CN1242097A - 借助电极电压的调制以改变电光层状态的显示系统 - Google Patents

借助电极电压的调制以改变电光层状态的显示系统 Download PDF

Info

Publication number
CN1242097A
CN1242097A CN 97180704 CN97180704A CN1242097A CN 1242097 A CN1242097 A CN 1242097A CN 97180704 CN97180704 CN 97180704 CN 97180704 A CN97180704 A CN 97180704A CN 1242097 A CN1242097 A CN 1242097A
Authority
CN
China
Prior art keywords
electrode
pixel
display system
voltage
liquid crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN 97180704
Other languages
English (en)
Inventor
道格拉斯·迈克耐特
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Colorado MicroDisplay Inc
Original Assignee
Colorado MicroDisplay Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Colorado MicroDisplay Inc filed Critical Colorado MicroDisplay Inc
Priority to CN 97180704 priority Critical patent/CN1242097A/zh
Publication of CN1242097A publication Critical patent/CN1242097A/zh
Pending legal-status Critical Current

Links

Images

Landscapes

  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)
  • Liquid Crystal Display Device Control (AREA)

Abstract

用于显示系统的方法和设备,通过调制控制电极使电光层复位到显示数据看不见的状态。在本发明的一个实施例中,显示系统包括:有第一多个象素电极的第一衬底,用于接收代表待显示第一图象的第一多个象素数据值。该显示系统还包括:有效地连接到象素电极的电光层和有效地连接到该电光层的电极。该显示系统显示第一图象,然后加第一控制电压到电极上以改变电光层的状态,使第一图象基本上不显示,于是在该电极接收到第二控制电压以后,该显示系统显示第二多个象素数据值代表的第二图象。描述了各种其他的设备和方法。

