 230000001105 regulatory effect Effects 0.000 description 2
- 239000000725 suspension Substances 0.000 description 2
- 241001269238 Data Species 0.000 description 1
- 229920003266 Leaf® Polymers 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000003213 activating effect Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 230000001276 controlling effect Effects 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 239000013536 elastomeric material Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 230000014509 gene expression Effects 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 239000003129 oil well Substances 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 238000004064 recycling Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 239000004636 vulcanized rubber Substances 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
Images
Classifications
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B49/00—Testing the nature of borehole walls; Formation testing; Methods or apparatus for obtaining samples of soil or well fluids, specially adapted to earth drilling or wells
- E21B49/08—Obtaining fluid samples or testing fluids, in boreholes or wells
- E21B49/10—Obtaining fluid samples or testing fluids, in boreholes or wells using side-wall fluid samplers or testers
Landscapes
- Geology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mining & Mineral Resources (AREA)
- Environmental & Geological Engineering (AREA)
- Fluid Mechanics (AREA)
- Physics & Mathematics (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Investigation Of Foundation Soil And Reinforcement Of Foundation Soil By Compacting Or Drainage (AREA)
- Geophysics And Detection Of Objects (AREA)
- Earth Drilling (AREA)
- Sampling And Sample Adjustment (AREA)
Abstract
本发明提供了一种用于在钻井工作期间收集地下岩层数据的工具和方法。该工具包括一个适合于与一个位于一个穿透地下岩层的井孔中的钻具组轴和连接的管形芯轴;一个绕该管形芯轴设置以便在该稳定器元件和管形芯轴之间相对旋转的稳定器元件或套筒。多个细长肋片连接到该稳定器元件上。一个连接到稳定器元件上以便与井孔壁摩擦接合,从而防止该稳定器元件相对井孔壁旋转的装置。
Description
广义上说,本发明涉及钻井时由一井孔穿过的地下岩层中各种参数的确定。更具体地说,本发明涉及利用一不旋转的钻具组稳定器对诸如岩层压力之类的各岩层参数的确定。
现代的油井的控制和制造涉及对地下岩层各参数的不断监测。标准岩层评估的一方面内容是与储存库压力参数和储存库岩层可穿透性相关的。不断地监测诸如储存库压力和穿透性之类的参数说明岩层压力在一定时间范围内的变化,这对预测产量及地下岩层的开采期是很重要的。现代的钻井工作典型地可通过“岩层测试”工具由电缆测井获得这些参数。这种类型的测量要求具有一辅助“往返运动(trip)”,即从井孔中卸除钻具组,将一岩层测试机推入该井孔中以便获取岩层数据,并且在收回该岩层测试机之后,将钻具组再推入该井孔中以进行进一步钻进。因此,典型的岩层参数包括压力,可通过电缆测井岩层测试工具,例如美国专利US3934468,4860581,4893505,4936139及5622223中所述工具,对其进行监测。
因此上述每个专利的限制在于:其中所述的岩层测试工具只能在电缆测井工具处于井孔中并与相应的岩层区域保持物理接触时才能获取岩层数据。由于采用这种岩层测试机的“在井中进行往返运动(tripping the well)”需要大量宝贵的钻井时间,因此它只有在岩层数据绝对需要的情况下,或者当钻具组需要更换钻头或其他理由时才能进行。
在钻进活动期间,储存库岩层数据可在“实时”的基础上获得,这是一个可贵的优点。在钻进的同时,获得实时岩层压力将可允许一钻井工程师或钻井人员及早地对有关钻井泥浆重量和成分及各穿透参数的变化作出决定,因此改善钻井的安全性。获得实时储存库岩层数据对根据岩层压力变化和穿透性的变化精确控制钻头重量也是理想的,故可以最高的效率进行钻井工作。
因此本发明希望提供一种钻井用的方法和装置,在带有钻柱,钻头和其他钻井零件的钻具组处于井孔内时,该方法和装置可获得地下相关区域的各种岩层数据,从而可消除为了将岩层测试机安装于井孔内以便检测这些岩层数据这一唯一目的而使钻井设备在井孔内进行往返运动的需要或使这种需要最小化。
为了克服这些缺点,本发明的主要目的是为了利用至少一个钻具组零部件以便获得这样的岩层参数数据。
更具体地,本发明的目的是为了在钻具组上采用一不旋转的稳定器,以便与岩层配合,从而从岩层中获得信息。
上述目的及各种其他目的和优点是由用于从一地下岩层中收集数据的井下工具获得的,该工具包括一个管形芯轴和一稳定器元件,该芯轴适合于与一个位于一个穿透地下岩层的井孔中的钻具组轴向连接,该稳定器元件绕该管形芯轴设置以便在该稳定器元件和管形芯轴之间相对旋转。一组细长肋片连接到该稳定器元件上。一个装置连接到稳定器元件上以便与井孔壁摩擦接合,从而防止该稳定器元件相对井孔壁旋转。一致动系统至少部分是由该稳定器元件支承,一探头由至少一个细长肋片支承,并且该探头适合由该致动系统驱动,在一肋片内的一缩进位置和与井孔壁结合的伸出位置之间运动,以致于探头可收集岩层数据。
各细长肋片最好是径向隔开的,并且沿该稳定器元件定位或者是轴向的或者是螺旋形的。
摩擦接合装置可设计为各种结构形式,包括上述多个细长肋片,多个稳定器叶片或它们的一些组合。当选择稳定器叶片来提供与井孔的摩擦接合时,则最好是将每个叶片设置于两个细长肋片之间。
该摩擦接合装置还包括一个使该摩擦接合装置与该井孔壁接触从而防止该摩擦接合装置相对该井孔壁旋转的弹簧系统。最好该弹簧系统包括多个各具有一固有弹性刚度的弓形弹性叶片。
在一优化实施例中,该探头包括一个位于一个在该稳定器元件的各肋片之一中的基本上为圆筒形的开口中的弹性压封器。该压封器中具有一中心开口。具有一开口端的导管处于与该压封器中的中心开口保持流体连通的位置。一过滤阀处于绕导管的开口端设置的压封器中心开口中,并且该过滤阀可在关闭该导管的开口端的第一位置和一个允许过滤的岩层流体在岩层和导管之间流动的第二位置之间运动。
在一优化实施例中,该致动系统包括一液压系统,和对该液压系统中的液压流体进行有选择地加压的装置。一个可膨胀的容器设置与该液压流体系统保持流体连通,并且该容器随液压流体中的压力增加而膨胀,随该液压流体中的压力降低而收缩。该容器最好是一个连接到探头的压封器上的波纹管,以致于液压流体中的压力的增加所产生的该波纹管的膨胀可使该压封器运动,从而与井孔壁保持密封接合。
在一优化实施例中,该致动系统还包括一顺序阀,该顺序阀可根据检测到的在液压流体中因容器的最大膨胀产生的预定压力工作,从而使探头的过滤阀运动到该第二位置,因此岩层中的流体可流入该导管的开口端。
还较好的是,本发明的井下工具包括一个设置与探头导管保持流体连通以便测量岩层流体的性能的传感器。在一优化实施例中,该传感器是适合于检测岩层流体的压力的压力传感器。
在另一方面,本发明包括一种用于测量一地下岩层中存在的流体的性能的方法。该方法包括将一钻具组定位于一个穿过地下岩层的井孔中。位于该钻具组中的一工具的不旋转元件设置得与该井孔的一壁接合,以致于该不旋转元件不会相对井孔壁运动。由该不旋转元件携带的一探头运动到与该井孔壁保持密封接合,从而在岩层和该不旋转元件之间形成流体连通。
在一优化实施例中,流体从岩层引入到一个由井下工具携带用于检测岩层的性能的传感器处,诸如一压力传感器处。这种流体运动是通过探头实现的,该探头适合于由一致动系统驱动在一个不旋转元件内的缩进位置和一个与该井孔壁接合的伸出位置之间运动,以致于探头可收集岩层数据。
本发明上述特征,优点和目的获得的方式可在本发明的详细,更具体的说明中得到理解,本发明的上述简要概述可借助于参考在所附的各附图中示出的本发明的优化实施例得出。
然而,应该注意:所附的各附图只表示本发明的典型实施例,因此不能认为是对本发明的范围的限制,因为本发明可认为也适合于其他等效的实施例。各附图中:
图1是一个常规钻机和采用本发明的钻具组的正视图,其中部分剖开,部分用方框表示;
图2是本发明的一个实施例所述的不旋转的稳定器的剖视图,该稳定器配备有其中具有探头组件的细长肋片;
图3是本发明的另一个实施例所述的不旋转的稳定器的套筒的透视图,该套筒配备有细长的肋片和稳定器叶片;
图4是图2所示不旋转的稳定器的平面剖视图;
图5是图4所示的细长肋片之一的透视图,其中局部剖开具体示出了在该细长肋片上所用的多探头;
图6是一个流体流动的示意图,流体从岩层流过对该流体的一种或多种特性,例如压力进行检测的不旋转的稳定器;
图7是一个在该个不旋转的稳定器中的细长肋片中处于缩进位置的探头之一的剖视图;
图8是一个图6所示探头处于伸出位置并与该井孔壁接合的剖视图;
图9是一个不旋转的稳定器的示意图,其中方框表示产生动力和数据传递部件。
图1表示一常规的钻机和钻具组,其中可较好地利用本发明。陆基平台和井架组件10定位于穿过地下岩层F的井孔11的上方。在图示实施例中,井孔11是借助于旋转钻进以公知的方式钻出的。然而,因本发明的公开可获得教益的本技术领域的普通技术人员将会注意到:本发明也可用在直接钻进及旋转钻进中,并且并不能将本发明限制于仅用于陆基钻机上。
钻具组12悬置在井孔11中并且其下端具有钻头15。钻具组12由借助于未示出的装置供给能量的转台16驱动旋转,该装置与该钻具组的上端处的凯氏钻杆17接合。钻具组12从吊钩18处向下通过凯氏钻杆17和允许钻具组相对该吊钩旋转的旋转体19连接到一运动块(未示出)上。
钻进流体或泥浆储存于在钻井场地形成的井槽27中。泵29通过旋转体19中的一个通道将钻进流体26输送到钻具组12的内部,该通道引导钻进流体26向下流通过钻具组12,如箭头9所示。该钻进流体通过钻头15中的各通道排出钻具组12,然后通过钻具组外侧和井孔壁之间的区域向上循环,即所谓的环形区域,如箭头32所示。按这种方式,该钻进流体对钻头15进行润滑,并且在返回井槽27以便再循环时将切下的岩屑带到地表面。
