CN1247467C - Technique of electrolytic oxidation for treating waste water of containing phenol - Google Patents

Technique of electrolytic oxidation for treating waste water of containing phenol Download PDF

Info

Publication number
CN1247467C
CN1247467C CN 03151224 CN03151224A CN1247467C CN 1247467 C CN1247467 C CN 1247467C CN 03151224 CN03151224 CN 03151224 CN 03151224 A CN03151224 A CN 03151224A CN 1247467 C CN1247467 C CN 1247467C
Authority
CN
China
Prior art keywords
phenol
anode
cathode
waste water
technique
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN 03151224
Other languages
Chinese (zh)
Other versions
CN1600700A (en
Inventor
王家德
马淳安
甘永平
吕伯升
陈建孟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang University of Technology ZJUT
Original Assignee
Zhejiang University of Technology ZJUT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang University of Technology ZJUT filed Critical Zhejiang University of Technology ZJUT
Priority to CN 03151224 priority Critical patent/CN1247467C/en
Publication of CN1600700A publication Critical patent/CN1600700A/en
Application granted granted Critical
Publication of CN1247467C publication Critical patent/CN1247467C/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Water Treatment By Electricity Or Magnetism (AREA)

Abstract

The present invention belongs to a technique of no-stirring, internal-circulation and double-cooperation electrolytic oxidation for treating undegradable organic waste water in environmental electrochemistry, particularly to a technique of electrolytic oxidation for treating waste water containing phenol. An internal-circulation plate frame type electrolytic tank is adopted, a Ti-based PbO2 electrode is used as an anode, stainless steel is used as a cathode, waste water containing phenol is used as electrolyte which discharges electricity on the anode through electrolysis to generate a strong-oxidation group-hydroxyl radical (. OH), the cathode obtains electrons to form H2O2, the cathode and the anode cooperate to realize deep oxidation decomposition to phenol pollutants, and therefore, the purpose of treating the waste water containing phenol is achieved. Compared with the prior art, the technique of no-stirring, internal-circulation and double-cooperation electrolytic oxidation of the present invention basically has no need of the addition of chemicals or a stirring system, has the advantages of small volume of equipment, easy operation, little sludge quantity, simple post treatment, important market development prospect, etc. and solves the problem of high energy consumption caused by a large amount of side reaction, such as oxygen evolution, hydrogen evolution, etc., in the like technique.