Description

借助电极电压的调制以改变电光层状态的显示系统
本申请是共同未决的美国专利申请顺序号No.08/770,233的部分继续申请,它是由同一发明者在标题“有公共电极调制的显示系统”下于1996年12月19日申请的。本申请特此要求在U.S.C.§120下这个较早申请日期的权利。
本发明一般涉及液晶显示系统,例如,液晶显示系统。本发明还涉及给显示系统的电极提供电驱动的系统。本发明具体涉及这样的系统,用于电驱动显示系统的电极到与象素数据更新有关的受控状态下各个电压。
一种类型显示系统的运行是利用电寻址薄的电光材料介入层,例如,放在两个衬底之间的液晶。在这些类型的显示系统中,重要的是获得良好的显示特性,包括:色纯度,高对比度,高亮度,和快速响应。
各帧或各子帧之间的高度独立性保证从一帧到下一帧的给定象素强度值之间缺乏联系(coupling)。例如,若在第一帧时一个象素处在其最亮的灰度级,然后在下一帧时处在其最暗的灰度级,则高度独立性保证这是可能的,而低度独立性会使该象素在第二帧期间呈现出比最暗的灰度级明亮些。这种联系能够产生,比如运动模糊问题。高度的帧间独立性是重要的,不管该显示是彩色或黑白(单色)或灰度级显示。
可以获得的对比度级别是由给定帧或子帧内给定象素的最亮灰度级与最暗灰度级之间可以达到的强度范围确定的。
除了对比度以外,还要求显示器能够显示明亮的图象,因为用户认为较明亮的图象具有较高的质量。
最后,显示速度是由相继各帧以高速率的显示能力所确定。若要显示看得见的运动,只有在全色诸帧至少以30Hz和最好是60Hz或更快的速率显示时,才能避免闪变和其他的问题。
若该显示不是在一个象素位置包含红,绿,和蓝象素(换句话说,每个象素位置有红,绿,和蓝子象素),而不是只有单个象素,这个速度要求变得更加苛刻。这种显示的一个类型是色序液晶显示器,如Sayyah,Forber,和Efrom在SID文摘(1995)的“用户HDTV中基于色顺序结晶硅LCLV的放映机”一文中(520-523页)所讨论的。在那些类型的显示器中,若显示器需要顺序显示红,绿,和蓝子帧,这些子帧必须以比90Hz还要高的速率显示,最好是高于180Hz以避免闪变。对于色序显示器,要求有高度的帧或子帧独立性以显示具有良好色纯度的图象。
任何一般的显示系统,其运行是通过电寻址薄的电光材料介入层,例如,放在两个衬底之间的液晶,包含以下特征。至少两个衬底中的一个是透光或半透光的,且其中一个衬底包含多个象素电极。每个象素电极对应于显示器的一个象素(或一个子象素),每个象素电极可以独立地被驱动到某些电压,为的是按这样的方式控制介入的电光层,使待显示的图象在该显示器的电光层上。有时,每个象素可以包含三色组的象素电极。这种现有技术显示系统的第二个衬底有单个电极,称之为公共电极或盖玻片电极,它起到提供参考电压的作用,所以象素电极能够在横跨电光材料介入层中形成电场。
这种系统的一个例子是彩色薄膜晶体管(TFT)液晶显示器。这些显示器用在许多笔记本大小的手提式计算机中。在这些显示器中利用RGB象素三色组产生各种颜色,其中三色组的每个象素控制其对应的通过红,绿,或蓝色滤光片的光量。这些彩色滤光片是TFT显示器中最昂贵的部件之一。
这种类型显示系统的主要障碍是,在每个颜色象素上复制象素电极,数据线,和薄膜晶体管的结果造成三倍的成本增大和光传输减小,就需要更多的外部背景光和增大的功率消耗。
随着显示速率的增大,达到高度帧间独立性,高对比度,和亮度的其他问题就更加困难。
已实施过许多方法以改进上述类型显示器的显示特征。一个普通的方法涉及到采用公共电极驱动电路,以及利用尽可能平直的公共电极矩形驱动电压来驱动那个公共电极。采用了这样的方法,那个象素处液晶部分两端的电压是更恒定,反过来,应当获得改进的对比度和象素亮度。
例如,美国专利5,537,129公开了一种有公共电极的显示系统,试图获得平直的矩形公共电极驱动电压。参照那个专利的图2,公共电极24通过电阻器3b连接到其驱动电路20。这就修正了3a处的电阻损耗以及从象素和数据线到公共电极24的电容耦合。这保证可以利用有高输入阻抗的检测装置21作修正,使输出电压呈现出更像矩形。那个美国专利中图5,9b,11(c),和11(d)都画出了所要求的矩形波形。
这种结构的另一个美国专利5,561,442的例子说明,若与以前栅极线电压Vs(t)和现在栅极线电压Vg(t)相协调,适当加上的公共电极电压Vc(t)能够在液晶(CLC)两端产生平直的矩形电压V(t)-Vc(t)。这种方法涉及到一个复杂的调制方案,要协调栅极线处的调制电压与公共电极处的调制电压,为的是在该液晶两端得到其所要求的平直矩形电压调制。
本发明提出用于改变电光材料状态的控制电极上电压的各种方法和设备,例如,改变液晶层状态,即使象素电极在其上面包含象素数据,也看不见显示数据。这个控制电压通常是在与象素数据更新有关的受控状态下提供的,至少在本发明的一些实施例中,即使在高速率显示下可以获得帧间独立性。
本发明一个实施例中的显示系统包括:有第一多个象素电极的第一衬底,用于接收代表待显示第一图象的第一多个象素数据值;还包括有效地连接到象素电极的电光层和有效地连接到电光层的电极。这个显示系统显示第一图象,然后加第一控制电压到该电极上以改变电光层的状态,使第一图象基本上不可见,因而不显示,在该电极接收到第二控制电压以后,这个显示系统于是显示第二多个象素数据值代表的第二图象。通常,至少在本发明的一些实施例中,该电光层是液晶层和该电极是公共盖波片电极。这个公共盖波片电极和第一衬底形成液晶层周围的结构,使第一衬底在液晶层之下和使公共盖波片电极在液晶层之上。至少在一些实施例中,即使象素电极上的象素数据依然存在,第一控制电压使液晶层改变其光改变状态而转变成显示“暗”,要不然使显示呈现白色或一些不同于黑色的其他颜色。在该显示保持第一图象看不见的状态以后,于是,通过使该电极接收第二控制电压,该显示系统显示第二图象,第二控制电压把液晶材料从显示数据基本上看不见的状态中释放出来。
有许多各种不同的本发明实施例。例如,盖玻片电极可以存在于分开的区段,这些区段可以分别地受到控制,当一个区段正在显示图象的一部分时,另一个区段正在装入同一图象另一部分的象素数据,与此同时,这另一部分不显示数据,因为那个区段中的控制电极使那个区段的液晶材料隐藏该数据,所以它是看不见的。
本发明可用于时序彩色系统或用于采用每个象素有三元组子象素的彩色系统。此外,本发明可以用于在显示当前帧时下一帧有帧缓冲或没有帧缓冲的情况,其中这个帧缓冲可以在象素缓冲器中提供,该缓冲器放置在与包含象素电极相同的衬底中。此外,本发明可用于反射型的液晶显示装置中,或用于透射型的液晶显示装置中。而且,本发明的电极调制可用于这样的系统,其中完成调制(为了驱使该液晶进入显示数据基本上看不见的状态)的电极放置在与象素电极相同的衬底中。本发明的某些实施例中还可以包括补偿控制电极作用的补偿电极,该补偿电极放置在与象素电极相同的衬底中,按照本发明的某些实施例其作用是使显示看不见。
至少本发明的一些实施例给出了以下描述的各个优点,可以理解,若有优点的话,本发明的某些实施例只有其中的一些优点,它取决于实施例的装置。例如,本发明可以提供这样的系统,其中显示器上的象素输出是用新的数据同时更新,而不是在没有帧缓冲时逐行地更新。此外,本发明可以提供这样的系统,其中即使在高帧速率频率下仍然有高度的帧间独立性。至少在某些实施例中,本发明的另一个优点是,通过同时改变驱动控制电极的电压和驱动象素电极的电压,可以在电光材料层两端得到更大的平均电压差,从而提高亮度。在本发明的另一个实施例中,可以利用大于驱动象素电极允许的最大电压和最小电压作为加到控制电极的控制电压信号。这个优点在这样的情况下可能是有用的,其中液晶电光效应有个阈值,在此阈值以下不出现光学效应。本发明某些实施例的另一个优点是,若控制电极电压是用一束相对高频振荡的脉冲调制,就能够快速驱动双频液晶显示。
参照以下附图,详细地描述本发明的各个实施例,在附图中相同的参考数字指的是相同的元件。
图1A是按照本发明一个实施例的图象显示系统剖面图和图1B是其透视图。
图2A表示按照本发明一个实施例的系统方框图,这个实施例是反射型液晶显示器,可以理解,按照本发明也可以实现透射型液晶显示器。
图2B是一例正常白液晶的电光曲线。
图2C是按照本发明盖玻片调制的波形图,结合在图2C所示盖玻片波形控制下描写液晶材料性质的强度与时间关系曲线图。
图2D表示在按照本发明调制的盖玻片电极或其他电极的控制下,液晶的强度与时间之间关系更详细的部分曲线图。
图3A和3B是本发明时序液晶显示系统的流程图,其中在显示旧数据时没有新象素数据的帧缓冲。
图4A和4B是本发明一个实施例的流程图,其中利用有帧缓冲的时序彩色子帧。
图5是利用空间彩色显示的本发明一个实施例,其中每个象素包括三个子象素,每个子象素显示一种特定的光分量。
图6A表示可用于本发明的一个象素电路实施例。图6B表示也可用于本发明诸实施例的一个象素电路实施例。图6C表示也可用于本发明诸实施例的另一个象素电路实施例。图6D表示有象素缓冲器的象素电路,在显示旧的象素数据值时,它能存储新的象素数据值;该电路能够在象素缓冲器中存储模拟值,可以理解,安排成阵列的多个这些象素电路提供一个模拟帧缓冲器。
图7A表示按照本发明一个实施例利用非矩形波形信号调制电极电压调制的效应,其中,上图表示加上过激励脉冲时电极电压和象素电极电压与时间的关系,中图表示用于这种电极调制的电光层(例如,液晶层)两端的电压,和下图表示有过激励脉冲(实线)和没有过激励脉冲(虚线)时从象素A输出的强度。
图7B表示电极调制的波形,它可用于驱动电光层到显示数据看不见的状态,其中该波形采用复位尖脉冲而不是矩形脉冲。图7C表示按照本发明一个实施例用于电极调制的波形,它可以使电光层进入显示数据看不见的状态。
图8A和8B表示用于电极调制的波形示意图,它包括相对高频振荡的脉冲串。
图9A表示利用帧缓冲系统的电极调制电压和象素电极电压与时间关系的波形图;图9A所示的电极调制包括复位脉冲,它设计成使电光层进入象素电极上显示数据看不见的状态。图9A还表示相对于图9A所示波形的某些象素强度与时间的关系。
图9B表示多个强度与时间关系的波形图,说明本发明的时序彩色显示系统中象素的特性,它利用电极调制使电光层在某段时间内处于显示数据看不见的状态。
图10A表示按照本发明一个实施例被分段的盖波片电极的另一个实施例;其他类似的实施例包括利用与含象素电极的相同衬底中的分段控制电极。
图10B和图10C表示有分段控制电极的时序彩色显示系统的流程图,例如,按照本发明一个实施例分段的盖波片电极。
图11表示有分段控制电极的时序彩色显示系统中多个波形图。
图12表示更详细的有分段控制电极的时序彩色显示系统,该分段控制电极用于调制一部分电光层。
图13A,13B,和13C表示利用分段电极控制一部分电光层的各个实施例中各种强度与时间关系的波形图。
图14表示利用分段电极和照射脉冲而不是连续照射的另一个实施例。
图15表示利用照射脉冲的分段控制电极的另一个实施例。
图16A表示按照本发明一个实施例利用补偿电极的象素电路图。
图16B表示按照本发明一个实施例象素电路中电路布局顶视图,在与象素电极相同衬底的象素电路中有补偿电极。
图16C示出表示象素电极和控制电极电压波形的电压与时间关系的曲线图,控制电极电压用于调制电光层,驱使它进入显示数据看不见的状态。
图16D通过示出象素电极各种波形与补偿电极电压和控制电极电压关系说明补偿电极的效应,控制电极电压用于调制电光层。
图16E表示根据本发明的一个实施例的电压与时间的关系曲线和时间相关象素强度与时间的关系曲线;
图17表示有帧缓冲显示系统中的控制电极调制,例如,利用图6D所示电路的模拟帧缓冲。
图18表示利用偏置以影响本发明电光层的电极调制信号的电压与时间关系波形图,这个实施例可用于模拟帧缓冲或其他帧缓冲中,它可以在与含象素电极相同的衬底中存储新的象素数据,该象素电极引发旧象素数据的显示。
以下的描述提供了本发明的几个例子。然而可以理解,在研究了这些描述以后,本发明的其他例子变得显而易见。因此,这些描述和附图是用于说明,而不是把本发明解释成对它的限制。