钻具组12还包括一个在钻头15附近(换句话说,在从钻头起几个钻柱长度的范围内)的底孔组件,该底孔组件整体标为100,并具有用于测量,处理和储存信息及与地面进行交流的能力。因此除其他东西之外,该底孔组件100还包括用于确定并传递井孔11周围岩层F的抵抗力的测量和短距离传递装置200。包括发送天线和接收天线的传递装置200在专利权同样属于本申请的专利权人的美国专利US5339037中作了详细描述,该专利的全部内容可结合本文在此作为参考。
组件100还包括用于实现不同的其他测量功能的钻柱130和地表面/短距离传递子组件150。子组件150包括用于与装置200进行短距离传递的环形天线250,和一种公知类型的传声系统,该传声系统通过钻进流体或泥浆中携带的信息与地表面上一类似的传声系统连接。因此,该子组件150中的地表面传递系统包括一个传声器,该传声器在钻进流体中产生一个代表测到的下井参数的声音信号。
一种合适的类型的传声器采用一种公知为“泥浆报警”的装置,该装置包括一个带狭缝的定子和一个带狭缝的转子,该转子旋转并反复使该钻进流体的流动中断,从而在该钻进流体中形成一个理想的声波信号。子组件150中的驱动电子装置可包括一个合适的调制器,例如一个移相开关(PSK)调制器,该调制器通常产生用于泥浆传递器的驱动信号。这些驱动信号可用于对该泥浆报警进行合适的调节。
产生的声波在表面处由标号31表示的转换器接收。该转换器例如为压电转换器,可将接收到的声波信号转换为电信号。转换器31的输出连接到井口接收子系统90上,该子系统对传递的信号进行解调。然后,该接收子系统90的输出连接到处理器85和记录器45上。
设置井口传递系统95,并且其工作的目的是为了按一种可由子组件150中的转换器99检测的方式控制泵29的工作的中断。按这一方式,在子组件150和井口设备之间具有两向信息传递。子组件150在美国专利US5235285中详细描述了,该专利的全部内容也可与本发明结合在此作为参考。本领域的普通技术人员可注意到也可采用替换的声学技术及其他技术与地表面进行信息传递。
在图1所示实施例中,钻具组12还配备有稳定柱300。这种稳定柱用于对该钻具组的“摆动”倾向进行强调,并且当它在井孔中旋转时可分散开,从而导致在井孔方向与希望的路线(例如一垂直线)存在偏差。这一偏差可能在钻具组部分及钻头上产生过大的侧向力,从而加速磨损。这种缺点可由提供一种用于使钻头和该钻具组在井孔中在某种程度上进行对中的装置克服。本技术领域公知的对中工具的示例除稳定器之外还包括管保护器和其他工具。下面以一种不旋转的钻具组稳定器对本发明的一种具体实施例进行描述。
除图1之外,图2和4示出了一种用于从一地下岩层收集数据的下井工具的优化实施例。该下井工具设置为不旋转的稳定器300,其具有一根轴向连接于钻具组12中的管形芯轴302。因此该芯轴302配备有用于该钻具组内常规结构的销端304和盒端306。如图2所示,端部304和306可以是规定规格的柱,该柱可按一常规连接方式,例如螺纹连接和/或焊接连接到该芯轴302的细长中心部分上。
稳定器300还包括不旋转的稳定器元件或套筒308,该套筒308绕该管形芯轴302以一种允许该稳定器元件和该管形芯轴之间可相对旋转的方式设置,并位于端部304和306之间。止推轴承310,312设置用于降低摩擦力,并承受在套筒308和芯轴端部304,306之间的轴向界面处产生的轴向负荷。在芯轴302和套筒308之间的径向界面处还设置有旋转密封装置348和径向轴承346。
多个细长的肋片314例如借助于焊接或螺栓连接连接到稳定器套筒308的外表面上。这些细长的肋片最好在径向隔开,而如图1,2或4所示进行定位,或者轴向或者沿不旋转的稳定器套筒呈螺旋形(未示出)。当前,该不旋转的套筒最好包括三个这样的肋片314,这些肋片绕该套筒的圆周隔开120°,如图4所示。然而本发明并不限制于一个带三个肋片的实施例,并且可充分采用其他结构的细长肋片。多肋片的目的是为了增加对井孔施加一合适的密封的可能性,这一点将在下面进一步说明。
一个装置连接到该稳定器套筒308上,用于与井孔11的一壁摩擦接合,从而防止该稳定器套筒相对该井孔壁旋转。该摩擦接合装置可设置为各种不同的结构,包括多个细长的肋片314,或者作为多个稳定器叶片316。图3表示一替换实施例,其中既包括细长的肋片314又包括稳定器叶片,同时各叶片至少具有一摩擦接合的主要部分,该部分用于防止稳定器元件或套筒308相对井孔壁旋转。当选择稳定器叶片时,最好每个叶片316设置于两个细长肋片314之间,如图3所示。
该摩擦接合装置还包括一个用于使该摩擦接合装置与该井孔壁接触的弹簧系统,因此形成一巨大的摩擦力以便抵抗套筒308相对井孔壁的旋转。在图3所述实施例中,这种弹簧系统由选取一组每个都具有一固有的弹簧刚度的弓形叶片316而构成。然而获得本发明公开的内容的好处的本技术领域的普通技术人员将会注意到:例如在本发明不具稳定器叶片316的实施例中,一弹簧系统也可由细长的肋片314构成。
应该注意到:可采用其他的装置来引导该稳定器套筒308和井孔壁之间的摩擦接合,例如可用液压致动组件使该细长的肋片/叶片和/或不同的稳定器活塞组件(未示出)沿径向向外运动,以致于使之与井孔壁形成牢固的接合,从而防止元件308和井孔壁之间的旋转。
一探头致动系统,其整体标为318,至少部分是由不旋转的稳定器套筒308支撑的,并表示于图2和6中。在本发明的一个优化实施例中,每个细长肋片314携带三个探头320,并且这些探头适合于由致动系统318驱动在该肋片的一缩进位置(如图7所示)和一个与井孔壁配合的伸出位置之间运动,从而如图2和8所示,探头可从岩层中采集数据。
在一优化实施例中,每个探头都包括一个位于一基本上为圆筒形的开口或凹腔324中的环形弹性压封器322,该凹腔如图2所示在该细长肋片314之一上延伸通过。如图7所示,每个压封器322在探头缩进位置时嵌埋入肋片314中的开口或凹腔324中,所以该压封器(典型的是由诸如硫化橡胶之类的弹性材料制成的)不会被在钻井工作期间稳定器300遇到的粘附力损坏。具有开口端或喷嘴328的管道326定位得便于流体流过,并且在压封器中具有一中心孔。过滤阀330也定位于压封器322的中心孔中,处于管道326的开口端附近。该过滤阀可在一关闭该管道的开口端的第一位置(如图7所示)和一允许被过滤的岩层流体在岩层和该管道之间流动(如图2和8所示)的第二位置之间运动。
再参见图2和6,致动系统318还包括一液压系统,该液压系统包括液压流体储存库332,液压泵334和液压流体管路336,以便对该液压流体系统中的液压流体进行有选择地加压。在每个圆筒形开口324中的一膨胀容器,更具体地说即柔性金属波纹管340借助于从流动管路336分支出来的流动管路338(参见图2)使该液压系统保持流体连通。最好设置在一单一细长肋片314上的每个探头320都连接到一共同储存库332上。在一具体实施例中,设置在所有肋片314上的每个探头都共同连接到相同的液压流体储存库上。
液压流体压力增加时,波纹管340以常规方式膨胀,相似地,液压流体压力降低时,波纹管收缩。波纹管340连接到压封器322上,因此在液压流体压力增加的作用下,波纹管膨胀使该压封器运动到与井孔壁密封保持接合的状态,如图8所示。图7和8的比较显示出每个探头320具有一短的活塞行程,该行程因波纹管340的膨胀/收缩而产生。
给不旋转稳定器300的电力传输可采用各种不同的方法实现。一种选择(未示出)是将各个永久磁铁绕芯轴的圆周嵌埋在芯轴内的一圆筒形结构中,一环形导电线圈绕各磁铁嵌埋在该个不旋转的套筒中。因此芯轴相对不旋转的套筒的旋转将在线圈内产生一可转换为直流以便合适地用在稳定器300中的交变电流。
将电力传递给不旋转的稳定器300的另一种选择示意性地描述于图9中,其中一部分钻进流体或泥浆在配备有旋转密封装置352的旁通回路350中偏离芯轴302的中心。在旁通回路中的钻进泥浆通过一个位于不旋转套筒308中的小透平354导向。
一探头的“设定”过程是由供能泵334启动的,该供能泵的能量通过透平354产生,从而可增加储存库332中液压流体压力。泵334可选择地由调节电力或直接施加到该泵上的扭矩的常规控制系统(未示出)控制施加能量。储存库332中压力的增加将使流动线路336中的流体压力增加,从而迫使连接到流动线路上的每个探头320从各自的开口或凹腔324中退出。在标准钻井工作期间,由于各细长的肋片314通常与井孔壁接合,因此要求具有一非常小的活塞行程来保证探头320的压封器322和井孔壁之间的密封。波纹管340设计得具有足够的自由度和铰接运动,从而可对压封器322进行调节使之与井孔局部的不平度一致。
在一优化实施例中,致动系统318还包括用于每个探头320的一顺序阀342。如图2所示,该顺序阀连接到流动线路338上,并且当感测到液压流体中因每个波纹管340的最大膨胀而产生的一预定压力时进行工作。感测到这样的预定压力之后,每个顺序阀342开启,放出液压流体,从而使圆筒形开口324在过滤阀330下并由波纹管340构成边界的区域加压,使该过滤阀运动到第二的且较上的位置,此时岩层中的流体可流入管道326的开口端328中。因此在每个探头处都会使岩层流体产生一个较小的下降。
传感器344设置得与探头管道保持流体接通,以便测量通过管道326抽走的岩层流体的特性。在一优化实施例中,传感器344是一个适用于检测岩层流体的压力传感器,例如应变仪,记忆器(Mems gauge)或晶体检测仪。传感器344提供了检测并记录压力数据的能力,及将代表这些压力数据的信号通过电子组件356传递给一个诸如上述子组件150之类的数据接收器中的接收电路以便进一步按本技术领域公知的方式通过钻具组12传递。因此通过一个例如在美国专利US5235285中所述的公知的电磁收发系统可保证数据的双向传递。应该注意到在这种考虑中传感器电子组件356可设计与一个在芯轴302中的收发器以及一个处于不旋转的稳定器300之上或之下的收发器连接。
尽管此处只对用于压力数据的传感器344进行了描述,也可想到本发明也可使用传感器和相关的电子组件检测,记录并传递代表其他岩层参数,例如温度和流体成分的数据。只需要将这些传感器设置于流体流动线路326中某点处与岩层流体接触的地方即可,例如设置于一个允许传感器对所要求的岩层参数数据进行检测的检测点处。
从井孔环形中测量(用其他公知的装置)出流体静压力,并将该静压力与由各探头320和传感器344获得的相应压力值比较。一个带有较差密封的探头尽管下沉,但可继续跟踪井孔环形中的流体静压力。因此这一探头的压力测量可不考虑。然后将所有“好的”压力的加权平均值作为稳定器300附近的岩层压力。在完成压力测试(其他参数测试)后,借助于用泵334使液压流体返回储存库332中而启动一“回收”循环。这样就降低了流动线路336中的压力,从而各探头320缩回到他们各自肋片的开口或凹腔324中。当顺序阀342关闭时,这一过程结束,并且在流动线路中残留的岩层流体由过滤阀330和输送喷嘴328之间的相对运动推出再回到井孔中。
本发明提供的优点之一来源于这样的事实,即在钻井工作期间,一具体的细长肋片314相对井孔的定位在任何给定点处都不是及时知道的,因此也不能在任何满意的精度范围内进行调节。因此单个探头和压封器的最终位置可处于与井孔壁可能会成一不利的角度处,防止产生一适当的密封,因此而降低压力测试成功的可能性,或其他数据获取的可能性。
在一不旋转的稳定器肋片上的多个探头的位置,和多个这样的肋片的采用绝对是多余的,并且增加了这样的可能性,即至少一个探头起到一合适的密封装置的作用并获得成功的压力测试(或允许获取其他岩层数据)的可能性。借助于在每个细长肋片314中采用两个,三个甚至四个相互挨着的探头,可扩大对井孔壁表面进行检测的作用范围。因此进一步提高了一形成良好接触的机会。
可获得本发明公开的内容的好处的人应该注意到:本发明提供了一种用于在钻井工作期间获取岩层数据的新选择。此外,作为一测量同时钻进/记录并钻进(Measurement-While-Drilling/Logging-While-Drilling)(MWD/LWD)系统的一部分,本发明可充分利用各种核的,电阻的和声学的工具和措施。如上所述,一当前的优化实施例可充分应用于岩层-压力-同时-钻进(Formation-Pressure-While-Drilling)(FPWD)使用场合中。
与公知的MWD/LWD工具比较,本发明的不旋转的稳定器为感测一岩层的各个参数提供了一种相对不存在冲击和振动的环境。不考虑整个钻井工作,这种不旋转的稳定器沿其纵轴典型地经历了主要是侧向的滑动运动。这一事实对依靠易脆件进行的大量测量,或要求在获取数据期间不存在旋转的大量测量是很有利的。