Description

Electrolytic oxidation treatment process for phenol-containing wastewater
Technical Field
The invention belongs to a stirring-free, internal circulation and double-synergistic electrolytic oxidation treatment process of refractory organic wastewater in environmental electrochemistry, in particular to an electrolytic oxidation treatment process of phenol-containing wastewater, which is suitable for the treatment occasion of phenol-containing wastewater.
Background
With the rapid development of industrialization, especially chemical industry, the variety of artificially synthesized organic matters is increasing day by day, and although the substance world of human society is greatly enriched, the environmental pollution, which is a byproduct, is becoming more serious, especially organic waste water (such as phenol) generated in petrochemical industry and organic synthesis, which often has the characteristics of 'three causes' (carcinogenesis, teratogenesis and causing outburst), and poses serious threat to the health and survival of human beings. Statistically, 80% of the diseases worldwide are associated with water pollution.
The phenol compound is used as an important organic chemical basic raw material and is widely applied to various aspects of national economy. Because of strong toxicity and irritation, the water environment is seriously damaged by random discharge without treatment. The united states environmental protection agency published in 1997 statute, stipulates 129 important pollutants to be controlled, phenol compounds are one of them, and phenol content is one of the important indexes for evaluating water quality pollution degree. The content of I, II water volatile phenol (mainly phenol) is less than 0.002mg/L, and the content of III water is less than 0.005 mg/L; the content of volatile phenol in all pollution discharge units is less than 0.5mg/L according to the first-level standard regulation in GB8978-1996 Integrated wastewater discharge Standard. As the phenol compounds belong to polar ionizable organic matters, the adsorption and biological enrichment effects of the phenol compounds on sediments are usually less, the water body is difficult to recover to an uncontaminated degree through comprehensive effects of physics, chemistry, biology and the like, and the potential influence on the human environment is great.
The prior treatment applied to the phenol-containing wastewater mainly comprises a coagulation method, an adsorption method, a salting-out method, an extraction method, a chemical oxidation method, a biological oxidation method and the like. Wherein the salting-out method, the extraction method and the ion exchange technology are suitable for occasions with the phenol concentration more than 100mg/L, mainly recover phenol, lead the water concentration to be more than 10mg/L, and relate to the problems of recovery of added chemical reagents and the like; the principle of chemical oxidation treatment is to oxidize phenol into benzenediol, butenedioic acid and CO under the action of an oxidant and a catalyst, such as wet oxidation, photocatalytic oxidation, ozone oxidation, hydrogen peroxide reaction and the like2And the like; the biological oxidation is suitable for the occasion that the phenol concentration is less than 100mg/L, the phenol removal rate can reach 90% for the wastewater with the phenol concentration of 10-15 mg/L, when the phenol concentration is more than 20mg/L, the phenol removal efficiency is reduced, and the wastewater can reach the standard and be discharged after being diluted. In combination with the above analysis, these methods have the major disadvantages of large equipment volume, complicated operation, large sludge amount, complicated post-treatment, etc., which require addition of chemicals. The similar technology adopts a graphite anode, so that the concentration of phenol can be reduced from 15-100 mg/L to 4.8-5.6 mg/L, and the waste COD per kgThe power consumption of water treatment is 70.5 kWh; adopts a Pt electrode, consumes 50kWh of electricity per kgCOD wastewater treatment, adopts SnO2And the electrode consumes 30kWh of electricity per kg of COD wastewater treatment. The oxidation process of the phenol organic matters on the electrode material is accompanied by oxygen evolution reaction and hydrogen evolution reaction, so that the oxidation potential and the current efficiency are reduced, the energy consumption for treating the COD of unit wastewater is high, and the implementation effect is influenced.
Disclosure of Invention
The invention aims to overcome the defects of the prior art and provide the electrolytic oxidation treatment process of the phenol-containing wastewater, which basically does not need to add chemicals, does not need a stirring system, has the synergistic action of a cathode and an anode, is simple to operate and can effectively remove phenol substances.
An electrolytic oxidation treatment process of phenol-containing wastewater, which is characterized in that Ti-based PbO is adopted2The electrode is an anode, the stainless steel is a cathode, the waste water containing phenol is electrolyte, and strong oxidation groups-hydroxyl free radicals-OH are generated by discharging at the anode through electrolyzing water in the electrolyte, and electrons are obtained at the cathode to form H2O2The deep oxidative decomposition of phenol pollutants is realized by the synergistic action of the anode and the cathode, so that the aim of electrolytic oxidation treatment of the phenol-containing wastewater is fulfilled; wherein the anodes and the cathodes are alternately arranged, the number of the cathode plates is more than that of the anode plates by 1, the distance between the adjacent electrode plates is 20mm, the power supply for electrolysis adopts a steady-flow direct-current power supply, and the current density is 30mA/cm2The electrolyte in the electrolytic cell is internally circulated without stirring,