图1A是按照本发明一个实施例的显示系统12剖面图,其中电光层22布置在第一衬底20与第二衬底24之间。第一衬底20有单个控制电极,称之为公共电极26或盖波片电极26。第二衬底有多个象素电极28,每个象素电极以独立的方式定期地获取更新的图象数据。每个象素电极28保留该图象数据所需的一个给定时间周期,即,持续的时间,在此之后获取的图象数据被新的图象数据所取代。加到每个象素电极上的电压相对于公共电极26上的电压就会在液晶材料两端出现一个电压(VLC),于是控制了液晶的光改变性质,使液晶可以有选择地进入至少两个光改变状态。通常,这些状态包括:或允许光通过显示系统,或不允许光通过显示系统。至少第一衬底20和第二衬底24之一是透光的或半透光的。按照本发明的一个实施例,电光层22可以包括液晶材料,显示系统12可以包括液晶显示器。可以理解,在显示系统12的结构中还可以有其他各层,诸如,调整层或光学涂层(例如,增透涂层),显示系统12还可以有其他各层,诸如,一个偏振层或几个偏振层。图1B表示与图1A中相同显示系统的透视图。显示系统12可以是薄膜晶体管(TFT)系统,它可以是透射型液晶显示装置,或可以是反射型液晶显示装置,例如,在硅衬底器件上的液晶,如在美国专利5,426,526中所描述的,把它合并在此供参考。
图2A表示按照本发明一个实施例的显示系统101。这个实施例采用硅显示系统上的反射型液晶,它包括象素驱动器逻辑102,象素电极104,液晶层106,和盖波片电极108。该系统还包括时钟控制逻辑112,电极控制驱动器110,以及照明器114和照明器控制逻辑116。
在系统101中,照明器114在空间彩色显示系统情况下可以提供白光,或可以提供受控时序三个不同颜色的光(例如,红光,然后绿光,然后蓝光,分别提供每种颜色)。照明器114通过照明器控制逻辑116的控制提供这个光118,照明器控制逻辑116接收来自时钟控制逻辑112的时钟信号或控制信号117。时钟控制逻辑112还控制电极控制驱动器110,为的是提供合适调制的控制信号波形111给盖波片电极108。与此同时,时钟控制逻辑112还提供计时信号给象素驱动器逻辑102或可以接收来自象素驱动器逻辑102的信号,为的是协调加到盖波片电极的控制电压信号与装入定时和象素电极104上象素数据显示之间的受控状态关系。以下将按照本发明各个实施例描述这个系统101的各种运行方式。
图2B表示正常白液晶单元结构的电光曲线的强度与电压关系图。这条曲线125在最低电压时有最高的强度,最低电压可能是零伏。就是说,这种液晶的光改变状态是这样的,在这个最低电压状态下,大部分的光通过该液晶。随着液晶两端电压的增大,光通过该液晶的强度减小到这样一点,在电压点127上没有光通过,此点称之为调整到了黑电压或VB127。按照本发明,可以加相对于各个象素电极电压的电压到诸如盖波片电极的电极上,使遍及整个液晶层或至少其各个区段,该液晶层两端的电压是或超过VB。按照本发明某些实施例,加到这个控制电极上的电压可以是这样的,液晶两端的电压是在点129上,这一点是过激励电压或VOD。这个过激励电压可用于快速地驱使液晶显示材料到达这样的状态,光不能传输通过它,即使显示数据存储在象素电极上,还是看不见显示数据。
图2C表示两个与时间有关的曲线图,指出加到诸如盖波片电极的控制电极上的控制电压与本发明液晶显示中象素强度之间的关系。图2C的电压波形151指出加到电极上的控制信号,图2C的强度波形152指出对应时间下的对应强度波形。在时间t0,加到电极上的电压(例如,在电极是盖波片电极的例子中为VCG)猛然上升到这样一点,液晶两端的电压至少是VB。这使象素的强度快速地下降,如象素强度曲线153所示。然后在时间t0至t1之间,由于加到控制电极上的电压使显示保持在显示数据看不见的状态时,下一个象素显示数据可以装入到象素电极上,此时液晶两端的电压(VLC)是或超过VB。在时间t1,减小控制电极上的电压,如电压波形151所示,使液晶两端的电压小于VB。在这一点上,现在可以显示和看到象素数据,因为象素电极现在能够控制液晶的状态。在时间t1开始的这点上,液晶开始回到象素强度曲线154所示的光改变状态。通常,该液晶材料将松弛到允许更多光通过的光改变状态。如象素强度曲线154所示,液晶可以在t1至t2的整个时间内连续地松弛,可能没有“达到稳定状态”,或者相反,达到了稳定状态。这个效应以下要进一步讨论,但是可以注意到,按照本发明这不一定是缺点,因为所有这些象素可以产生相同的效应,而观察者仍能看到该图象中各种颜色的层次或灰度级。在时间t2,再一次加第一控制电压到控制电极上,使盖波片电极再一次快速地驱使液晶材料到达显示数据看不见的状态,如时间t2至t3之间的波形152所示。在时间t3,控制电极上的电压从第一控制电压改变到第二控制电压,使显示数据可以看得见,如时间t3至t4之间的波形155所示。可以理解,加到控制电极上的控制电压波形151是DC平衡的信号(在某个电平附近),过一些时间平均达到DC电平。可以理解,本发明可以利用有DC平衡的控制信号或没有DC平衡的控制信号,但是,利用DC平衡的控制信号有一些优点。
图2D表示本发明方法中一帧或子帧的更详细情况。特别是,图2D中所示的象素强度波形有三部分曲线,即,曲线161,162,和163。曲线161表示控制电压加到控制电极使液晶两端的电压近似地等于VB以后,快速地驱使液晶材料到达黑状态。在这个控制电压加到控制电极期间,象素强度是在其最低处,如曲线162所示。可以理解,不是完全地把液晶材料驱使到黑状态,可以把把液晶材料大致地驱使到暗状态,使该图象很难辨别。在这另一个实施例中,把液晶状态驱使到显示数据基本上看不见的状态仍有很大的好处,以便获得帧间独立性。在时间t0至t1之间,下一个象素数据可以装入到象素电极中,如时间TL所指出的。由于把液晶两端的电压最好保持在VB或超过VB,这段时间也是显示保持在暗状态的时间。在时间t1,控制电极上的控制电压被释放到第二控制电压,使液晶两端的电压发生变化,从而允许液晶松弛到各种光改变状态,可以使显示数据看得见。这是由象素强度曲线163所表示,它指出在时间t1至t3之间发生的弛豫时间TLC内象素的强度随液晶连续地松弛而上升。按照本发明各个实施例,可以要求在t1至t3整个时间内或仅仅一部分时间内提供照射,如图2D所示。特别是,图2D表示仅仅在时间t2至t3之间有象素的照射。在另一个实施例中,在时间t2至t3之间内可以提供光脉冲而不是从时间t2至t3之间连续地照射该显示。当第一控制电压再一次加到控制电极上时,使液晶两端的电压基本上为VB(最好是VB或超过VB)时,帧或子帧循环就在t3结束。
图3A和3B表示本发明的一个特定的方法,用在与象素电极相同衬底上相关的象素缓冲器中没有任何帧缓冲的时序彩色显示系统中。图4A和4B表示类似的系统,但有这种帧缓冲。首先描述图3A和3B中所示的方法。
方法200可以考虑成从步骤202开始,其中“旧”数据可以从现有显示数据帧的最后子帧中显示。在那个显示时间结束以后,在步骤204,通过加第一控制电压来设定盖波片电压以改变液晶状态,即使一些象素数据仍然存储在象素电极上,旧象素数据基本上看不见。通常,加到诸如盖波片电极的控制电极上的第一控制电压是这样的,相对于象素电极电压,至少在液晶两端有VB伏。在步骤206,在继续保持控制电极的电压使液晶两端的电压大致上至少为VB时,下一个象素数据装入到当前帧第一色子帧的象素电极上。按照这一方法,在该显示基本上保持暗的状态下,象素电极上装入新的数据。可以理解,通常该数据是逐行装入象素电极行,相当于一次装入一行到显示器诸行上。其次,在步骤208,改变控制电极上的电压以释放液晶的状态,使装入的第一色子帧下一个数据(它是在步骤206中装入的)现在可以在显示器上看得见。若在释放控制电极上的电压以前,所有的显示行已装入,则显示器似乎同时更新整个帧。然后在步骤210,第一色子帧显示一段时间。现有步骤顺序的一个优点是,在旧帧与新帧之间有一个暗时期,使现在各帧有更大的帧间独立性,因此该图象对用户来说是更好些。此外,即使一帧的象素数据是逐行地装入到电极上,而不是一帧同时装入到电极上,显示器似乎仍然是同时更新整个帧,因为一次释放控制电极上电压使液晶突然间能同时给整个帧的整个液晶层改变其“象素”的状态。液晶响应的同时性有一个主要的优点,因为它说明液晶在可以照射以前不必完成切换(从现有的光改变状态到新的光改变状态)。因此,在液晶结束切换(或完成其轨迹)以前可以照射显示系统,显示器仍然在整个显示上呈现出均匀性。
其次,在步骤212,再一次设定控制电极上的电压(例如,加第一控制电压)以改变液晶的状态,使第一色子帧的数据基本上看不见(即使第一色子帧的象素数据存储在一些象素电极上)。接着在步骤214,在保持控制电极上电压使液晶两端的电压基本上是或近似是VB的同时,下一个象素数据装入到象素电极上作为当前帧的第二色子帧。在步骤216,第二控制电压加到控制电极上使液晶松弛,因此装入的第二色子帧数据在显示器上看得见。然后,在步骤218,第二色子帧显示一段时间。通常,这包括此处所描述的用连续的照射或照射脉冲照射显示器。在步骤220,再一次驱使液晶到达象素数据看不见的状态。在此情况下,即使第二色子帧的象素数据依然存储在一些象素电极上,仍使第二色子帧的数据基本上看不见。然后在步骤222,在保持控制电极上电压使液晶两端的电压基本上是VB的同时,下一个象素数据装入到象素电极上作为当前帧的第三色子帧。然后在步骤224,释放控制电极上电压(例如,加第二控制电压)以改变液晶的状态,使装入当前帧第三色子帧的数据现在在显示器上看得见。接着在步骤226,在照射显示系统的同时,显示第三色子帧。也可以理解,类似的照射步骤也可以在在步骤210中发生。在步骤228,该方法给下一个显示帧再重复步骤204-226(包括在内)。随着数据提供给系统,给每一帧继续这个过程。
除了这个实施例的系统在显示当前象素数据的同时利用象素帧缓冲器存储下一帧象素数据以外,图4A和4B中所示的方法425类似于方法200。就是说,在显示步骤发生的同时,存储下一个象素数据的象素缓冲器在显示当前帧的时间内正在被装入数据。通常,这可以在这样的系统中实现,其中特定象素电极的象素缓冲器大致位于象素镜面电极以下。美国专利5,426,526对此有更详细的描述。在与其各个象素电极相关的象素缓冲器中完成逐个象素帧缓冲的特定象素电路在此处的图6D中画出。
方法425从步骤427开始,其中显示现有显示数据帧最后一个子帧的旧象素数据;在显示这个旧象素数据的同时,下一帧第一色子帧的数据装入到每个象素的象素缓冲器中。按照本发明的一个实施例,该象素缓冲器存储模拟象素信息,可以利用图6D的电路达到这个目的。在步骤429,设定诸如盖波片电极的控制电极的电压(例如,加第一控制电压)以改变液晶的状态,使旧象素数据(现有帧的最后一个子帧)基本上看不见。还是在步骤429,对于每个象素,作为第一色子帧存储在每个象素缓冲器中的缓冲数据从象素缓冲器装入到象素电极上。在步骤431,改变控制电极上的电压使液晶的状态可以松弛,从而可以使装入的第一色子帧象素数据在显示器上看得见。若在加第二控制电压去释放控制电极以前,已装入该显示的所有各行,则该显示似乎基本上同时更新整个帧。通常,利用此处描述的系统帧缓冲器的能力,我们可以正常地装入显示的所有帧,虽然它对于本发明的某些实施例是没有必要的。在步骤433,显示第一色子帧,在显示第一色子帧的同时,第二色子帧的数据装入到每个象素的象素缓冲器中。在步骤435,诸如盖波片电极的控制电极接收改变液晶状态的第一控制电压,使第一色子帧的数据基本上看不见;还是在步骤435,已装入象素缓冲器中第二色子帧的缓冲数据现在从象素缓冲器装入到象素电极上。在步骤437,改变控制电极上的电压以便把液晶从步骤435中液晶保持的状态下“释放”出来,使装入第二色子帧的数据在显示器上可以看得见。在步骤439,显示第二色子帧,在显示第二色子帧的同时,第三色子帧的数据装入到每个象素的象素缓冲器中。在步骤441,加第一控制电压到诸如盖波片电极的控制电极上以改变液晶的状态,使第二色子帧的数据基本上看不见;还是在步骤441,第三色子帧的象素数据从每个象素的象素缓冲器装入到对应每个象素的象素电极上。在步骤443,改变控制电极上的电压(例如,加第二控制电压)以改变液晶的状态,使装入当前帧第三色子帧的数据在显示器上可以看得见。然后,在步骤445,显示第三色子帧,在显示当前帧第三色子帧的同时,下一帧第一色子帧的数据装入到每个象素的象素缓冲器中。在步骤447,该方法为下一个显示帧重复步骤429-445(包括在内),给每个显示帧继续这个过程,这个显示帧被本发明的显示系统所接收。