本发明当连接到诸如在美国专利US4860581和4936139中所述的取样室上时,也可适用于获取岩层流体的试样。这种取样室可设置于不旋转的套筒308内,并通过隔离阀360,流动线路总线364和主隔离阀362连接到流动线路326上,如图6所示。由于这种不旋转的套筒在钻井工作期间会遇到较小的粘附力,因此对这些取样室只需要稍稍进行格外的保护即可。
按前述所述,本发明明显可很好地适用于实现上面列出的所有目的,优点和特性,同时与在所公开的装置中固有的其他目的,优点和特性结合。
如本技术领域普通技术人员可清楚地看出的那样,本发明在不脱离其精神实质或基本特征的前提下也可制造为其他具体形式。因此当前公开的实施例只能认为是为了说明本发明,不是为了限制本发明。本发明的范围由下列各权利要求而不是由上述说明表示出来,并且所有处于各权利要求的等效范围和含义之内的变化都包括在其中。
Claims (23)
1,一种用于收集一地下岩层的数据的井下工具,其包括:一个适合于与位于一个穿透地下岩层的井孔中的钻具组轴向连接的管形芯轴;
一个绕该管形芯轴设置以便在该稳定器元件和管形芯轴之间相对旋转的稳定器元件;
多个细长肋片连接到该稳定器元件上;
连接到稳定器元件上以便与井孔壁摩擦接合,这种摩擦接合防止该稳定器元件相对井孔壁旋转的装置;
一至少部分是由该稳定器元件支撑的致动系统;
由一个细长肋片携带的一探头,并且该探头适合由该致动系统驱动,在一肋片内的一缩进位置和与井孔壁接合的伸出位置之间运动,以致于探头可收集岩层数据。
2,权利要求1所述井下工具,其特征在于:各细长肋片径向隔开,并且沿该稳定器元件轴向定位。
3,权利要求1所述井下工具,其特征在于:各细长肋片径向隔开,并且沿该稳定器元件定位为螺旋形。
4,权利要求1所述井下工具,其特征在于:该摩擦接合装置包括多个细长肋片。
5,权利要求1所述井下工具,其特征在于:该摩擦接合装置包括多个稳定器叶片,每个叶片定位于两细长肋片之间。
6,权利要求1所述井下工具,其特征在于:该摩擦接合装置包括一个使该摩擦接合装置与该井孔壁保持接触以便防止该摩擦接合装置相对该井孔壁旋转的弹簧系统。
7,权利要求6所述井下工具,其特征在于:该弹簧系统包括多个每个都具有一固有弹性刚度的弓形弹性叶片。
8,权利要求1所述井下工具,其特征在于:该探头包括:一个位于一个在该稳定器元件的各肋片之一中的基本上为圆筒形的开口中的弹性压封器,该压封器中具有一中心开口;
具有一开口端的导管,开口端处于与该压封器中的中心开口保持流体连通的位置;
一过滤阀处于绕导管的开口端设置的压封器中心开口中,并且该过滤阀可在关闭该导管的开口端的第一位置和一个允许过滤的岩层流体在岩层和导管之间流动的第二位置之间运动。
9,权利要求1所述井下工具,其特征在于:该致动系统包括一液压系统;
用于对该液压系统中的液压流体有选择地加压的装置;
一个与该液压流体系统保持流体连通的可膨胀容器,该容器在液压流体压力增加时膨胀,在液压流体压力降低时收缩。
10,权利要求8所述井下工具,其特征在于:该致动系统包括
一液压流体系统;
用于对该液压流体系统中的液压流体有选择地加压的装置;
一个与该液压流体系统保持流体连通并与压封器连接的可膨胀波纹管,该波纹管在液压流体压力增加时膨胀,从而使压封器与井孔壁保持密封接触。
11,权利要求10所述井下工具,其特征在于:该致动系统还包括一顺序阀,该顺序阀可根据检测到的在液压流体中因波纹管的最大膨胀产生的预定压力工作,从而使过滤阀运动到该第二位置,因此岩层中的流体可流入该导管的开口端。
12,权利要求8所述井下工具,其特征在于:还包括一个设置得与导管保持流体连通以便测量岩层流体的性能的传感器。
13,权利要求12所述井下工具,其特征在于:该传感器是适合于检测岩层流体的压力的压力传感器。
14,权利要求1所述井下工具,其特征在于:该井下工具是一种不旋转稳定器。
15,一种用于收集地下岩层的数据的井下工具,其包括:
一个适合于与一个位于一个穿透地下岩层的井孔中的钻具组轴向连接的管形芯轴;
一个绕该管形芯轴设置以便在该稳定器元件和管形芯轴之间相对旋转的稳定器元件;
多个细长肋片连接到该稳定器元件上用于与井孔的一壁进行摩擦接合,这种摩擦接合可防止该稳定器元件相对该井孔壁旋转;
一至少部分是由该稳定器元件支撑的致动系统;及
由一个细长肋片携带的一探头,并且该探头适合由该致动系统驱动,在一肋片内的一缩进位置和与井孔壁接合的伸出位置之间运动,以致于探头可收集岩层数据。
16,一种用于收集地下岩层的数据的井下工具,其包括:
一个适合于与一个位于一个穿透地下岩层的井孔中的钻具组轴向连接的管形芯轴;
一个绕该管形芯轴设置以便在该稳定器元件和管形芯轴之间相对旋转的稳定器元件;
多个连接到该稳定器元件上并且彼此径向隔开的细长肋片;
多个连接到该稳定器元件上用于与井孔的一壁进行摩擦接合的稳定器叶片,这种摩擦接合可防止该稳定器元件相对该井孔壁旋转;
一至少部分是由该稳定器元件支撑的致动系统;及
由一个细长肋片携带的一探头,并且该探头适合由该致动系统驱动,在一肋片内的一缩进位置和与井孔壁接合的伸出位置之间运动,以致于探头可收集岩层数据。
17,如权利要求16所述井下工具,其特征在于:每个稳定器叶片设置于两细长肋片之间。
18,如权利要求16所述井下工具,其特征在于:每个稳定器叶片包括一个具有一固有弹性刚度的弓形弹簧,从而使该稳定器叶片与井孔壁保持摩擦接合。
19,一种用于测量存在于一地下岩层中的流体的性能的方法,其包括:
将一钻具组设置于一个穿过地下岩层的井孔中;
使位于该钻具组中的一工具的一不旋转元件与一井孔壁接合,以致于该不旋转元件不相对该井孔壁运动;及
使由该不旋转元件携带的一个探头运动到与该井孔壁形成密封接合,从而在该岩层和该不旋转元件之间形成流体连通。
20,如权利要求19所述方法,其特征在于:还包括从该岩层中将流体引入到一个由该井下工具携带的传感器,以便检测该岩层的性能。
21,如权利要求20所述方法,其特征在于:该传感器是一个适合于检测岩层流体压力的压力传感器。
22,如权利要求21所述方法,其特征在于:所述探头适合于由一致动系统驱动在一不旋转元件内的一缩进位置和与井孔壁接合的伸出位置之间运动,以致于探头可收集岩层数据。
23,如权利要求22所述方法,其特征在于:该探头包括:
一个位于该不旋转元件中的基本上为圆筒形的开口中的弹性压封器,该压封器中具有一中心孔;
具有一开口端的导管,该开口端处于与该压封器中的中心开口保持流体连通的位置;及
一过滤阀,处于绕导管的开口端设置的压封器中心开口中,并且该过滤阀可在关闭该导管的开口端的第一位置和一个允许过滤的岩层流体在岩层和导管之间流动的第二位置之间运动。
Applications Claiming Priority (9)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US9525298P | 1998-08-04 | 1998-08-04 | |
US60/095252 | 1998-08-04 | ||
US60/095,252 | 1998-08-04 | ||
US9722698P | 1998-08-20 | 1998-08-20 | |
US60/097226 | 1998-08-20 | ||
US60/097,226 | 1998-08-20 | ||
US09/351,569 | 1999-07-12 | ||
US09/351,569 US6230557B1 (en) | 1998-08-04 | 1999-07-12 | Formation pressure measurement while drilling utilizing a non-rotating sleeve |
US09/351569 | 1999-07-12 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN1248664A true CN1248664A (zh) | 2000-03-29 |
CN1097138C CN1097138C (zh) | 2002-12-25 |
Family
ID=27377919
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN99111951A Expired - Fee Related CN1097138C (zh) | 1998-08-04 | 1999-08-04 | 收集地下岩层数据的井下工具和方法 |
Country Status (6)
Country | Link |
---|---|
US (1) | US6230557B1 (zh) |
EP (1) | EP0978630A3 (zh) |
CN (1) | CN1097138C (zh) |
AU (1) | AU755742B2 (zh) |
CA (1) | CA2278266A1 (zh) |
NO (1) | NO993757L (zh) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101074596B (zh) * | 2007-06-19 | 2011-01-26 | 西安石油大学 | 变径方位稳定器 |
CN101210492B (zh) * | 2006-12-27 | 2013-05-01 | 普拉德研究及开发股份有限公司 | 地层流体取样装置和方法 |
CN103615201A (zh) * | 2013-11-30 | 2014-03-05 | 重庆九州探矿机械技术开发公司 | 工程钻机孔内钻杆用的扶正器 |
CN106609667A (zh) * | 2015-10-22 | 2017-05-03 | 中国石油化工股份有限公司 | 一种电磁随钻测量系统中的电极 |
CN106869804A (zh) * | 2017-03-22 | 2017-06-20 | 新疆帝陛艾斯钻头工具有限公司 | 定向井钻头 |
CN109695416A (zh) * | 2018-12-04 | 2019-04-30 | 淮北杨柳煤业有限公司 | 一种钻孔时便于实时检测的导向杆 |
CN111512020A (zh) * | 2017-11-14 | 2020-08-07 | 贝克休斯控股有限责任公司 | 可移除的模块化控制组件 |
CN113431555A (zh) * | 2021-06-22 | 2021-09-24 | 中海油田服务股份有限公司 | 一种随钻电成像仪器 |
CN114575338A (zh) * | 2022-04-07 | 2022-06-03 | 江西省地质工程(集团)公司 | 一种长螺旋灌注桩空孔段处理方法 |
Families Citing this family (134)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6339886B1 (en) * | 1998-12-22 | 2002-01-22 | Baker Hughes, Inc. | Remotely measured caliper for wellbore fluid sample taking instrument |
US6347292B1 (en) | 1999-02-17 | 2002-02-12 | Den-Con Electronics, Inc. | Oilfield equipment identification method and apparatus |
US6581454B1 (en) * | 1999-08-03 | 2003-06-24 | Shell Oil Company | Apparatus for measurement |
US6371204B1 (en) * | 2000-01-05 | 2002-04-16 | Union Oil Company Of California | Underground well kick detector |
US7242194B2 (en) * | 2000-04-07 | 2007-07-10 | Schlumberger Technology Corporation | Formation imaging while drilling in non-conductive fluids |