the anode reaction is as follows:
the cathode reaction is as follows:
the phenol oxidative decomposition reaction comprises the following steps:
the principle of the treatment process is as follows:
OH groups and H formed during electrolysis2O2All have strong oxidizing property, especially the OH group oxidizing electrode has a potential of up to 2.80V, in ratio to O3(2.07V) is 35% higher, second to fluorine in oxidation capacity; in addition, the group has high electronegativity (electrophilicity), has an electron affinity of 569.3kJ, and easily attacks a high electron cloud density point. H2O2The oxidation electrode potential was 1.76V. Thus, OH groups and H2O2Can play a double synergistic effect, realize the deep oxidative decomposition of pollutants and further achieve the purpose of treatment.
The invention provides Ti-based PbO with an active layer2A catalytic electrode. The electrode can work under high current density which can reach 30-50 mA/cm2Even at 200mA/cm2The plating loss increases slightly when the current density is operated. Electrode at 60 ℃ 1mol/LH2SO4In the solution, the anode oxygen release life can reach 45 h. Addition of SnO2+Sb2O3+MnO2Active intermediate layer for improving conventional Ti/PbO2And (4) electrode performance. EDS, 2SEM and XRD analysis results of the electrode show that the electrode has a surface layer of 452 mu m84.55 percent of Pb and PbO2The relative percentage content is 97.6 percent, namely the surface of the electrode is mainly lead oxide and is additionally provided with a small amount of MnO2(ii) a The active layer has small crystal grains, is compact and has no cracks, can effectively prevent oxygen from diffusing to the substrate, and reduces TiO2Forming an insulating layer; the active layer is mushroom-shaped, has larger roughness and large specific surface area, and meets the requirements of a porous electrode; sb2O3、MnO2、PbO2The three coexist, which plays the role of preventing the coating from falling off. Thus, from the appearance characteristics, Ti/SnO2+Sb2O3+MnO2/PbO2The electrode has good catalytic performance, the coating is not easy to fall off, and the service life is long.
Compared with the prior art, the non-stirring, internal circulation and double-synergistic electrolytic oxidation treatment process for the phenol-containing wastewater, disclosed by the invention, basically does not need to add chemicals, has the advantages of small equipment volume, easiness in operation, small sludge amount, simplicity in post-treatment and the like, overcomes the problem of high energy consumption caused by a large number of side reactions such as oxygen evolution and hydrogen evolution in the similar technology, and has very important market development prospect.
Detailed Description
Example 1;
embodiments and operating principles of the inventionComprises the following steps: stirring-free, internal circulation and double-synergic electrolytic oxidation treatment process of waste water containing phenol of 12.1mg/L and 24.7mg/L, adopting a polypropylene plate-frame type electrolytic tank and Ti-basedPbO2The catalytic electrode is an anode, the stainless steel is a cathode, the waste water containing phenol is electrolyte, strong oxidation groups-hydroxyl free radicals-OH are generated by discharging at the anode through electrolyzing water in the electrolyte, and electrons are obtained at the cathode to generate H2O2The positive and negative electrodes act synergistically to realize deep oxidative decomposition of phenol pollutants, so that the aim of electrolytic oxidation treatment of the phenol-containing wastewater is fulfilled; wherein the number of the anode plates is 1, the number of the cathode plates is 2, the anodes and the cathodes are alternately arranged, the distance between the adjacent electrode plates is 20mm, and the effective electrode plate areas of the anodes and the cathodes are 1200cm2The power supply for electrolysis adopts a steady-current direct-current power supply, and the current density is 30mA/cm2The hydraulic retention time in the electrolytic cell is 120min, the wastewater treatment results are shown in Table 1,
the anode reaction is as follows:
the cathode reaction is as follows:
the phenol oxidative decomposition reaction comprises the following steps:
the results in Table 1 show that the process for treating waste water by electrolytic oxidation can effectively treat the waste water containing phenol, the removal rate of volatile phenol is 92.5 percent, and the removal rate of COD isCr、BOD5The removal rates are respectively 89.6% and 76.76%, the B/C ratio is increased from the original 0.14 to 0.31, and the biochemical property of the wastewater is greatly improved. The power consumption per kgCOD is 10.40 kWh.
TABLE 1 results of wastewater treatment
Monitoring methodThe method comprises the following steps: CODCr、BOD5Phenol, pH and the like are prepared by corresponding methods specified in Water and wastewater monitoring and analyzing method which is compiled by the State environmental protection administration.
Example 2:
the implementation scheme and the working principle of the invention are as follows: the other conditions are the same, the number of the anode plates is 2, the number of the cathode plates is 3, the anodes and the cathodes are alternately arranged, the distance between the adjacent electrode plates is 20mm, and the effective electrode plate areas of the anodes and the cathodes are 2400cm2The power supply for electrolysis adopts a steady-current direct-current power supply, and the current density is 30mA/cm2The hydraulic retention time in the electrolytic cell is 60min, the wastewater treatment results are shown in Table 2,