图5表示按照本发明另一个实施例的方法500。这个实施例利用有空间彩色第一衬底的系统,其中,对于每个象素有三个子象素,提供诸如红,绿,和蓝三基色的三个信号。这些空间彩色系统在现有技术中是熟知的。本发明在这些系统中的优点是,在不必给每个象素并入一个象素缓冲器从而在与象素电极相同的衬底上有帧缓冲器还能提供帧间独立性的同时,可以获得同时的更新。方法500从步骤502开始,其中在显示系统中显示现有显示数据帧的“旧”象素数据。然后在步骤504,控制电极接收改变液晶状态的控制电压,即使象素数据至少存储在一些象素电极上,基本上看不见旧象素数据。所以,在本发明大多数的实施例中,显示帧瞬时地被驱使到暗状态。在步骤506,在继续保持控制电极的电压基本上使液晶两端的电压最好是VB或超过VB的同时,每个象素当前帧的下一个数据按照现有技术的逐行方式现在装入到象素电极上。然后在步骤508,改变控制电极的电压到第二控制电压以改变液晶的状态,使装入的当前帧下一个数据(在步骤506装入的)现在在显示器上看得见。若在释放控制电极上电压以前显示器上所有的行已被装入,即使象素电极只是一次同时更新每一行,然而该显示器似乎同时更新整个帧。然后在步骤510,当前帧显示一段时间。步骤512涉及到重复下一个显示帧的步骤504-510(包括在内)。按照这一方式,在与象素电极相同的衬底上没有帧缓冲而获得同时更新整个帧的同时,空间彩色显示系统可以获得改进的帧间独立性。
图6A,6B,6C和6D表示本发明可以利用的各种象素电路。例如,可以利用图6A,6B,和6C的电路,其中象素电极衬底上不要求有帧缓冲。每个这种电路至少包括一个象素电极,例如,象素电极651,661,或671,还包括用于有选择地装载象素电极的控制晶体管。这些控制晶体管如图6A的FET 652,图6B的662和663,以及图6C的674所示。这些象素电路的运行在现有技术中是熟知的,可以理解,有这种电路的阵列,其中该阵列包括多行象素电路,每一行包括多列象素电路。
图6D表示本发明某些实施例可以利用的象素电路,其中要求在位于与象素电极相同衬底上的象素缓冲器中有象素缓冲。图6D的象素电路包括普通的行选线687和数据线或列线686,还包括控制晶体管或通路晶体管685。这个象素电路还包括上拉FET 682和下拉FET683以及电压跟随器FET 684。图6D的象素电路按照以下方式运行:在旧的象素数据值保持或存储在象素电极681(下拉信号688保持低值,使FET 683断开)的同时,通过加高的行选信号到行选线687上且同时加象素数据值到数据线686上,新的象素数据值装入到象素电路或单元。在此条件下,FET 685传送该象素数据值到FET 684的栅极,该象素数据值最好是模拟象素数据值,FET 684在此点上不应该是导通状态,因为上拉信号保持低值,基本上没有电流流过FET682或FET 684的源极/漏极。在装入下一个象素数据值到FET 684的栅极以后,驱动行选线687到低值而使FET 685断开。在数据线686加另一个新的象素数据值到相同列但不同行的象素单元同时,这会保持存储在FET 684栅极上新的象素数据值。然后,接近象素电极681上旧象素值显示的结束,下拉信号688坚持在高值,从而接通FET683,于是FET 683把象素电极681上的电荷都放掉。然后,下拉信号688再次转变成低值使FET 683断开,上拉信号坚持在高值使FET682接通。这就使FET 684上拉其连接到象素电极681的源节点,到达存储在FET 684栅极上象素数据值(最好是模拟象素数据值)的一个阈值内。在这个上拉发生以后,上拉信号坚持在低值,就没有电流流过FET 682和FET 684,从而使存储在象素电极681上的值去控制象素电极681邻近的液晶显示状态。可以理解,在一个实施例中,图6D所示类型的象素电路阵列(行和列)在与象素电路相同的集成电路(单晶硅)衬底上提供一个模拟帧缓冲器。此外,每个这种象素电路可以制做在每个象素电极下面,在一个实施例中它可以是反射型液晶显示器的反射镜。
图7A表示灰度级或彩色信号电平之间液晶象素切换的一个例子。这个图描绘三个帧周期内信号电平之间单个象素(象素A)切换的光学响应。在这个例子中,通过增大电压驱使液晶走向亮状态,DC平衡是在逐帧的基础上受到影响。这个图表示利用脉冲调制公共电极电压调制的效应,该脉冲设计成改变液晶的光改变状态,使显示数据不能有效地看得见。在这一情况下,该显示器不是被驱使到暗状态而是更白些,由于整个显示被驱使到更亮些,显示数据还是不能有效地看得见。可以理解,在该显示被脉冲401驱使到更白些的状态,一般最好不照射或观察该显示。
参照图7A,这个图的上部表示当加上脉冲401时控制电极或公共电极的电压和象素电极电压与时间的关系图。图7A的中部表示在这种公共电极电压调制下液晶两端的电压,和图7A的下部表示有脉冲401和没有脉冲401时从象素A输出的强度(其中没有脉冲401时的响应是用虚线表示)。脉冲401不必限于平脉冲,可以是相对于地的正脉冲或负脉冲,甚至可以是正与负之间交变的脉冲,如图7A所示。可以理解,这个脉冲类似于图2C中时间t0与t1之间发生的电压波形151上的脉冲。
选取图7A中脉冲401在帧周期开始处的幅度和宽度,使该脉冲瞬时地驱使液晶超出目标灰度值。对于上述的顺序显示,脉冲的宽度可以从1毫秒的若干分之几到大于1毫秒,其幅度可以是产生液晶层两端电压电平VLC的脉冲405的一个任意值,它足够大以至于在象素A处产生一个强度浪涌409。当然,在另一个实施例中,可以驱使该液晶到暗状态而不是亮状态。由于脉冲401是加到共用该电极的所有象素上,导致一个灰度级与较低灰度级之间增大的切换时间。它有这样的优点,一个灰度级与略微增大的灰度级之间的切换时间不受观察到的延迟限制,和在这一情况下的(图7A中虚线所指出的)慢响应。的确,任何转换所需时间的上限现在受脉冲之后弛豫时间的限制。这个脉冲的一个结果是,与其极性有关,电光层两端的电压在紧接着那个脉冲以后可以瞬时地(一瞬间)增大或减小。在一个实施例中,附加的或叠加的脉冲可以瞬时地接近于更新或获得象素电极上图象数据。
图7B表示在顺序显示装置中利用指数型衰减的峰值电压脉冲调制诸如盖波片电极的控制电极的另一种方法。例如,这个脉冲可以在接近所有象素都更新时加上。
图7C表示调制控制电极上电压的又一个实施例。调制型式461有一个包含几个分量的电压波形,如在这个电压与时间之间关系的曲线图中所示。帧循环在时间t0开始,控制电极上的电压此时猛然升到足够高的电压,驱使VLC接近VOD(见图2B)。这个电压状态在时间t0与时间t1之间的间隔内继续保持。这就造成液晶被快速地驱使到显示数据看不见的状态。然后从时间t1至t2,改变控制电极上的电压,替代过激励液晶层而是把它保持在电压VB上(见图2B)。显示系统可以利用时间t0至t2的时间用当前帧新的显示数据装入所有的象素电极(和有效地擦除旧的显示数据),然后在时间t2可以开始显示该象素数据。通常,所有的象素电极是在时间t2开始时已被装载的,因此所有液晶能够从t0至t2之间的时间内存在的改变状态转变到松弛状态。液晶的松弛允许在时间t2至t3之间的时间内发生,这也是图象数据至少在部分的这段时间内正在显示的时间。通常,t2至t3之间的时间包括该显示的照射,若不是全部时间至少是其一部分的时间。此外,不是在t2至t3之间的一部分时间内连续地照射,而可以加上照射脉冲。因此图7C的调制方案获得快速地驱使该晶体到达显示数据看不见的改变状态,而松弛该晶体但仍保持它看不见。这增大了该装置的响应时间,从而允许显示装置的帧速率以更高的频率被驱动,服从于装载到该帧中象素电极所需的时间量。除了由于加到控制电极上的控制电压信号是某个DC电平附近的DC信号(此处所示是不为零伏的某个电平)使信号的极性发生变化以外,在时间t3开始的循环继续进行。可以理解,实施DC平衡是为了试图给液晶提供一个DC平衡的信号,使该液晶DC平衡的电平近似为零伏。
图8A和8B表示本发明另一个实施例,其中加到控制电极上的控制电压是用一束相对高频振荡(例如,5kHz至100kHz)脉冲调制的。这一方案对于在这样一些类型的显示器中驱动双频液晶材料是有用的,其中,在交叠频率以下该液晶有正的介质各向异性,而在交叠频率以上该液晶有负的介质各向异性。
作为具有这种方案特征的显示系统有用性的例子,考虑以下的方案。把电压图形加到象素电极28阵列上以使图象写入到显示系统12。按照上述本发明一个实施例调制公共电极26,或者,在电光层22的每个象素切换到所需状态时,公共电极26可以箝位在给定的电压上。于是,在观察到图象以后,要求快速地复位电光层22的每个象素到关断状态,为获得下一组图象数据作准备,使得在获取或已获得新的一组图象数据的同时旧的图象数据看不见,可以通过瞬时地熄灭该显示与现有的帧分开。可以利用双频电光液晶材料来获得并完成这个复位,或通过加短周期高频电压信号到公共电极26驱动到关断状态。可以理解,若利用AC信号保持液晶到显示(象素)数据基本上看不见的状态(例如,“暗”状态),则最好把AC信号的相位与写入象素数据到每行象素电极的相位同步,为了使各行之间控制电极(例如,公共电极)与象素电极的电容耦合效应均衡。
在本发明电极调制的基本方案内,其中电极电压与到象素电极的图象数据更新有密切的时间关系,存在若干个有关调制性质的变化。例如,在本发明的一个实施例中,相对短的脉冲可以加到一个不是DC控制电极电压上。此处调制可以由比象素上图象数据较短持续时间的脉冲组成。在按照本发明另一个控制电极电压调制方案的实施例中,加到控制电极上的脉冲持续时间比象素上图象数据持续时间长。在后一情况下,图象数据保留在象素上的时间周期比更新周期短。
按照本发明另一个实施例,控制电极电压调制可以包括相对高频交流(AC)调制的脉冲串。在另一个实施例中,控制电极电压调制可以包括一束相对高频调制的脉冲,用于每次更新象素电极的图象数据。
如图9A所示,按照本发明另一个实施例,尽管在驱使到暗状态期间象素电极上存储着一些象素数据,公共电极电压可以用一个脉冲调制以获得快速地把电光材料或液晶“驱使到暗状态”。某些液晶单元结构可以制作成正常白,利用电压寻址以驱使该单元到达暗状态。按照这个实施例,这个电压寻址可以这样完成,驱使公共电极到十分不同于象素电压的电压以获取快速驱使到暗状态。与象素电极上的电压有关,可以使液晶松弛回来并产生不同的灰度级或彩色信号电平,随后建立起灰度级或彩色信号电平。可以理解,灰度级可以考虑成彩色便于本发明的说明。图9A所示的实施例还利用象素帧缓冲器,在显示当前象素数据的同时,该象素帧缓冲器把下一个象素数据存储在象素缓冲器中。
采用大于保持在暗状态所需电压的电压,可以使公共电极电压过激励以得到该电光材料非常快速地到达暗状态。
适合于这个实施例的电光响应的一个例子在图2B中画出。从象素输出的强度随电光层两端所加电压的增大而减小。当该电压增大到“黑保持电压”以上时,即,在高于此电压下输出保持在黑暗状态,此处所示电光曲线有一个饱和响应。本发明还可用于有不同电光曲线的液晶,例如,除了曲线125在点127之后(例如,或许在VOD之前)某个点开始再次上升而不是保持平直以外,它类似于图2B所示的曲线,在那种情况下通常不加VOD到这种液晶。或者,可以使用有较复杂曲线的厚液晶层,曲线125可以看成较复杂曲线的一部分;在厚液晶层的情况下,可以利用曲线125的有用部分而不使该晶体松弛到完整的复杂曲线其余部分。也可以理解,对于某些液晶而言,不同的颜色可以有不同的电光(EO)曲线(例如,液晶可以有一种颜色的第一EO曲线(VBEO1的VB)和另一种颜色的第二EO曲线(VBEO2的VB))。在这种情况下,要求协调加到控制电极上相对于该颜色的电压,使控制电压与颜色和EO曲线匹配。在这种情况下,应当小心以保证由电极在液晶两端产生的VB足以使现有的象素数据在下一个象素数据待显示之前看不见。
弛豫到诸灰度级的发生通过一个有关曲线族,即使该材料在温度下降过程中减缓,仍然可以观察诸灰度级或彩色信号电平。随后的图象是互相独立的,因为每个图象之间的电光材料完全复位。