AU2001283388A1 (en) * | 2000-08-15 | 2002-02-25 | Baker Hughes Incorporated | Formation testing apparatus with axially and spirally mounted ports |
US6564883B2 (en) * | 2000-11-30 | 2003-05-20 | Baker Hughes Incorporated | Rib-mounted logging-while-drilling (LWD) sensors |
GB2388133B (en) * | 2001-01-04 | 2004-12-29 | Schlumberger Holdings | Centralizer including measurement means |
WO2002077613A2 (en) * | 2001-03-23 | 2002-10-03 | Services Petroliers Schlumberger | Fluid property sensors |
CA2448404A1 (en) * | 2001-04-25 | 2002-11-07 | Halliburton Energy Services, Inc. | Method, system and tool for reservoir evaluation and well testing during drilling operations |
US6769296B2 (en) * | 2001-06-13 | 2004-08-03 | Schlumberger Technology Corporation | Apparatus and method for measuring formation pressure using a nozzle |
US6729399B2 (en) * | 2001-11-26 | 2004-05-04 | Schlumberger Technology Corporation | Method and apparatus for determining reservoir characteristics |
US6810973B2 (en) | 2002-02-08 | 2004-11-02 | Hard Rock Drilling & Fabrication, L.L.C. | Steerable horizontal subterranean drill bit having offset cutting tooth paths |
US6814168B2 (en) | 2002-02-08 | 2004-11-09 | Hard Rock Drilling & Fabrication, L.L.C. | Steerable horizontal subterranean drill bit having elevated wear protector receptacles |
US6827159B2 (en) | 2002-02-08 | 2004-12-07 | Hard Rock Drilling & Fabrication, L.L.C. | Steerable horizontal subterranean drill bit having an offset drilling fluid seal |
US6810971B1 (en) | 2002-02-08 | 2004-11-02 | Hard Rock Drilling & Fabrication, L.L.C. | Steerable horizontal subterranean drill bit |
US6810972B2 (en) | 2002-02-08 | 2004-11-02 | Hard Rock Drilling & Fabrication, L.L.C. | Steerable horizontal subterranean drill bit having a one bolt attachment system |
US6837314B2 (en) | 2002-03-18 | 2005-01-04 | Baker Hughes Incoporated | Sub apparatus with exchangeable modules and associated method |
CA2484902C (en) | 2002-05-17 | 2009-07-21 | Halliburton Energy Services, Inc. | Mwd formation tester |
CA2484927C (en) * | 2002-05-17 | 2009-01-27 | Halliburton Energy Services, Inc. | Method and apparatus for mwd formation testing |
US6719049B2 (en) | 2002-05-23 | 2004-04-13 | Schlumberger Technology Corporation | Fluid sampling methods and apparatus for use in boreholes |
US6910534B2 (en) * | 2002-06-11 | 2005-06-28 | Halliburton Energy Services, Inc. | Apparatus for attaching a sensor to a tubing string |
US6964301B2 (en) | 2002-06-28 | 2005-11-15 | Schlumberger Technology Corporation | Method and apparatus for subsurface fluid sampling |
US8555968B2 (en) * | 2002-06-28 | 2013-10-15 | Schlumberger Technology Corporation | Formation evaluation system and method |
US7178591B2 (en) * | 2004-08-31 | 2007-02-20 | Schlumberger Technology Corporation | Apparatus and method for formation evaluation |
US8899323B2 (en) | 2002-06-28 | 2014-12-02 | Schlumberger Technology Corporation | Modular pumpouts and flowline architecture |
US8210260B2 (en) * | 2002-06-28 | 2012-07-03 | Schlumberger Technology Corporation | Single pump focused sampling |
US7062959B2 (en) * | 2002-08-15 | 2006-06-20 | Schlumberger Technology Corporation | Method and apparatus for determining downhole pressures during a drilling operation |
US6843117B2 (en) * | 2002-08-15 | 2005-01-18 | Schlumberger Technology Corporation | Method and apparatus for determining downhole pressures during a drilling operation |
US7805247B2 (en) * | 2002-09-09 | 2010-09-28 | Schlumberger Technology Corporation | System and methods for well data compression |
US6832515B2 (en) | 2002-09-09 | 2004-12-21 | Schlumberger Technology Corporation | Method for measuring formation properties with a time-limited formation test |
ATE329136T1 (de) | 2002-09-09 | 2006-06-15 | Schlumberger Technology Bv | Verfahren zur messung von formationseigenschaften mit zeitbegrenztem formationstest |
US7152466B2 (en) * | 2002-11-01 | 2006-12-26 | Schlumberger Technology Corporation | Methods and apparatus for rapidly measuring pressure in earth formations |
US6868035B2 (en) * | 2002-11-05 | 2005-03-15 | Bechtel Bwxt Idaho, Lcc | Method and apparatus for coupling seismic sensors to a borehole wall |
US7331223B2 (en) * | 2003-01-27 | 2008-02-19 | Schlumberger Technology Corporation | Method and apparatus for fast pore pressure measurement during drilling operations |
GB2397893B (en) * | 2003-01-30 | 2005-04-06 | Schlumberger Holdings | Permanently eccentered formation tester |
US6915686B2 (en) * | 2003-02-11 | 2005-07-12 | Optoplan A.S. | Downhole sub for instrumentation |
US6986282B2 (en) * | 2003-02-18 | 2006-01-17 | Schlumberger Technology Corporation | Method and apparatus for determining downhole pressures during a drilling operation |
US7128144B2 (en) | 2003-03-07 | 2006-10-31 | Halliburton Energy Services, Inc. | Formation testing and sampling apparatus and methods |
US9376910B2 (en) | 2003-03-07 | 2016-06-28 | Halliburton Energy Services, Inc. | Downhole formation testing and sampling apparatus having a deployment packer |
US7185715B2 (en) * | 2003-03-10 | 2007-03-06 | Baker Hughes Incorporated | Apparatus and method of controlling motion and vibration of an NMR sensor in a drilling bha |