the anode reaction is as follows:
the cathode reaction is as follows:
the phenol oxidative decomposition reaction comprises the following steps:
the results in Table 2 show that the process for treating waste water by electrolytic oxidation can effectively treat the waste water containing phenol, the removal rate of volatile phenol is 92.0 percent, and the removal rate of COD isCr、BOD5The removal rates are 91.06 percent and 78.06 percent respectively, the B/C ratio is increased from the original 0.14 to 0.34, and the biochemical property of the waste water is greatly improved. The power consumption per kgCOD is 5.20 kWh.
TABLE 2 results of wastewater treatment
Figure C0315122400071
The monitoring method comprises the following steps: CODCr、BOD5Phenol, pH and the like are prepared by corresponding methods specified in Water and wastewater monitoring and analyzing method which is compiled by the State environmental protection administration.
Example 3:
the implementation scheme and the working principle of the invention are as follows: a process for treating the waste water containing phenol (12.1 mg/L) without stirring, internal circulation and dual-synergistic electrolytic oxidation features use of polypropylene plate-frame electrolyzer and Ti-base PbO2The catalytic electrode is an anode, the stainless steel is a cathode, the waste water containing phenol is electrolyte, strong oxidation groups-hydroxyl free radicals-OH are generated by discharging at the anode through electrolyzing water in the electrolyte, and electrons are obtained at the cathode to generate H2O2The positive and negative electrodes act synergistically to realize deep oxidative decomposition of phenol pollutants, so that the aim of electrolytic oxidation treatment of the phenol-containing wastewater is fulfilled; wherein the number of the anode plates is 1 and 2 respectively, the number of the cathode plates is 2 and 3 respectively, the anodes and the cathodes are alternately arranged, the distance between the adjacent electrode plates is 20mm, and the effective electrode plate areas of the anodes and the cathodes are 1200cm respectively2、2400cm2The power supply for electrolysis adopts a steady-current direct-current power supply, and the current density is 30mA/cm2The hydraulic retention time in the electrolytic cell is 60min, the wastewater treatment results are shown in Table 3,
the anode reaction is as follows:
the cathode reaction is as follows:
the phenol oxidative decomposition reaction comprises the following steps:
the results in Table 3 show that under the same current density and electrolysis time conditions, the removal rate of the volatile phenol in 2 anode electrolysis processes is 1.6 times that of 1 polar plate, and the removal rate of the volatile phenol in COD is 1.6 times that of the volatile phenol in 2 anode electrolysis processesCr、BOD5The removal rate is 1.3 times and 1.6 times of that of 1 polar plate respectively.
TABLE 3 results of wastewater treatment
Monitoring method:CODCr、BOD5Phenol, pH and the like are prepared by corresponding methods specified in Water and wastewater monitoring and analyzing method which is compiled by the State environmental protection administration.
Example 4:
the implementation scheme and the working principle of the invention are as follows: the process for the treatment of wastewater containing 24.7mg/L phenol without stirring, internal circulation and double-synergistic electrolytic oxidation is the same as that of example 3, and the results of the wastewater treatment are shown in Table 4,
the anode reaction is as follows:
the cathode reaction is as follows:
the phenol oxidative decomposition reaction comprises the following steps:
TABLE 4 results of wastewater treatment
Figure C0315122400082
The monitoring method comprises the following steps: CODCr、BOD5Phenol, pH and the like are prepared by corresponding methods specified in Water and wastewater monitoring and analyzing method which is compiled by the State environmental protection administration.
The results in Table 4 show that under the same current density and electrolysis time conditions, the removal rate of volatile phenol by 2 anode electrolysis processes is 1.3 times that of 1 polar plate, and COD is reducedCr、BOD5The removal rate is 1.3 times and 1.4 times of that of 1 polar plate respectively.
In conclusion, the effective area of the polar plate is 2400cm2In the plate-frame type polypropylene electrolytic tank with the distance between the adjacent polar plates of 20mm, Ti-based PbO is used2The electrode is an anode, the stainless steel is a cathode, and the current density is 30mA/cm2Hydraulic retention time 60minThe steady flow direct current electrolysis process of the invention is characterized by no stirring and internal circulation of the phenol-containing wastewaterThe double-synergistic electrolytic oxidation treatment process can reach volatile phenol content of 92% and COD content ofCr、BOD5The removal rate reaches 91 percent and is over 75 percent respectively, the B/C ratio is greatly increased, the biochemical property of the wastewater is improved, and the effluent reaches the third-level standard of GB8978-1996 Integrated wastewater discharge Standard.
Compared with the prior art, the process for treating the phenol-containing wastewater by the double-synergistic electrolytic oxidation without stirring and internal circulation basically does not need to add chemicals, has the advantages of small equipment volume, easy operation, small sludge amount, simple post-treatment and the like, overcomes the problem of high energy consumption caused by a large amount of side reactions such as oxygen evolution and hydrogen evolution in the similar technology, and has very important market development prospect.