在利用时序彩色照射或时序彩色滤波的系统中可以获得较长的观察时间,因为随着复位循环使彩色子帧互相独立,即使当该材料从暗状态接近一帧的最后灰度级或彩色信号电平,仍能观察该装置。即使在获得更多光通过量的快速复位状态期间,观察象素也是有用的。彩色时序方案在图9B中画出。
特别是,图9B表示在每一色子帧以后快速驱使到暗状态。每一色子帧可以有约5ms的持续时间,其中在整个持续时间或只不过连续的一部分持续时间被连续地照射,或在持续时间内用非连接的照射脉冲照射。红色子帧,绿色子帧,和蓝色子帧可以在约15ms内按顺序显示。按照美国专利申请08/505,654和08/605,999,这些时间周期仅仅作为可以获得视觉综合的持续时间例子,该专利内容合并在此供参考。然而,应当明白,其他的持续时间能够获得这个,包括子帧显示持续时间小于5ms和甚至于10ms持续时间或更长。
参照图9A和9B,复位脉冲600加在象素电极上的时间是子帧持续时间(此处为5ms)的一小部分时间(此处为1ms)。假设有4个象素601,602,603,和604,各自的初始强度为I1,I2,I3,I4和各自的强度为1-4。一旦复位脉冲600加到象素601-604,它们的强度1-4分别从I1-I4下降到零,即,它们在时间t1经受了快速地驱使到暗状态。注意,即使象素电极在其上面有象素数据值,该显示器并不展示可见的数据。还要注意,所有的象素电极同时接收更新的象素数据值(如在脉冲600和脉冲609一开始时立刻的和普遍的变化所示)。这是因为图9A的显示系统利用象素帧缓冲,通常是由每个象素电极(例如,图6D中所示)包括一个象素缓冲器(例如,模拟象素缓冲器)来实施的。于是,在复位脉冲停止以后,强度1-4增大到它们各自的灰度彩色电平。如图所示,象素604被驱使到最明亮的灰度级或彩色信号电平。观察者看到的每个象素亮度应该正比于每条曲线1-4下面的面积。然后,下一个复位脉冲609在t2驱使象素601-604到暗状态。以下弛豫到灰度级或彩色信号电平表现为较慢的强度与时间变化,当象素601-604是冷的时候可能会发生的。可以看出,即使象素是凉的,获得象素601-604的帧(或子帧)独立性。可以理解,利用本发明的帧缓冲器(如图9A中)可以允许加短复位脉冲(使现有图象基本上看不见)而不需要在象素电极装入数据时保持复位脉冲。由于通过加载信号加到所有的象素(例如,描述图6D象素电路中适当加上的上拉信号和下拉信号),整个象素数据帧可以从帧缓冲器(象素缓冲器的)装入到象素电极上,装载象素电极所需的时间比一次装入一行(或两行)的非帧缓冲器系统短很多。因此,可以利用较短的复位脉冲(和不需要装入象素电极所要求较长的保持脉冲)获得帧间独立性。
可以研究液晶的结构,这些结构不是正常地适用于某些应用。例如,厚的单元可能较容易制造,但很可能响应太慢。通过过激励以便快速复位到暗状态,然后当该单元松弛时观察灰度级或彩色信号电平,即使该单元从未达到其寻址电压的最后状态,可以获得良好的性能。由于帧独立性,这种复位使它是可行的。
可以使这个实施例做成有不同类型的DC平衡。只要把公共电极箝位在(Vmax-Vmin)/2和保证随后驱使到暗状态的脉冲是交替的极性,可以实施基于帧的,基于列的,基于行的,或甚至逐个象素的DC平衡。在此情况下,只要控制驱使到象素电极的数据,该液晶是DC平衡的。
在调制公共电极电压的方案中,还可以实施帧反转DC平衡。这个情况的一个例子在图9A中表示。一般地说,保证象素电极数据更新和驱使到暗状态的脉冲序列是这样安排的,在若干次更新循环以后,电光层两端的电压平均达到接近于零值,就可以利用这种驱使到暗状态的方案保持DC平衡。
象素电极在复位期间可以箝位在某个已知电压,或者,若公共电极驱动是在足够高的电压上,象素电极可以留在某个任意的状态。
如图9A和9B中所示,初始复位可适用于所有象素设定到零伏。诸如液晶装置的电光装置使所有的象素快速地到暗状态。于是,该象素都设定到它们的灰度或彩色信号电平电压,液晶显示开始松弛到对应于这些电压的灰度或彩色信号电平。可以在整个弛豫时间(和在下一个复位时间)观察该装置,因为这个图象没有被前一个图象污染。下一个复位是在象素设定到它们的最高电压和公共电极驱动到负值。下一个图象是在公共电极设定到最大象素电压和象素电极低于此值。因此,在这个具体例子中,DC平衡是在逐帧基础上获得的。
重要的是在这个本发明实施例中注意到,即使诸象素没有能力用新数据同时更新其电极,在诸如一个图象的大批象素的光输出中有可能基本上同时驱使到暗状态。此外,利用本发明有可能使象素似乎有能力同时完成电极电压的更新。
图10A表示由象素阵列构成的分段显示器800,在此情况下,可以一次更新一行电极电压(或利用适当的阵列布局,一次更新两行)。标记为“A”和“B”的象素802和803是在阵列812区段809的第一行804,标记为“C”和“D”的象素814和815是在区段809的最后一行806。还画出阵列812的第二区段810和第三区段811。应当明白,可以做成包括象素电极和其他象素单元电路的阵列812的任何分段,形成的这些区段可以只有少量象素或大量象素以及这些象素可以在一行或多行。不管阵列812的分段如何,相应地分段电极820。例如,此处电极区段831,832,和833安排成对应于显示阵列812的第一区段809,第二区段810,和第三区段811。
图10B和10C表示在本发明时序彩色显示系统中利用分段控制电极的本发明方法一个实施例。该方法从步骤1001开始,在一个优选实施例中,三个步骤通常是基本上同时发生。可以理解,这三个步骤不必基本上同时发生而只是在时间上部分重叠。然而,为了从这个方法中获得多个益处,最好是,这三个步骤在时间上基本同时发生。这三个步骤包括给控制电极的第一区段装入第二色分量(例如,红色分量)的下一个象素数据到第一区段的象素电极上。还包括复位第一区段到暗状态,这是通过设定第一区段控制电极到某个电压上,使相关的液晶材料不允许看得见象素数据。与此同时,利用第一色分量,例如,蓝色光分量,显示第二区段中的象素数据。在步骤1003,按照本发明的优选实施方案,三个过程通常是基本上同时进行。步骤1003包括给第二区段装入第二色分量的下一个象素数据(例如,红色象素数据)到第二区段的象素电极上。步骤1003还包括复位第二区段到暗状态,这是加适当的电压到第二区段的控制电极上完成的。还是与此同时,利用第二光分量,例如红光,显示第一区段中的象素数据。然后在步骤1005,该系统利用第二光分量继续显示图象的第一区段,并利用第二光分量开始在第二区段中显示第二区段数据,第二光分量在图11中是红色。如图11所示,步骤1001中进行的过程是在时间t0与t1之间发生。如图11中波形所示,步骤1003中进行的过程是在时间t1至t2内完成。步骤1005的两个显示过程是在图11中的时间t2至t3内完成。
图11表示按照图10B和10C所示的这个方法对本发明系统5个不同分量的操作与时间的关系。特别是,曲线1101表示相对于象素电极的操作与时间关系,指出象素电极的电压与时间之间关系图和装入数据到象素电极上与时间的关系。曲线1103表示控制电极的电压与时间控制关系,该控制电极有两个分开区段,为的是把液晶层的不同部分复位到暗状态。曲线1104表示第一区段液晶中象素的强度与时间的曲线图。曲线1105表示三个不同光照明器的操作与时间关系相对于图11所示系统其他分量的操作。曲线1106表示液晶层区段2中液晶的强度与时间的关系。
继续描述图10B和10C,步骤1007包括三个基本上同时进行的操作。这些操作发生在图11所示的时间t2至t3的时间内。下一步,步骤1009是图11所示时间t4至t5的时间内基本上同时进行的三个操作。接着在步骤1011,该系统利用第三光分量(例如,绿光)继续显示第一区段,并开始利用第三光分量(例如,绿光)显示第二区段。这表示在图11中时间t5至t6之间发生的操作。应当注意,不同区段相对于特定光分量的交错,例如,相对于红光分量,并不影响显示的总体面貌,因为每个区段接收等量的显示时间和等量的照射。这个方法的优点是,在液晶从一个光改变状态切换到另一个光改变状态保持等量时间的同时,装入象素数据所需的时间可以近似地加倍,从而允许装入象素电极的驱动器电子线路有更多设计自由度。例如,可以利用廉价的,低速的电子线路,而不是快速的,较昂贵的驱动器电子线路。
图10B和10C所示的方法在步骤1013,1015,1017,和最后的1019中继续,如在这些图中所示。步骤1013发生在图11的时间帧t6与t7之间,步骤1015发生在图11的时间帧t7与t8之间。步骤1017发生在时间t8以后和在下一帧开始以前,这个时间可以认为是t0
图10B,10C和11假设利用两个相同大小的区段,其中一个区段显示图象的一半和另一个区段显示图象的另一半。可以证明,两个区段显示有某些优点,所以更适用于泛光照射。例如,这种显示似乎使装入象素数据允许的时间最大,与此同时,当利用诸如盖波片公共电极的单个公共控制电极时,大致保持等量的时间用于液晶切换。泛光照射通常使用照射整个显示装置的光源(例如,时序系统中的一个基色或空间彩色系统中的“白”光),而不是使用某种结构化的照射,例如,在光源扫描显示器时一次只照射一部分的扫描光源。利用分段滤光片或结构化照射的显示系统可能需要多于两个区段。
图12表示四个不同的象素A,B,C,和D相对于加到控制电极上控制电压的操作,在图11的实施例情况下,控制电极是分段的或分割的电极。图12的这些象素A,B,C,和D与图10A所示的象素A,B,C,和D相同。然而,注意在图12中,在象素数据看不见的复位期间,象素A和B的象素电极在复位到暗状态的开始时基本上同时更新,因为这些象素是在区段804中的第一行上,由于上述加到控制电极上的控制电压,还没有影响图12底部中所示的显示。还要注意,象素C和D的象素电极在接近复位到暗状态的结束时是如何同时更新的。
图12中所示的顺序是从都有对应图象的电极电压的象素“A”,“B”,“C”,和“D”开始,该图象已被观察到并将要更新。公共电极820第一区段831处的第一区段公共电极电压被调制到高电压,可以快速地驱使所有的象素到暗状态,与象素电极上的电压无关。在普通一次一行的寻址方式831下,于是象素802,803,和815的象素电极更新到它们新的电压电平。当这一区段中所有的行已被更新时,设定公共电极到图象显示的下一个值。在图12中,这个值是零伏,但是该值取决于所用DC平衡方案的选择。此外,对于液晶驱动,驱使到暗状态的脉冲很可能是在正脉冲与负脉冲之间交替变化以保持DC平衡。注意,所有的象素被快速和同时驱使到暗状态,即使象素电极电压是一次更新一行,所有的象素同时开始朝向它们灰度级的轨迹。还要注意,图12的系统并不利用象素帧缓冲(例如,带象素缓冲器的象素电路阵列),因为象素电极不是基本上同时更新。而且可以理解,图12还画出控制电极不是分段的显示系统的操作。
带有分段控制电极的显示系统可用于使区段下面所有的象素似乎同时更新。例如,这种方案可用于在某些系统中产生时序彩色,该系统在显示器上面有分段的彩色滤光片或该系统利用某些形式的结构化照射(例如,扫描照射而不是泛光照射)。此外,这种方案可用于某些形式的泛光照射,这种泛光照射在帧或子帧期间可以是连续的,或者,在帧或子帧期间可以加上非连接的照射脉冲。参照图13A,13B,13C,14和15还要进一步对此加以说明。
应当注意,在讨论照射方面以前,本发明可以提供超出两个区段的多个分段控制电极。例如在图13A中表示,其中有三个区段,它们分别地装入到象素电极上,在给那个区段释放合适的控制电极以后,它们分别地装入到象素电极上。图13A中所示的实施例表示在显示系统的三个不同区段中三个不同象素的强度与时间关系曲线。特别是,曲线1301指出液晶切换时间tLC1,它是在第一区段象素的强度曲线1304下面。这个象素是在用时间1303表示的时间t1期间装入的。象素强度曲线1305代表第二区段中的象素,它是在时间t1结束以后装入的。最后,象素强度曲线1306表示第三区段中的象素强度。
图13B实际上表示特定色子帧期间图11中曲线1104一部分与曲线1106一部分的组合,其中两条曲线1104和1106已经合并。图13B中所示曲线1310包括第一区段中一个象素的象素强度曲线1318和第二区段中一个象素的象素强度曲线1320,每个区段已经在各自的象素装入时间1314和1316装入到各自的象素电极上。照射时间表示为连续的照射1312。注意,在图13B这个实施例中,装入时间t1与装入时间t2相等,液晶切换时间是Tframe-t1。Tframe表示成粗体。通过两个液晶轨迹照射显示器保证两个区段在温度变化情况下有相同的亮度和相同的性质。