US6986389B2 (en) * | 2003-05-02 | 2006-01-17 | Weatherford/Lamb, Inc. | Adjustable deployment apparatus for an actively clamped tubing-conveyed in-well seismic station |
US20040237640A1 (en) * | 2003-05-29 | 2004-12-02 | Baker Hughes, Incorporated | Method and apparatus for measuring in-situ rock moduli and strength |
US7178392B2 (en) * | 2003-08-20 | 2007-02-20 | Schlumberger Technology Corporation | Determining the pressure of formation fluid in earth formations surrounding a borehole |
US7195063B2 (en) * | 2003-10-15 | 2007-03-27 | Schlumberger Technology Corporation | Downhole sampling apparatus and method for using same |
US7114562B2 (en) * | 2003-11-24 | 2006-10-03 | Schlumberger Technology Corporation | Apparatus and method for acquiring information while drilling |
US7124819B2 (en) * | 2003-12-01 | 2006-10-24 | Schlumberger Technology Corporation | Downhole fluid pumping apparatus and method |
US7207215B2 (en) * | 2003-12-22 | 2007-04-24 | Halliburton Energy Services, Inc. | System, method and apparatus for petrophysical and geophysical measurements at the drilling bit |
US7121338B2 (en) * | 2004-01-27 | 2006-10-17 | Halliburton Energy Services, Inc | Probe isolation seal pad |
US7243537B2 (en) * | 2004-03-01 | 2007-07-17 | Halliburton Energy Services, Inc | Methods for measuring a formation supercharge pressure |
US20050205301A1 (en) * | 2004-03-19 | 2005-09-22 | Halliburton Energy Services, Inc. | Testing of bottomhole samplers using acoustics |
GB2433952B (en) * | 2004-05-21 | 2009-09-30 | Halliburton Energy Serv Inc | Methods and apparatus for using formation property data |
US7260985B2 (en) * | 2004-05-21 | 2007-08-28 | Halliburton Energy Services, Inc | Formation tester tool assembly and methods of use |
US7603897B2 (en) * | 2004-05-21 | 2009-10-20 | Halliburton Energy Services, Inc. | Downhole probe assembly |
GB2429484B (en) * | 2004-05-21 | 2009-10-28 | Halliburton Energy Serv Inc | Methods and apparatus for measuring formation properties |
US7216533B2 (en) * | 2004-05-21 | 2007-05-15 | Halliburton Energy Services, Inc. | Methods for using a formation tester |
US20050274545A1 (en) * | 2004-06-09 | 2005-12-15 | Smith International, Inc. | Pressure Relief nozzle |
US7347262B2 (en) * | 2004-06-18 | 2008-03-25 | Schlumberger Technology Corporation | Downhole sampling tool and method for using same |
US7380599B2 (en) * | 2004-06-30 | 2008-06-03 | Schlumberger Technology Corporation | Apparatus and method for characterizing a reservoir |
US20060033638A1 (en) | 2004-08-10 | 2006-02-16 | Hall David R | Apparatus for Responding to an Anomalous Change in Downhole Pressure |
US20060054316A1 (en) * | 2004-09-13 | 2006-03-16 | Heaney Francis M | Method and apparatus for production logging |
US7069775B2 (en) * | 2004-09-30 | 2006-07-04 | Schlumberger Technology Corporation | Borehole caliper tool using ultrasonic transducer |
US7114385B2 (en) * | 2004-10-07 | 2006-10-03 | Schlumberger Technology Corporation | Apparatus and method for drawing fluid into a downhole tool |
US7458419B2 (en) * | 2004-10-07 | 2008-12-02 | Schlumberger Technology Corporation | Apparatus and method for formation evaluation |
US7296628B2 (en) * | 2004-11-30 | 2007-11-20 | Mako Rentals, Inc. | Downhole swivel apparatus and method |
US7828064B2 (en) * | 2004-11-30 | 2010-11-09 | Mako Rentals, Inc. | Downhole swivel apparatus and method |
US7548068B2 (en) | 2004-11-30 | 2009-06-16 | Intelliserv International Holding, Ltd. | System for testing properties of a network |
US7308934B2 (en) | 2005-02-18 | 2007-12-18 | Fmc Technologies, Inc. | Fracturing isolation sleeve |
US7458252B2 (en) * | 2005-04-29 | 2008-12-02 | Schlumberger Technology Corporation | Fluid analysis method and apparatus |
GB2469954A (en) * | 2005-05-10 | 2010-11-03 | Baker Hughes Inc | Telemetry Apparatus for wellbore operations |
US7546885B2 (en) * | 2005-05-19 | 2009-06-16 | Schlumberger Technology Corporation | Apparatus and method for obtaining downhole samples |
US7543659B2 (en) * | 2005-06-15 | 2009-06-09 | Schlumberger Technology Corporation | Modular connector and method |
US7913774B2 (en) | 2005-06-15 | 2011-03-29 | Schlumberger Technology Corporation | Modular connector and method |
US7183778B2 (en) * | 2005-07-19 | 2007-02-27 | Schlumberger Technology Corporation | Apparatus and method to measure fluid resistivity |
GB2431673B (en) | 2005-10-26 | 2008-03-12 | Schlumberger Holdings | Downhole sampling apparatus and method for using same |
US7367394B2 (en) * | 2005-12-19 | 2008-05-06 | Schlumberger Technology Corporation | Formation evaluation while drilling |
US20080087470A1 (en) | 2005-12-19 | 2008-04-17 | Schlumberger Technology Corporation | Formation Evaluation While Drilling |
US8579033B1 (en) | 2006-05-08 | 2013-11-12 | Mako Rentals, Inc. | Rotating and reciprocating swivel apparatus and method with threaded end caps |
WO2008011189A1 (en) * | 2006-07-21 | 2008-01-24 | Halliburton Energy Services, Inc. | Packer variable volume excluder and sampling method therefor |
US7703317B2 (en) * | 2006-09-18 | 2010-04-27 | Schlumberger Technology Corporation | Method and apparatus for sampling formation fluids |
US7857049B2 (en) * | 2006-09-22 | 2010-12-28 | Schlumberger Technology Corporation | System and method for operational management of a guarded probe for formation fluid sampling |
