CN1238868A - 精确地理定位的方法和装置 - Google Patents

精确地理定位的方法和装置 Download PDF

Info

Publication number
CN1238868A
CN1238868A CN 97196336 CN97196336A CN1238868A CN 1238868 A CN1238868 A CN 1238868A CN 97196336 CN97196336 CN 97196336 CN 97196336 A CN97196336 A CN 97196336A CN 1238868 A CN1238868 A CN 1238868A
Authority
CN
China
Prior art keywords
mobile unit
satellite
geo
location
unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN 97196336
Other languages
English (en)
Inventor
M·J·肖尔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
EAGLE EYE TECHNOLOGIES Inc
Original Assignee
EAGLE EYE TECHNOLOGIES Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by EAGLE EYE TECHNOLOGIES Inc filed Critical EAGLE EYE TECHNOLOGIES Inc
Publication of CN1238868A publication Critical patent/CN1238868A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/185Space-based or airborne stations; Stations for satellite systems
    • H04B7/1853Satellite systems for providing telephony service to a mobile station, i.e. mobile satellite service
    • H04B7/18545Arrangements for managing station mobility, i.e. for station registration or localisation
    • H04B7/18547Arrangements for managing station mobility, i.e. for station registration or localisation for geolocalisation of a station
    • H04B7/1855Arrangements for managing station mobility, i.e. for station registration or localisation for geolocalisation of a station using a telephonic control signal, e.g. propagation delay variation, Doppler frequency variation, power variation, beam identification
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S1/00Beacons or beacon systems transmitting signals having a characteristic or characteristics capable of being detected by non-directional receivers and defining directions, positions, or position lines fixed relatively to the beacon transmitters; Receivers co-operating therewith
    • G01S1/02Beacons or beacon systems transmitting signals having a characteristic or characteristics capable of being detected by non-directional receivers and defining directions, positions, or position lines fixed relatively to the beacon transmitters; Receivers co-operating therewith using radio waves
    • G01S1/022Means for monitoring or calibrating
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/02Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
    • G01S5/12Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves by co-ordinating position lines of different shape, e.g. hyperbolic, circular, elliptical or radial
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/74Systems using reradiation of radio waves, e.g. secondary radar systems; Analogous systems
    • G01S13/76Systems using reradiation of radio waves, e.g. secondary radar systems; Analogous systems wherein pulse-type signals are transmitted
    • G01S13/767Responders; Transponders
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/74Systems using reradiation of radio waves, e.g. secondary radar systems; Analogous systems
    • G01S13/76Systems using reradiation of radio waves, e.g. secondary radar systems; Analogous systems wherein pulse-type signals are transmitted
    • G01S13/78Systems using reradiation of radio waves, e.g. secondary radar systems; Analogous systems wherein pulse-type signals are transmitted discriminating between different kinds of targets, e.g. IFF-radar, i.e. identification of friend or foe
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/87Combinations of radar systems, e.g. primary radar and secondary radar
    • G01S13/878Combination of several spaced transmitters or receivers of known location for determining the position of a transponder or a reflector

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Astronomy & Astrophysics (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Signal Processing (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)
  • Radio Relay Systems (AREA)

Abstract

提供改进的基于卫星的跟踪系统的方法和装置,使用已知位置参考发射机站提供的纠错矢量,可以用于改善对未知位置发射机的位置估计。确定地面发射机位置的技术称为地理定位。为了地理定位,要通过卫星地面站和地球轨道上的卫星转发器(304)查询发射机/接收机(收发机)(306)。一旦接收到卫星广播的收发机唯一标识码,收发机将通过卫星转发器将它的标识码发回卫星地面站。环路响应时间用于计算卫星到收发机的距离。卫星在非静止轨道上运动造成的接收信号多普勒频移用于计算信号到卫星的到达角。距离和到达角结合在一起计算收发机的位置估计。这个地理定位过程对一个已知参考站点和所有未知站点的移动和/或固定收发机重复。对参考收发机产生的位置估计和一个预先已知的参考收发机位置进行比较。估计位置和参考端的已知位置之差产生误差矢量。这个误差矢量用于对所有预先未知位置收发机的位置估计,提高位置估计的精度。