Claims (1)

1. An electrolytic oxidation treatment process of phenol-containing wastewater, which is characterized in that Ti-based PbO is adopted2The electrode is an anode, the stainless steel is a cathode, the waste water containing phenol is electrolyte, strong oxidation groups-hydroxyl free radicals-OH are generated by discharging on the anode through electrolysis, and electrons are obtained from the cathode to form H2O2The deep oxidative decomposition of phenol pollutants is realized by the synergistic action of the anode and the cathode, so that the aim of electrolytic oxidation treatment of the phenol-containing wastewater is fulfilled; wherein the anodes and the cathodes are alternately arranged, the number of the cathode plates is 1 more than that of the anode plates, the distance between the adjacent electrode plates is 20mm, the power supply for electrolysis adopts a steady-current direct-current power supply, and the current density is 30mA/cm2The electrolyte in the electrolytic cell is internally circulated without stirring,
the anode reaction is as follows:
the cathode reaction is as follows:
the phenol oxidative decomposition reaction comprises the following steps:
CN 03151224 2003-09-24 2003-09-24 Technique of electrolytic oxidation for treating waste water of containing phenol Expired - Fee Related CN1247467C (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 03151224 CN1247467C (en) 2003-09-24 2003-09-24 Technique of electrolytic oxidation for treating waste water of containing phenol

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 03151224 CN1247467C (en) 2003-09-24 2003-09-24 Technique of electrolytic oxidation for treating waste water of containing phenol

Publications (2)

Publication Number Publication Date
CN1600700A CN1600700A (en) 2005-03-30
CN1247467C true CN1247467C (en) 2006-03-29

Family

ID=34659892

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 03151224 Expired - Fee Related CN1247467C (en) 2003-09-24 2003-09-24 Technique of electrolytic oxidation for treating waste water of containing phenol

Country Status (1)