US7757760B2 (en) * | 2006-09-22 | 2010-07-20 | Schlumberger Technology Corporation | System and method for real-time management of formation fluid sampling with a guarded probe |
US7581440B2 (en) * | 2006-11-21 | 2009-09-01 | Schlumberger Technology Corporation | Apparatus and methods to perform downhole measurements associated with subterranean formation evaluation |
US7600420B2 (en) * | 2006-11-21 | 2009-10-13 | Schlumberger Technology Corporation | Apparatus and methods to perform downhole measurements associated with subterranean formation evaluation |
US7464755B2 (en) * | 2006-12-12 | 2008-12-16 | Schlumberger Technology Corporation | Methods and systems for sampling heavy oil reservoirs |
US7392710B1 (en) * | 2007-01-09 | 2008-07-01 | King Fahd University Of Petroleum And Minerals | Flow meter probe with force sensors |
NO20070628L (no) * | 2007-02-02 | 2008-08-04 | Statoil Asa | Measurement of rock parameters |
US20080230221A1 (en) * | 2007-03-21 | 2008-09-25 | Schlumberger Technology Corporation | Methods and systems for monitoring near-wellbore and far-field reservoir properties using formation-embedded pressure sensors |
US7798253B2 (en) * | 2007-06-29 | 2010-09-21 | Validus | Method and apparatus for controlling precession in a drilling assembly |
AU2008283885B2 (en) | 2007-08-06 | 2015-02-26 | Mako Rentals, Inc. | Rotating and reciprocating swivel apparatus and method |
WO2011080586A2 (en) | 2010-01-04 | 2011-07-07 | Schlumberger Canada Limited | Formation sampling |
US7765862B2 (en) * | 2007-11-30 | 2010-08-03 | Schlumberger Technology Corporation | Determination of formation pressure during a drilling operation |
US20090143991A1 (en) * | 2007-11-30 | 2009-06-04 | Schlumberger Technology Corporation | Measurements in a fluid-containing earth borehole having a mudcake |
US8794350B2 (en) * | 2007-12-19 | 2014-08-05 | Bp Corporation North America Inc. | Method for detecting formation pore pressure by detecting pumps-off gas downhole |
US20090159334A1 (en) * | 2007-12-19 | 2009-06-25 | Bp Corporation North America, Inc. | Method for detecting formation pore pressure by detecting pumps-off gas downhole |
US8136395B2 (en) * | 2007-12-31 | 2012-03-20 | Schlumberger Technology Corporation | Systems and methods for well data analysis |
EP2271817A4 (en) * | 2008-04-01 | 2013-04-24 | Baker Hughes Inc | COMPOUND ACTIVATION PROFILE ON A BLADE OF A DRILLING STABILIZER AND METHOD THEREFOR |
US8015867B2 (en) * | 2008-10-03 | 2011-09-13 | Schlumberger Technology Corporation | Elongated probe |
US7897915B2 (en) * | 2008-12-19 | 2011-03-01 | Schlumberger Technology Corporation | Segmented tubular body |
US9085964B2 (en) | 2009-05-20 | 2015-07-21 | Halliburton Energy Services, Inc. | Formation tester pad |
WO2010141037A1 (en) * | 2009-06-04 | 2010-12-09 | Schlumberger Canada Limited | System, method, and apparatus for visualizing changes in cylindrical volumes |
US8555712B2 (en) * | 2010-01-22 | 2013-10-15 | Opsens Inc. | Outside casing conveyed low flow impedance sensor gauge system and method |
US9429014B2 (en) | 2010-09-29 | 2016-08-30 | Schlumberger Technology Corporation | Formation fluid sample container apparatus |
FR2968348B1 (fr) * | 2010-12-03 | 2015-01-16 | Total Sa | Procede de mesure de pression dans une formation souterraine |
US9581019B2 (en) | 2011-03-23 | 2017-02-28 | Schlumberger Technology Corporation | Measurement pretest drawdown methods and apparatus |
US8813554B2 (en) | 2011-06-01 | 2014-08-26 | Schlumberger Technology Corporation | Methods and apparatus to estimate fluid component volumes |
NO333258B1 (no) * | 2011-09-13 | 2013-04-22 | Geir Habesland | Verktoy og fremgangsmate for sentrering av fôringsror |
US9187964B2 (en) | 2011-09-20 | 2015-11-17 | Schlumberger Technology Corporation | Mandrel loading systems and methods |
CN102758616B (zh) * | 2012-06-13 | 2014-12-17 | 中国石油集团长城钻探工程有限公司 | 多点地层压力测量仪 |
US20140069640A1 (en) | 2012-09-11 | 2014-03-13 | Yoshitake Yajima | Minimization of contaminants in a sample chamber |
EP4033069A1 (en) | 2012-09-26 | 2022-07-27 | Halliburton Energy Services, Inc. | Method of placing distributed pressure gauges across screens |
CN102943663B (zh) * | 2012-12-05 | 2015-08-26 | 兖矿集团有限公司 | 一种斜井井壁压力测量装置及方法 |
US9115571B2 (en) * | 2012-12-20 | 2015-08-25 | Schlumberger Technology Corporation | Packer including support member with rigid segments |
US9677344B2 (en) * | 2013-03-01 | 2017-06-13 | Baker Hughes Incorporated | Components of drilling assemblies, drilling assemblies, and methods of stabilizing drilling assemblies in wellbores in subterranean formations |
EP2867463B1 (en) * | 2013-08-30 | 2019-01-02 | Halliburton Energy Services, Inc. | Lwd resistivity imaging tool with adjustable sensor pads |
WO2016043723A1 (en) | 2014-09-16 | 2016-03-24 | Halliburton Energy Services, Inc. | Drilling noise categorization and analysis |
WO2016130105A1 (en) * | 2015-02-09 | 2016-08-18 | Halliburton Energy Services, Inc. | Centralizer electronics housing |
WO2018226991A1 (en) | 2017-06-07 | 2018-12-13 | Shifamed Holdings, Llc | Intravascular fluid movement devices, systems, and methods of use |
US10941646B2 (en) | 2017-07-28 | 2021-03-09 | Schlumberger Technology Corporation | Flow regime identification in formations using pressure derivative analysis with optimized window length |