图13C表示利用控制电极区段的一个实施例,其中装入时间已经减慢,使t1和t2延长。最慢可能的数据速率是在t1=t2=tframe/2时得到的。这是在图13C中表示。这个例子导致在阵列上半部分和下半部分液晶的轨迹(该晶体朝向它们最后的光改变状态弛豫)在时间上完全分开。如以前一样可以利用时间Tframe的泛光照射。然而,在轨迹的结尾时脉冲照射可能是有利的。只要照射亮象素最明亮曲线的部分就可以使感觉的对比度最大。与照明器的性质有关,可能是照明器的亮度也增大。这个最慢的寻址方案可以考虑成在上一半装入时观察图象的下一半,在下一半装入时观察图象的上一半。
图14表示在时序系统中对每个子帧利用两个脉冲的脉冲照射方案,其中一个脉冲在接近第一区段显示的结尾,一个脉冲在接近第二区段显示的结尾。图14中所示的方案1401表示在时间1402期间装入该象素以后一个象素1404的液晶轨迹,也表示在时间t2(如时间1408所示)期间内某个时间装入该象素以后象素1410的液晶轨迹。照射脉冲不是连续的,由暗区分开。
图15是一个能够利用每一色子帧多于两个脉冲的例子。在图15所示的这个例子中,t1和t2短于图14中所示的例子。例如,t1 1502可能等于t2 1506,如同图11中所示实施例的情况。所以,在液晶材料必须被分段控制电极复位以前,允许该液晶材料把其切换曲线向前进行更长一些时间。与连续照射比较,通过平均地取样液晶切换动态曲线较好的一部分,脉冲照射(与照明器的性质有关)可能还是有利的。该脉冲的定位和时间如以下所述。定位最右边的脉冲1516以照射对应于底部区段的曲线1510最明亮部分。为了保持图象两部分之间的对称性,阵列上部的对应部分曲线1504也用脉冲1514照射。因为在这个讨论中,我们假设泛光照射,在液晶到达其最佳状态以前,脉冲还照射阵列底部一半的液晶。还有,为了保持对称性,我们需要照射用曲线1504代表的阵列上部一半液晶的对应部分轨迹。这就确定早先一个脉冲1512的时间。最后,为了完善这个对称性,还利用脉冲1506。现在两条曲线1504和1510是被完全相同地照射,在这个例子中利用四个脉冲。脉冲数目取决于液晶轨迹的定时。注意,在两种情况下不照射曲线的最低对比度部分。
应当注意,典型的实施例采用这样的控制电极,其中控制电极的各区段在电路上完全互相断开。在另一个实施例中,控制电极的各区段是用高电阻连接。例如,在盖波片电极情况下,盖波片电极的制造过程可能首先制做有一个区段的公共电极,然后利用刻蚀方法制成两个区段或者在两个区段之间制成缺口;然而,这种缺口可能不完全,两个区段之间仍有高阻连接。也应当注意,空间彩色系统可以利用本发明提供的多个控制电极区段。即,不是利用时序彩色,本发明的一个方面是利用由多个控制电极区段确定多个区段的空间彩色系统(有三个不同色的子象素,每个象素有相应的结构)。
本发明大多数实施例的优点是,即使不能同时更新象素电极,可以利用简单的象素电路同时更新它们的光输出。这种象素电路的一个例子在图6A中表示,利用信号晶体管装入数据到电容器上。此电容一般形成在象素电极与控制电极之间,该控制电极往往是公共盖波片电极,还有用各种方法能够获得的附加电容,例如,象素电极与附近行选线之间的电容。这在图16A中用其他电容1604表示。其他电容形成的方法取决于象素阵列结构的细节。例如,若象素阵列形成在商品化CMOS制造过程中的单晶硅衬底或芯片上,通常有几个金属或多晶硅的互连层。这些层可以在象素电极设计时布置成以提供附加电容,附加电容对于避免图象的退化是有利的。这种类型的制造过程中可以形成附加电容的另一个方法是在导电板(一般是多晶硅)与可以掺杂的衬底材料之间确定一个薄氧化物区域。这个薄氧化物电容器比可以布置的其他电容器在单位面积上有较大的电容量。按照这一方式,诸如图16A中所示的简单象素电路利用电容存储以保持象素电极上的电极电压,直至它被更新以前。那种电容的一部分是在象素电极与公共电极之间。其结果是,在该象素被装入数据以后,当改变公共电极电压把液晶从上述的暗状态释放时,公共电极与象素电极之间的电容耦合可能引起象素电极电压的变化,这就可能需要一些补偿。图16C中画出了这个变化,它表示公共电极电压波形1619在相同的时间内有复位部分1619a和释放部分1619b以及四个不同的象素电极电压1621a-1621d。注意在释放点1625,象素电极电压因公共电极电压的变化而发生变化。
象素电极电压变化的大小是由公共电极电压变化的大小和图16A所示包括电容器1604的电容与到公共电极的电容之比所决定。象素电极与公共电极(若利用分段电极,或象素电极与分段电极)之间的一些耦合不一定是严重有害的。若所有的象素到盖波片电极有相同的电容耦合和相同的附加电容,则它们都有相同的电压漂移,就不会造成失去均匀性。这种耦合确实导致本发明控制电极调制方案效应的减弱,导致需要它在更大的电压范围内能波动。另一个可能的问题涉及这样的情况,其中象素阵列是用单晶硅CMOS方法制成,且若该象素是用单个同信道晶体管寻址,则该电极在连接到象素电极的FET端被反向偏置PN结所隔离。若象素电极上的电压被拉到足够低,使这个结变成正向偏置,则电荷会流动箝住象素电压。这就限制了象素电极上可以利用的有效电压范围。
解决这个问题的一个方法是安排图16A所示的附加电容,与象素电极与公共电极之间的电容比较,它是充分地大。若能获得足够大的电容,这个方法能使电极电压的移动保持足够地小以避免有害的效应。另一个方法是利用象素电路,此象素电路有驱动象素电极的缓冲器。例如,这是在图6A中所画出的。另一个方法是明显地安排一个连接到信号的图16A中所示附加电容器,可以切换成与公共电极或控电极相反。这个附加电极可以考虑成接收补偿信号的补偿电极。若象素阵列是在CMOS过程中实现的,数据线可能是第一电平金属,栅极线可能是第二电平金属,象素电极可能是第三电平金属。这是在图16B中表示,其中象素电极1632布置在补偿电极1630之上,补偿电极1630布置在金属1中数据线1634之上。栅极线1626利用金属2,因此与补偿电极1630在相同的电平。图16A中所示的晶体管1605有栅极1620,源极1622,和漏极1624;可以理解,源极1622和漏极1624是在相同的衬底中。有许多种可以构成附加电容的层组合,图16A给出一个例子。可以理解,补偿电极1630连接到驱动器电路,该驱动器电路驱动补偿电极电压1627与图16D中所示公共电极电压波形1619相反。也是在图16D中所示,补偿电极电压的效应是保持象素电极电压大致不受公共电极电压转变的影响。可以这样选取栅极线1626与象素电极1632之间的重叠面积,使象素电极与公共电极之间电容与公共电极波动电压的乘积大致等于象素电极与补偿电极之间电容与公共电极转变方向相反波动的电压的乘积。可以理解,若控制电极实际上是分段的,在一个实施例中该控制电极是公共电极,则补偿电极1630应当按相应的方式在显示器上也是分段的。
在本发明的另一方面,补偿电极可以用作电平移位控制,为的是把液晶材料复位到如上所述显示数据看不见的状态。即,不是利用盖波片电极,它可以是公共电极或多段电极,类似于图16B中电极1630的电极可用于调制液晶层,按照上述图2C中所示的方式复位和释放它。用这样的方式,按照本发明提供复位和释放液晶层的控制电极分段变得比较容易,因为它是在包含象素电极的相同衬底上完成的,而不是在公共盖波片电极上试图建立区段。图16B中所示的象素电路可用于提供诸如电极1630的控制电极,它接收类似于上述盖波片电极接收的控制信号。
利用与象素电极(例如,电极1630)相同衬底中控制电极的一个例子在图16E中表示。图16E的例子假设,盖波片电极固定在Vdd/2(如信号1651所示)和象素电极设定在零伏与Vdd之间的任意值。带有象素电极的衬底中控制电极在一个状态(在Vdd)与另一个状态(在V=0)之间切换,如波形1653所示。在一帧中控制电极的一个状态期间,如波形1655所示,显示数据基本上是看不见的。在控制电极的释放状态期间显示数据是看得见的,如波形1655中上升轨迹所示。在该显示保持在暗状态的同时,象素值是在控制电极的复位状态期间装入到象素电极上的,和在进入到释放状态以后,控制电极与象素电极之间的电容耦合同时移位这些象素电极的电压,如象素电极波形1657所示。图16E的方案利用每帧有三色子帧的时序彩色和利用各帧之间的DC平衡。因此,当控制电极保持在Vdd时,帧1659中出现控制电极的复位状态,和当控制电极保持在零伏时,帧1659中出现释放状态。类似地,当控制电极保持在零伏时,帧1661中出现控制电极的复位状态,和当控制电极保持在Vdd时,帧1661中出现释放状态。
某些液晶显示系统利用帧顺序DC平衡方案,其中液晶是这样写入数据达到DC平衡的,使图象的顺序交替地写入正极性和负极性。假定显示衬底的任何象素电极可以驱动到Vmax与Vmin之间范围内的一个电压上,若公共电极固定在Vmax与Vmin之间的中间电压上,则在时序帧中可以加到该液晶的最大DC平衡信号在+(Vmax-Vmin)/2与-(Vmax-Vmin)/2之间变化,导致(Vmax-Vmin)/2的RMS电压。
按照本发明各个实施例可以实现几种不同形式的公共电极电压调制。参照图17,按照本发明利用有象素电极的象素缓冲器(在相同的衬底上,如图6D中所示)的一个实施例,可以调制显示系统12的公共电极26电压在Vmax与Vmin之间。在这种电寻址方法的“正”帧期间驱动公共电极26到Vmin和在“负”帧期间驱动公共电极26到Vmax,出现在电光层两端最大DC平衡RMS信号的电压增大一倍,从(Vmax-Vmin)/2到Vmax-Vmin(RMS)。
例如,在“正”帧期间,假设驱动象素到亮状态要求象素电极是高电压。(然而注意,相反的情况也是正确的。即,公共电极26的高电压可以驱动象素到暗状态,取决于所用电光层或液晶的结构。)按照本发明,在“正”帧期间,可以驱动公共电极到Vmin。所以,可以出现在电光层22两端的电压范围是从Vmin-Vmin到Vmax-Vmin,与象素电极28的电压范围完全相同。
在“负”帧期间驱动公共电极到Vmax,把象素电极驱动到低电压以得到亮状态,为的是使电光层22两端的电压最大化。在此情况下,电光层22两端的电压范围是从Vmax-Vmax到Vmin-Vmax。在图17所示的例子中,驱动象素电极使电光层两端的电压约为可得到最大电压的2/3。一种显示系统允许用对应于新图象的数据同时更新象素电极。这种显示系统是在美国专利申请序列号08/505,654中描述,其内容合并在此供参考,它称之为帧(子帧)顺序显示装置。由于这种类型显示装置的象素是同时更新的,按照本发明一个实施例,当公共电极被调制时,这种调制简化驱动电路,象素电极不必驱动到不同于其数据电压的电压(及其DC平衡的倒数)。
这不同于象素电极一次更新一行。在有源矩阵显示中可以实现的一个方法是通过电压顺序驱动象素数据存储电容器的参考极板,它模仿公共电极电压调制。这可以通过与公共电极同步地驱动所有的行栅极线来实现,其代价是增大复杂性和功率消耗。例如,见美国专利No.5,561,422,其内容合并在此供参考。
按照本发明另一个实施例,在上述状态关系中公共电极26被驱动到不是Vmin和Vmax的电压。例如,如图18中所示,在“正”期间公共电极26可以驱动到小于Vmin(例如,Vmin-Voffset),和在“负”期间公共电极26可以驱动到大于Vmax(例如,Vmax+Voffset)。这种方案的结果是,可以加到电光层22的电压范围现在移到了作为最小寻址电压的Voffset,和移到了作为最大寻址电压的Voffset+(Vmax-Vmin)。
用图18示意图举例说明的本发明实施例能够在这样一些情况中找到应用,例如,液晶电光效应有最小的阈值电压电平,在此电平以下不出现光学效应。通过按这样的方法选取Voffset,取这个偏置的部分或全部,象素电极上可用的全部电压范围适合于电光调制。
本申请特此合并了母案美国专利申请供参考,该专利申请是1996年12月19日提出申请的,序列号为08/770,233。