Country Link
CN (1) CN1247467C (en)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100336735C (en) * 2004-03-12 2007-09-12 云南大学 Method and apparatus for treating high concentrated organic wastewater by hydrothermal electrical catalytic oxidation
CN100436336C (en) * 2005-12-12 2008-11-26 中国科学院过程工程研究所 Enzyme electric coupling catalyzation for treating waste water containing phenol, aromatic amine and azo-dye
CN100352770C (en) * 2006-01-23 2007-12-05 南京大学 Integrated process for treating waste water of p-aminophenol production and resource recovery method
CN100408485C (en) * 2006-09-27 2008-08-06 蓝星化工新材料股份有限公司无锡树脂厂 Method of circulation utilizing phenol containing waste water in novolac epoxy preparing process
CN101016632B (en) * 2006-12-22 2010-11-24 扬州大学 Process of preparing metal oxide electrode by polymeric precursor thermal decomposition method
CN101508477B (en) * 2009-03-19 2010-10-20 扬州大学 Electrochemical oxidation processing method for wastewater containing anthraquinone dye
CN101844006B (en) * 2009-03-27 2012-09-05 奇迪电器集团有限公司 Filter medium and preparation method thereof, filter element, water purification device and water dispenser
CN101898116B (en) * 2009-05-25 2012-06-13 奇迪电器集团有限公司 Filter medium and preparation method thereof, filter element, water purifier and water dispenser
CN102211829A (en) * 2010-04-01 2011-10-12 上海晶园环保科技有限公司 Advanced oxidation device and method for treating high-concentration organic substance wastewater
CN102092878B (en) * 2010-12-08 2013-04-24 湖州森蓝环境工程有限公司 Treatment method of heavy metal organic industrial waste water
CN102219338A (en) * 2011-04-15 2011-10-19 北京师范大学 Method for removing organic contaminants in water through electrochemical oxidation and biological enzyme catalyzing
CN102276025A (en) * 2011-07-04 2011-12-14 武汉大学 Electro-Fenton apparatus for processing organic wastewater
CN102502946A (en) * 2011-12-26 2012-06-20 天津大学 Method for treating chemical wastewater by utilizing three-dimensional electrode-biological membrane process
CN102701337B (en) * 2012-05-29 2013-08-21 中国科学院过程工程研究所 Method and reactor for removing organic matters by enzyme electrode coupled electroflocculation
CN104495989B (en) * 2014-12-24 2016-07-27 武汉大学 A kind of Electrochemical oxidation device producing waste water for advanced treating amidoximeization
CN105858823A (en) * 2016-05-12 2016-08-17 安徽国能亿盛环保科技有限公司 Phenol-containing wastewater treatment process

Also Published As

Publication number Publication date
CN1600700A (en) 2005-03-30

Similar Documents

Publication Publication Date Title
CN1247467C (en) Technique of electrolytic oxidation for treating waste water of containing phenol
CN1789150A (en) Method and apparatus for highly efficient removal of water organisms by utilizing photoelectric Fenton reaction
CN103435134B (en) A kind of based on CNTs/Fe 3o 4three-dimensional electricity-Fenton improves the method for blue charcoal wastewater biodegradability
CN201567249U (en) Ultrasonic electrochemical wastewater treatment device
CN113929187B (en) Anode electrochemical oxidation water treatment method by coupling active chlorine with hydroxyl radical
US11795086B2 (en) Combined waste water and gas treatment system for efficiently decarbonizing and removing nitrogen
CN1789154A (en) Method and apparatus for removing water organisms by utilizing inductive electric Fenton reaction
CN1931736A (en) Degrading and viscosity reducing process for sewage containing oil and polymer
CN107215988B (en) Coking wastewater advanced treatment method
CN212102375U (en) Gas field high concentration organic waste water electrochemical coupling treatment recycling device
CN1884631A (en) Method and device for cleaning organic matter using electrochemical method
CN111892131A (en) Device and method for treating wastewater by using electrolysis combined with biochar-LDH composite material
CN113060803A (en) System and method for treating trace estrogen in reclaimed water through electrocatalysis
CN113149154A (en) Method for oxidizing pollutants in water by coupling electricity/ozone/permanganate
CN1140461C (en) Electrochemical process for treating waste dye liquid
WO2021138960A1 (en) Electrochemical method for synchronous implementation of organic phosphorus wastewater treatment and recycling.
CN108706689A (en) A kind of method of the preparation method and wastewater treatment of electrode material
CN115010219A (en) Novel green method for degrading acetonitrile wastewater
CN2775041Y (en) Treating device for waste water of pickling and salting pickles
CN1629079A (en) Electrochemical method and apparatus for removing organic substances from water
CN110845055B (en) Sectional type electrochemical water treatment device and method for treating water by adopting same
CN114590873A (en) Three-dimensional electro-catalysis device and method for synchronously removing organic pollutants and total nitrogen
CN2612662Y (en) Electrochemical treatment apparatus for waste water
CN1458075A (en) Process for treating low COD waste water by electric catalystic oxidation technology
CN1699225A (en) Industrial wastewater treatment method by combination of overpotential three-dimensional electrode electrolysis and compound bacteria

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20060329

Termination date: 20210924