CN111556763B (zh) | 2017-11-13 | 2023-09-01 | 施菲姆德控股有限责任公司 | 血管内流体运动装置、系统 |
EP4085965A1 (en) | 2018-02-01 | 2022-11-09 | Shifamed Holdings, LLC | Intravascular blood pumps and methods of use and manufacture |
US11230923B2 (en) * | 2019-01-08 | 2022-01-25 | Mark A. Proett | Apparatus and method for determining properties of an earth formation with probes of differing shapes |
US11359480B2 (en) | 2019-05-31 | 2022-06-14 | Halliburton Energy Services, Inc. | Pressure measurement supercharging mitigation |
JP2022540616A (ja) | 2019-07-12 | 2022-09-16 | シファメド・ホールディングス・エルエルシー | 血管内血液ポンプならびに製造および使用の方法 |
US11654275B2 (en) | 2019-07-22 | 2023-05-23 | Shifamed Holdings, Llc | Intravascular blood pumps with struts and methods of use and manufacture |
WO2021062270A1 (en) | 2019-09-25 | 2021-04-01 | Shifamed Holdings, Llc | Catheter blood pumps and collapsible pump housings |
EP4034192A4 (en) | 2019-09-25 | 2023-11-29 | Shifamed Holdings, LLC | INTRAVASCULAR BLOOD PUMP SYSTEMS AND METHODS OF USE AND CONTROL THEREOF |
US11242747B2 (en) * | 2020-03-20 | 2022-02-08 | Saudi Arabian Oil Company | Downhole probe tool |
US12078064B2 (en) * | 2020-04-06 | 2024-09-03 | Schlumberger Technology Corporation | Directional drilling systems |
CN112096328A (zh) * | 2020-09-18 | 2020-12-18 | 吉林大学 | 一种井内随钻井壁支撑机构 |
US11867053B2 (en) * | 2020-11-25 | 2024-01-09 | Saudi Arabian Oil Company | Shear head device |
CN112696188B (zh) * | 2020-12-09 | 2023-10-31 | 王少斌 | 一种环形可拆卸橡胶探头推靠器 |
CN115992695B (zh) * | 2021-10-18 | 2024-09-24 | 中国石油化工股份有限公司 | 新型井下智能测控装置、系统及方法 |
CN118049137B (zh) * | 2024-04-01 | 2024-10-18 | 核工业二一六大队 | 一种钻探用的钻探防跑偏装置 |
Family Cites Families (31)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2623594A (en) * | 1949-10-27 | 1952-12-30 | Standard Oil Dev Co | Sampling apparatus for subterranean fluids |
US2736967A (en) * | 1952-02-09 | 1956-03-06 | Schlumberger Well Surv Corp | Induction caliper |
US3163038A (en) * | 1960-05-04 | 1964-12-29 | Jersey Prod Res Co | Borehole flowmeter |
US3934468A (en) | 1975-01-22 | 1976-01-27 | Schlumberger Technology Corporation | Formation-testing apparatus |
US4033187A (en) * | 1975-07-16 | 1977-07-05 | Schlumberger Technology Corporation | Well flow measuring apparatus |
US4167111A (en) | 1978-05-04 | 1979-09-11 | The United States Of America Is Represented By The Administrator Of The National Aeronautics & Space Administration | Borehole geological assessment |
US4494072A (en) * | 1980-04-21 | 1985-01-15 | Exploration Logging, Inc. | Well logging apparatus with replaceable sensor carrying insulating sleeve disposed in rotation restrained position around a drill string |
CA1231642A (en) | 1985-02-22 | 1988-01-19 | Raymond F. Mikolajczyk | Casing centralizer/stabilizer |
US4893505A (en) | 1988-03-30 | 1990-01-16 | Western Atlas International, Inc. | Subsurface formation testing apparatus |
US4860581A (en) | 1988-09-23 | 1989-08-29 | Schlumberger Technology Corporation | Down hole tool for determination of formation properties |
US4936139A (en) | 1988-09-23 | 1990-06-26 | Schlumberger Technology Corporation | Down hole method for determination of formation properties |
FR2656034B1 (fr) * | 1989-12-20 | 1992-04-24 | Inst Francais Du Petrole | Sonde de puits pouvant etre decouplee d'une liaison rigide qui la relie a la surface. |
US5230244A (en) * | 1990-06-28 | 1993-07-27 | Halliburton Logging Services, Inc. | Formation flush pump system for use in a wireline formation test tool |
US5207104A (en) | 1990-11-07 | 1993-05-04 | Halliburton Logging Services, Inc. | Method for determination of the in situ compressive strength of formations penetrated by a well borehole |
GB9026846D0 (en) | 1990-12-11 | 1991-01-30 | Schlumberger Ltd | Downhole penetrometer |
US5235285A (en) * | 1991-10-31 | 1993-08-10 | Schlumberger Technology Corporation | Well logging apparatus having toroidal induction antenna for measuring, while drilling, resistivity of earth formations |
US5473939A (en) * | 1992-06-19 | 1995-12-12 | Western Atlas International, Inc. | Method and apparatus for pressure, volume, and temperature measurement and characterization of subsurface formations |
US5377755A (en) | 1992-11-16 | 1995-01-03 | Western Atlas International, Inc. | Method and apparatus for acquiring and processing subsurface samples of connate fluid |
US5303775A (en) | 1992-11-16 | 1994-04-19 | Western Atlas International, Inc. | Method and apparatus for acquiring and processing subsurface samples of connate fluid |
US5302781A (en) * | 1993-02-05 | 1994-04-12 | Schlumberger Technology Corporation | Sidewall contact temperature tool including knife edge sensors for cutting through mudcake and measuring formation temperature |
US5353873A (en) * | 1993-07-09 | 1994-10-11 | Cooke Jr Claude E | Apparatus for determining mechanical integrity of wells |
US5458208A (en) * | 1994-07-05 | 1995-10-17 | Clarke; Ralph L. | Directional drilling using a rotating slide sub |
AU5379196A (en) | 1995-03-31 | 1996-10-16 | Baker Hughes Incorporated | Formation isolation and testing apparatus and method |
US5549159A (en) | 1995-06-22 | 1996-08-27 | Western Atlas International, Inc. | Formation testing method and apparatus using multiple radially-segmented fluid probes |