Claims (95)

1.一种操作显示系统的方法,所述显示系统包括有多个象素电极的第一衬底,有效地连接到所述象素电极的电光层,和有效地连接到所述电光层的电极;所述方法包括:
加第一多个象素数据值到所述多个象素电极,使所述第一多个象素数据值代表的第一象素数据被显示;
加第一控制电压到所述电极以改变电光层的状态,使第一象素数据基本上不显示;
加第二多个象素数据值加到所述多个象素电极上,所述第二多个象素数据值代表第二象素数据;
显示所述第二象素数据。
2.按照权利要求1的方法,其中显示所述第二象素数据的所述步骤包括:
加第二控制电压到所述电极以改变所述电光层的所述状态,使所述第二象素数据被显示,和其中所述第一象素数据代表第一图象和所述第二象素数据代表第二图象。
3.按照权利要求2的方法,其中所述第一图象包括第一色子帧和所述第二图象包括第二色子帧。
4.按照权利要求2的方法,其中所述电光层包括液晶材料和其中所述液晶至少有第一光改变状态和第二光改变状态,且其中所述第一控制电压导致所述液晶在所述第一光改变状态,使光基本上不能通过所述显示系统。
5.按照权利要求4的方法,其中所述第二控制电压导致所述液晶在所述第二光改变状态,使光能够通过所述显示系统。
6.按照权利要求5的方法,其中所述液晶是向列液晶。
7.按照权利要求6的方法,其中加第一控制电压的所述步骤和加第二多个象素数据值的所述步骤在时间上至少部分重叠。
8.按照权利要求7的方法,其中加第一控制电压的所述步骤和加第二多个象素数据值的所述步骤在时间上基本同时发生。
9.按照权利要求7的方法,其中所述电极是公共的盖玻片电极,它在一段时间内接收DC平衡信号。
10.按照权利要求7的方法,其中加第二多个象素数据值的所述步骤包括存储所述第二多个象素数据值在多个缓冲器中。
11.按照权利要求10的方法,其中每个所述多个象素电极基本上布置在所述多个缓冲器中一个对应的缓冲器上面。
12.按照权利要求5的方法,其中所述第一控制电压是AC(交流)电压。
13.按照权利要求5的方法,其中所述第一控制电压约等于最大电压和最小电压中之一,它可以加到所述多个象素电极上。
14.按照权利要求5的方法,其中所述第一控制电压约等于最大电压加第一偏置电压和最小电压减第一偏置电压二者之一,其中所述最大电压和所述最小电压是可以加到所述象素电极上的最大电压和最小电压。
15.按照权利要求5的方法,其中所述电极是布置在有所述多个象素电极的所述第一衬底中的补偿电极。
16.按照权利要求7的方法,其中加第一控制电压的所述步骤还包括:在所述第一控制电压以后和在加所述第二控制电压的所述步骤以前加第三控制电压,其中所述第三控制电压保持所述液晶处在所述第一光改变状态,和所述第一控制电压快速地使所述液晶处在所述第一光改变状态。
17.按照权利要求10的方法,其中在显示所述第一象素数据的时,所述第二多个象素数据值存储在所述第一衬底上所述多个缓冲器中。
18.按照权利要求5的方法还包括:
加第一补偿电压到布置在所述第一衬底上的多个补偿电极。
19.按照权利要求18的方法,其中加第一补偿电压的所述步骤和加第一控制电压的所述步骤在时间上至少部分重叠。
20.按照权利要求18的方法,其中加第一补偿电压的所述步骤和加第一控制电压的所述步骤在时间上大致同时发生。
21.按照权利要求5的方法,其中所述第二多个象素数据值在显示所述第二象素数据以前不是存储在所述第一衬底上的缓冲器中。
22.一种操作显示系统的方法,所述显示系统包括有第一多个象素电极和第二多个象素电极的第一衬底,有效地连接到所述第一多个象素电极和第二多个象素电极的电光层,以及第一电极和第二电极,所述方法包括:
(a)加第一多个象素数据值到所述第一多个象素电极上,所述第一多个象素数据值代表图象的第一部分;
(b)加第一控制电压到所述第一电极以改变所述电光层第一部分的状态,使所述图象的所述第一部分不显示;
(c)显示所述图象的所述第一部分;
(d)加第二多个象素数据值到所述第二多个象素电极上,所述第二多个象素数据值代表所述图象的第二部分;
(e)加第二控制电压到所述第二电极以改变所述电光层第二部分的状态,使所述图象的所述第二部分不显示;
(f)显示所述图象所述第二部分。
23.按照权利要求22的方法,其中步骤(a)和(b)以及步骤(d)和(e)在时间上至少部分重叠。
24.按照权利要求23的方法,其中步骤(c),(d),和(e)在时间上至少部分重叠。
25.按照权利要求22的方法,其中步骤(a)和(b)基本上是同时的,步骤(d)和(e)基本上是同时的。
26.按照权利要求25的方法,其中步骤(c),(d),和(e)基本上是同时的。
27.按照权利要求23的方法,其中所述第一控制电压和所述第二控制电压大致相等。
28.按照权利要求23的方法,其中所述图象至少是一部分彩色子帧,和其中所述显示系统是时序彩色系统。
29.按照权利要求28的方法,其中所述第一部分是所述图象的一半和所述第二部分是所述图象的另一半。
30.按照权利要求29的方法,其中所述彩色子帧是红色子帧,绿色子帧或蓝色子帧之一。
31.按照权利要求23的方法,其中所述图象至少是一部分彩色帧,和其中所述显示系统是空间彩色系统,对于所述显示系统的每一象素,有第一色分量子象素,第二色分量子象素和第三色分量子象素。
32.按照权利要求23的方法,其中步骤(c)包括:
在步骤(a)和(b)以后,加第三到控制电压到所述第一电极以改变所述电光层所述第一部分的所述状态,使所述第一部分被显示。
33.按照权利要求32的方法,其中步骤(f)包括:
在步骤(d)和(e)以后,,加第四到控制电压到所述第二电极以改变所述电光层所述第二部分的所述状态,使所述第二部分被显示。
34.按照权利要求33的方法,其中步骤(a)和(b)在时间上至少部分重叠,以及步骤(c),(d)和(e)在时间上至少部分重叠
35.按照权利要求33的方法,其中步骤(a)和(b)基本上是同时的,以及步骤(c),(d)和(e)基本上是同时的。
36.按照权利要求34的方法,其中所述电光层包括液晶材料,其中所述液晶至少有第一光改变状态和第二光改变状态,且所述第一和第二控制电压导致所述液晶在第一光改变状态,使光不能通过所述显示系统。
37.按照权利要求36的方法,其中所述第三和第四控制电压导致所述液晶在第二光改变状态,使光能够通过所述显示系统。
38.按照权利要求37的方法,其中所述液晶是向列液晶。
39.按照权利要求36的方法,其中所述第一电极是布置在第二衬底上盖玻片电极的第一部分,和所述第二电极是所述盖玻片电极的第二部分,所述盖玻片电极的所述第一部分和所述第二部分在电路上不连接。
40.按照权利要求36的方法,其中所述第一电极至少包括布置在有所述第一多个象素电极的所述第一衬底中的第一补偿电极,和所述第二电极至少包括布置在有所述第二多个象素电极的所述第一衬底中的第二补偿电极。
41.按照权利要求40的方法,其中所述第一电极包括布置在有所述第一多个象素电极的所述第一衬底中的多个第一补偿电极,和所述第二电极包括布置在有所述第二多个象素电极的所述第一衬底中的多个第二补偿电极。
42.按照权利要求23的方法,其中步骤(c)包括至少利用一个第一照明脉冲照射所述显示系统。
43.按照权利要求42的方法,其中步骤(f)包括至少利用一个第二照明脉冲照射所述显示系统。
44.按照权利要求43的方法,其中所述第一脉冲和所述第二脉冲不提供连续的照射。
45.按照权利要求23的方法,其中所述第一控制电压是AC电压。
46.按照权利要求23的方法,其中所述第一电极接收一段时间内的DC平衡信号。
47.按照权利要求23的方法还包括加第一补偿电压到第一多个补偿电极上,这些补偿电极布置在有所述第一多个象素电极的所述第一衬底上。
48.按照权利要求47的方法,其中加第一补偿电压的所述步骤与步骤(b)在时间上至少部分重叠。
49.按照权利要求43的方法,其中步骤(b)还包括:在加所述第一控制电压以后和加所述第三控制电压以前,加第五控制电压到所述第一电极,其中所述第五控制电压保持所述电光层所述第一部分中的所述液晶在所述第一光改变状态和所述第一控制电压快速地驱使所述电光层所述第一部分中的所述液晶进入所述第一光改变状态;以及其中步骤(e)还包括:在加所述第二控制电压以后和加所述第四控制电压以前,加第六控制电压到所述第二电极,其中所述第六控制电压保持所述电光层所述第二部分中的所述液晶在所述第一光改变状态和所述第二控制电压快速地驱使所述电光层所述第二部分中的所述液晶进入所述第一光改变状态。
50.一种显示系统,包括:
有多个象素电极的第一衬底,每一个所述多个象素电极有对应的缓冲器,定期地从布置在靠近所述对应象素电极的所述第一衬底上获取图象数据和保留所述图象数据一段给定时间;
包含公共电极的第二衬底,其中所述公共电极受到电压调制,所述公共电极的所述电压调制是在与相对于所述定期地获取图象数据有关的受控状态;和
布置在所述第一衬底与所述第二衬底之间的电光层,其中在当前图象数据由所述象素电极保留时,所述对应的缓冲器存储下一个图象数据。
51.按照权利要求50的显示系统,其中所述电压调制包括第一电压电平与第二电压电平之间的切换。
52.按照权利要求50的显示系统,其中所述显示系统包括液晶显示。
53.按照权利要求50的显示系统,其中所述电光层包括液晶材料。
54.按照权利要求50的显示系统,其中所述电光层包括双频液晶材料。
55.按照权利要求51的显示系统,其中所述第一电压电平和第二电压电平分别等于或近似等于可加到所述多个象素电极上的最大电压和最小电压。
56.按照权利要求51的显示系统,其中所述第一电压电平和第二电压电平有叠加在其上面的叠加脉冲信号。
57.按照权利要求56的显示系统,其中所述叠加脉冲信号的形状是矩形。
58.按照权利要求56的显示系统,其中所述叠加脉冲信号的形状不是矩形。
59.按照权利要求56的显示系统,其中所述叠加脉冲信号有极性,使所述电光层受到瞬间电压减小。
60.按照权利要求56的显示系统,其中所述叠加脉冲信号有极性,使所述电光层受到瞬间电压增大。
61.按照权利要求56的显示系统,其中所述叠加脉冲信号暂时地接近所述获取图象数据。
62.按照权利要求50的显示系统,其中所述电压调制包括有较短持续时间的脉冲,它比所述象素电极处所述图象数据的持续时间短。
63.按照权利要求50的显示系统,其中所述电压调制包括有较长持续时间的脉冲,它比所述象素电极处所述图象数据的持续时间长。
64.按照权利要求50的显示系统,其中所述电压调制包括相对高频交流调制的短脉冲串。
65.按照权利要求50的显示系统,其中对于由所述多个象素电极获取的每个图象数据,所述电压调制包括相对高频交流调制的一个短脉冲。
66.按照权利要求50的显示系统,其中所述电压调制包括一个快速驱使所述电光材料到暗状态的脉冲。
67.按照权利要求66的显示系统,其中在跟随所述脉冲之后,所述电光材料松弛到多个灰度级,这些灰度级对应于所述多个象素电极的所述图象数据。
68.一种在显示系统中显示信息的方法,此显示系统包括:有多个象素电极的第一衬底;包含公共电极的第二衬底;和布置在所述第一衬底与所述第二衬底之间的电光层,该方法包括的步骤有:
定期地获取所述多个象素电极的图象数据;
在用下一个图象数据装入对应的多个缓冲器时,在所述多个象素电极上保留所述图象数据一段给定的时间,所述对应的多个缓冲器布置在有所述多个象素电极的所述第一衬底上;和
调制所述公共电极的公共电极电压到与所述定期获取图象数据有关的受控状态。
69.按照权利要求68的显示信息方法,其中所述调制步骤包括产生所述公共电极电压以便快速地驱使所述电光材料到暗状态。
70.按照权利要求69的显示信息方法包括的另一步骤是:
在暗状态之后,松弛所述电光材料到对应于所述多个象素电极所述图象数据的多个灰度级。
71.一种显示系统,包括:
有第一多个象素电极的第一衬底,用于接收代表待显示第一图象的第一多个象素数据值;
有效地连接到所述象素电极的电光层;
有效地连接到所述电光层的电极,所述显示系统显示所述第一图象,然后加第一控制电压到所述电极以改变所述电光层的状态,使所述第一图象基本上不显示,然后在所述电极接收到第二控制电压以后,所述显示系统显示第二多个象素数据值代表的第二图象
72.按照权利要求71的显示系统还包括连接到所述电极的电极控制驱动器,给所述电极提供所述第一控制电压。
73.按照权利要求72的显示系统,其中所述电极控制驱动器提供所述第一控制电压成与结束显示所述第一图象有关的受控状态,并提供所述第二控制电压成与开始显示所述第一图象有关的受控状态。
74.按照权利要求73的显示系统,其中所述第一控制电压加到所述电极,即使所述第一多个象素电极保留所述第一多个象素数据值,所述第一图象可以基本上不显示。
75.按照权利要求74的显示系统,其中在所述第二控制电压加到所述电极以后,所述第二图象被显示,使得基本上全部所述第一多个象素电极引起所述第二图象中对应的多个象素被同时更新。
76.按照权利要求75的显示系统,其中所述对应的多个象素包括所述显示系统中多行象素上的象素。
77.按照权利要求76的显示系统,其中所述第一图象包括第一色子帧和所述第二图象包括第二色子帧。
78.按照权利要求76的显示系统,其中在所述第一控制电压加到所述电极时,所述第二多个象素数据值加到所述第一多个象素电极。
79.按照权利要求73的显示系统还包括有效地连接到所述第一多个象素电极的补偿电极,至少是在所述第一控制电压加到所述第一电极的一部分时间内,所述补偿电极连接到补偿控制驱动器以接收补偿电压。
80.按照权利要求78的显示系统,其中所述电光层包括液晶材料和其中所述液晶至少有第一光改变状态和第二光改变状态,其中所述第一控制电压导致所述液晶在所述第一光改变状态,使光不能通过所述显示系统;所述第二控制电压导致所述液晶在所述第二光改变状态,使光能够通过所述显示系统。
81.按照权利要求80的显示系统,其中所述液晶是向列液晶。
82.按照权利要求80的显示系统,其中所述电极是公共盖玻片电极,在一段时间内接收DC平衡信号。
83.按照权利要求80的显示系统,其中所述第一控制电压是AC电压。
84.按照权利要求80的显示系统,其中所述电极控制驱动器在所述第一控制电压以后和加所述第二控制电压的所述步骤以前提供第三控制电压,其中所述第三控制电压保持所述液晶在所述第一光改变状态和所述第一控制电压快速地使所述液晶处在所述第一光改变状态。
85.一种显示系统,包括:
有第一多个象素电极和第二多个象素电极的第一衬底,第一多个象素电极用于接收代表图象第一部分的第一多个象素数据值,第二多个象素电极用于接收代表所述图象第二部分的第二多个象素数据值;
有所述电光层第一部分和所述电光层第二部分的电光层,,电光层第一部分有效地连接到所述第一多个象素电极和电光层第二部分有效地连接到所述第二多个象素电极;
连接到第一电极控制驱动器和有效地连接到所述电光层所述第一部分的第一电极,所述第一电极接收第一控制电压以改变所述电光层所述第一部分的状态,使所述图象的第一部分基本上不显示;
连接到第二电极控制驱动器和有效地连接到所述电光层所述第二部分的第二电极,所述第二电极接收第二控制电压以改变所述电光层所述第二部分的状态,使所述图象的第二部分基本上不显示。
86.按照权利要求85的显示系统,其中所述第一多个象素电极接收所述第一多个象素数据值与所述第一控制电极接收所述第一控制电压基本上同时,和其中所述第二多个象素电极接收所述第二多个象素数据值与所述第二控制电极接收所述第二控制电压基本上同时。
87.按照权利要求86的显示系统,其中所述图象所述第一部分是所述图象的一半,和所述图象所述第二部分是所述图象的另一半。
88.按照权利要求85的显示系统,其中所述电光层包括液晶材料,和其中所述液晶至少有第一光改变状态和第二光改变状态,以及所述第一和所述第二控制电压导致所述液晶在所述第一光改变状态,使光不能通过所述显示系统;所述第一电极控制驱动器和所述第二电极控制驱动器分别提供第三控制电压和第四控制电压,第三控制电压和第四控制电压导致所述液晶在所述第二光改变状态,使光能够通过所述显示系统。
89.按照权利要求88的显示系统,其中所述液晶是向列液晶。
90.按照权利要求88的显示系统,其中所述第一电极是布置在第二衬底上盖玻片电极的第一部分,和所述第二电极是所述盖玻片电极的第二部分,所述盖玻片电极的第一部分和第二部分在电路上不连接。
91.按照权利要求88的显示系统,其中所述第一电极至少包括布置在有所述第一多个象素电极的所述第一衬底中的第一补偿电极,和所述第二电极至少包括布置在有所述第二多个象素电极的所述第一衬底中的第二补偿电极。
92.按照权利要求91的显示系统,其中所述第一电极包括布置在有所述第一多个象素电极的所述第一衬底中的多个第一补偿电极,和所述第二电极包括布置在有所述第二多个象素电极的所述第一衬底中的多个第二补偿电极。
93.按照权利要求88的显示系统还包括照明器,所述照明器至少提供一个不是连续的照明脉冲。
94.按照权利要求85的显示系统,其中所述显示系统是一个空间彩色系统,对于每个象素,它有第一色子象素,第二色子象素和第三色子象素。
95.按照权利要求88的显示系统,其中所述显示系统是一个空间彩色系统,对于每个象素,它有第一色子象素,第二色子象素和第三色子象素。
CN 97180704 1996-12-19 1997-12-02 借助电极电压的调制以改变电光层状态的显示系统 Pending CN1242097A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 97180704 CN1242097A (zh) 1996-12-19 1997-12-02 借助电极电压的调制以改变电光层状态的显示系统