US5622223A (en) | 1995-09-01 | 1997-04-22 | Haliburton Company | Apparatus and method for retrieving formation fluid samples utilizing differential pressure measurements |
FR2741108B1 (fr) * | 1995-11-10 | 1998-01-02 | Inst Francais Du Petrole | Dispositif d'exploration d'une formation souterraine traversee par un puits horizontal comportant plusieurs sondes ancrables |
US5692565A (en) * | 1996-02-20 | 1997-12-02 | Schlumberger Technology Corporation | Apparatus and method for sampling an earth formation through a cased borehole |
US5810100A (en) | 1996-11-01 | 1998-09-22 | Founders International | Non-rotating stabilizer and centralizer for well drilling operations |
US5765637A (en) | 1996-11-14 | 1998-06-16 | Gas Research Institute | Multiple test cased hole formation tester with in-line perforation, sampling and hole resealing means |
US6028534A (en) | 1997-06-02 | 2000-02-22 | Schlumberger Technology Corporation | Formation data sensing with deployed remote sensors during well drilling |
US6247542B1 (en) | 1998-03-06 | 2001-06-19 | Baker Hughes Incorporated | Non-rotating sensor assembly for measurement-while-drilling applications |
-
1999
- 1999-07-12 US US09/351,569 patent/US6230557B1/en not_active Expired - Fee Related
- 1999-07-19 AU AU40154/99A patent/AU755742B2/en not_active Ceased
- 1999-07-20 CA CA002278266A patent/CA2278266A1/en not_active Abandoned
- 1999-07-21 EP EP99202400A patent/EP0978630A3/en not_active Withdrawn
- 1999-08-03 NO NO993757A patent/NO993757L/no not_active Application Discontinuation
- 1999-08-04 CN CN99111951A patent/CN1097138C/zh not_active Expired - Fee Related
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101210492B (zh) * | 2006-12-27 | 2013-05-01 | 普拉德研究及开发股份有限公司 | 地层流体取样装置和方法 |
CN101074596B (zh) * | 2007-06-19 | 2011-01-26 | 西安石油大学 | 变径方位稳定器 |
CN103615201A (zh) * | 2013-11-30 | 2014-03-05 | 重庆九州探矿机械技术开发公司 | 工程钻机孔内钻杆用的扶正器 |
CN103615201B (zh) * | 2013-11-30 | 2015-12-02 | 重庆九州探矿机械技术开发公司 | 工程钻机孔内钻杆用的扶正器 |
CN106609667A (zh) * | 2015-10-22 | 2017-05-03 | 中国石油化工股份有限公司 | 一种电磁随钻测量系统中的电极 |
CN106609667B (zh) * | 2015-10-22 | 2020-07-31 | 中国石油化工股份有限公司 | 一种电磁随钻测量系统中的电极 |
CN106869804A (zh) * | 2017-03-22 | 2017-06-20 | 新疆帝陛艾斯钻头工具有限公司 | 定向井钻头 |
CN111512020B (zh) * | 2017-11-14 | 2024-01-23 | 贝克休斯控股有限责任公司 | 可移除的模块化控制组件 |
CN111512020A (zh) * | 2017-11-14 | 2020-08-07 | 贝克休斯控股有限责任公司 | 可移除的模块化控制组件 |
CN109695416A (zh) * | 2018-12-04 | 2019-04-30 | 淮北杨柳煤业有限公司 | 一种钻孔时便于实时检测的导向杆 |
CN109695416B (zh) * | 2018-12-04 | 2020-09-22 | 淮北杨柳煤业有限公司 | 一种钻孔时便于实时检测的导向杆 |
CN113431555A (zh) * | 2021-06-22 | 2021-09-24 | 中海油田服务股份有限公司 | 一种随钻电成像仪器 |
CN113431555B (zh) * | 2021-06-22 | 2022-07-15 | 中海油田服务股份有限公司 | 一种随钻电成像仪器 |
CN114575338A (zh) * | 2022-04-07 | 2022-06-03 | 江西省地质工程(集团)公司 | 一种长螺旋灌注桩空孔段处理方法 |
Also Published As
Publication number | Publication date |
---|---|
EP0978630A2 (en) | 2000-02-09 |
AU755742B2 (en) | 2002-12-19 |
CN1097138C (zh) | 2002-12-25 |
EP0978630A3 (en) | 2001-12-05 |
AU4015499A (en) | 2000-02-24 |
NO993757D0 (no) | 1999-08-03 |
US6230557B1 (en) | 2001-05-15 |
NO993757L (no) | 2000-02-07 |
CA2278266A1 (en) | 2000-02-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN1097138C (zh) | 收集地下岩层数据的井下工具和方法 | |
RU2330158C2 (ru) | Способ и устройство для сбора данных о скважинных характеристиках в процессе выполнения операции бурения | |
US10301898B2 (en) | Top drive with top entry and line inserted therethrough for data gathering through the drill string | |
CN201254990Y (zh) | 井下工具 | |
US8640790B2 (en) | Apparatus, system and method for motion compensation using wired drill pipe | |
CN102272405B (zh) | 球形活塞导向装置及其使用方法 | |
CN101365858B (zh) | 在钻取井眼的同时在井眼中执行地层测量的地层组件及方法 | |
CN1151783A (zh) | 在起下钻过程中的录井或测量 | |
CA2553236A1 (en) | Downhole drilling of a lateral hole | |
BRPI0512694B1 (pt) | aparelho e sistema para um transceptor de telemetria acústica | |
CA2997913A1 (en) | Actively controlled self-adjusting bits and related systems and methods | |
CA2705928A1 (en) | In-situ formation strength testing with coring | |
CA2705909A1 (en) | In-situ formation strength testing with formation sampling | |
CN104136360A (zh) | 用于绞车滚筒的制动系统和方法 | |
WO2010036542A2 (en) | Method and system for using wellbore instruments with a wired pipe string | |
CN106246105A (zh) | 一种机械导向钻井工具 | |
CN109667558A (zh) | 一种连续管老井侧钻方法 | |
US11788357B2 (en) | Using solenoid characteristics for performance diagnostics on rotary steerable systems | |
US10697241B2 (en) | Downhole turbine with an adjustable shroud | |
US20230160267A1 (en) | Vibration absorber apparatus and methods of use | |
RU2183269C2 (ru) | Скважинный инструмент для сбора данных из приповерхностного пласта (варианты) и способ измерения свойств флюида, присутствующего в приповерхностном пласте | |
CN110984858B (zh) | 一种用于钻径向水平井的井下钻具和钻井设备 | |
US11988089B2 (en) | Systems and methods for downhole communication | |
Drumheller | Coring in deep hardrock formations | |
MXPA99007196A (en) | Measuring the pressure of formation during drilling using a non-rotate shirt |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
C19 | Lapse of patent right due to non-payment of the annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee | ||
REG | Reference to a national code |
Ref country code: HK Ref legal event code: GR Ref document number: 1034892 Country of ref document: HK |