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US08/770,233 1997-11-11
US08/801,994 1997-11-11
CN 97180704 CN1242097A (zh) 1996-12-19 1997-12-02 借助电极电压的调制以改变电光层状态的显示系统

Publications (1)

Publication Number Publication Date
CN1242097A true CN1242097A (zh) 2000-01-19

Family

ID=5177821

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 97180704 Pending CN1242097A (zh) 1996-12-19 1997-12-02 借助电极电压的调制以改变电光层状态的显示系统

Country Status (1)

Country Link
CN (1) CN1242097A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101826314A (zh) * 2010-03-10 2010-09-08 敦泰科技(深圳)有限公司 一种tft液晶显示屏驱动方法及驱动电路
CN108121100A (zh) * 2016-11-30 2018-06-05 乐金显示有限公司 光阻挡装置及其制造方法以及包括其的透明显示装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101826314A (zh) * 2010-03-10 2010-09-08 敦泰科技(深圳)有限公司 一种tft液晶显示屏驱动方法及驱动电路
CN101826314B (zh) * 2010-03-10 2012-09-05 敦泰科技(深圳)有限公司 一种tft液晶显示屏驱动方法及驱动电路
CN108121100A (zh) * 2016-11-30 2018-06-05 乐金显示有限公司 光阻挡装置及其制造方法以及包括其的透明显示装置

Similar Documents

Publication Publication Date Title
US6104367A (en) Display system having electrode modulation to alter a state of an electro-optic layer
US7876305B2 (en) Electrophoretic display device and driving method therefor
US7796115B2 (en) Scrolling function in an electrophoretic display device
US8248357B2 (en) Pixel driving circuit and a display device having the same
KR101132088B1 (ko) 액정표시장치
CN1636236A (zh) 液晶装置
JPH1062748A (ja) アクティブマトリクス型表示装置の調整方法
US10347206B2 (en) Drive circuit for display device and display device
EP1600927A1 (en) Liquid crystal display device and method of driving such a display device
CN100405140C (zh) 液晶显示器及其驱动方法
CN102087838B (zh) 用有源矩阵背板进行的视频速率ChLCD驱动的显示装置
CN1110031C (zh) 利用电极调制改变电光层状态的显示方法和系统
US20120098816A1 (en) Liquid Crystal Display and Driving Method Thereof
KR101327869B1 (ko) 액정표시장치
CN1242097A (zh) 借助电极电压的调制以改变电光层状态的显示系统
JP4549341B2 (ja) 液晶表示装置
WO1998027537A1 (en) Display system which applies reference voltage to pixel electrodes before display of new image
JPS63287829A (ja) 電気光学装置
CN116612728B (zh) 一种显示面板的驱动方法、驱动电路及显示设备
US10643562B2 (en) Display device and method for driving the same
JP4141185B2 (ja) 液晶表示装置
KR100627386B1 (ko) 액정 표시 장치
JPS59111622A (ja) 液晶表示式受像装置
US20070008441A1 (en) Liquid crystal display device and its driving method
KR100854992B1 (ko) 액정 표시 장치

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C12 Rejection of a patent application after its publication
RJ01 Rejection of invention patent application after publication