Description

精确地理定位的方法和装置
发明的领域
本发明一般涉及进行地理定位的方法和系统,并且更具体地涉及通过非静止地球轨道卫星进行全球地理定位的方法和系统。
发明的背景
定位并跟踪人和设备的能力具有众多的法律实施,商业和消费应用。通过开发能够满足所有这些应用的多种需求的基本技术,可以获得低单位成本高容量的产品,比如,提供一种大幅度降低军警工作的成本并提高效力的买得起的守备技术。
例如,一种应用包括监视假释犯。加利福尼亚有近100,000名州政府希望跟踪的假释犯(州级-不包括缓刑犯)。1995年10月12日,加利福尼亚政府通过了第1804号议会法案,要求连续电子监视并报告假释犯,缓刑犯和囚犯的位置。该通过的法案要求每5分钟或更短的时间更新位置。由于要求是身体佩带的装置,所以严重地限制了工作频率的选择。每年$21000的监禁成本,估计一年用于监视的$4000是很有吸引力的。
另一个例子是个人援助。在今天,还没有简单,可靠的方法确定需要援助的人的位置。Captain Scott O-Grady的例子说明了这样一个事实,即坠落的飞行员不愿发送(信号),因为害怕信号被截获并且危及到他的位置。一些建议,如Combat Survivor和Evader/LocatorProgram,要求GPS发出的坐标是加密的,然后通过安全的链路发送。这种方法要求提供GPS接收机所需的体积,成本和动力,以及随之而来的加密设备。
另外,人的跟踪必须在建筑物内,建筑物外,广阔区域上,使用低成本通信链路和长寿命电池来进行。而全球定位系统(GPS)由于NAVSTAR系统的全球特性,可以很好地适用于户外和广阔区域上的导航和定位,却由于GPS信号不能穿透建筑物而不能满足户内的要求。
此外,许多现有技术的导航系统,如全球定位系统(GPS),GLONASS,LORAN,OMEGA,TACAN,等等是众所周知。利用这些现有导航系统,将导航单元与发射机结合在一起中继位置报告的同时,这些发射机将会很大程度地增加移动单元的成本,复杂度,体积,重量和功耗。同时,这也将使得(移动)单元不便于个人操作。另外,上面提到的现有技术系统更多地用于户外军用交通工具(舰艇,坦克,飞机)导航功能,而不是户内以及个人地理定位功能。
另外,现有技术系统在进行它们的地理定位功能时,使用两个或更多的相距很远的发射机和/或接收机平台。基于卫星的现有技术系统的的情况下,至少要有3颗,优选地是4颗卫星同时位于地理定位接收机的视域之内以得到位置解。最后,使用现有技术基于卫星的系统不能穿透建筑结构,厚植被,或被遮蔽的地区。
因此,本发明面向这些问题,开发不要求大的移动设备或多颗卫星,并且能够工作在户内和多种环境下的,进行增强的全球地理定位的方法和装置。
发明的概述
本发明通过确定表示固定参考站的已知位置和测量位置之差的误差矢量,并且将这个误差矢量用于被测量的移动单元的位置,来解决这个问题。通过这样做,本发明只依靠单一卫星,并且不需要基于GPS的接收机/发射机,保证了小体积和小功率,并且可以工作在能够穿透各种环境的频率下,同时提供精确的位置测量。
根据本发明,定位移动单元的方法包括确定参考单元的位置,计算表示实际已知位置和测量的位置之差的误差矢量,使用与测量参考单元位置相同的技术估计移动单元的位置,并且将误差矢量用于移动单元的位置估计,以确定移动单元的最后位置。
根据本发明的一个有利实施例,为了确定参考单元的位置并且估计移动单元的位置,本发明测量从地面单元发送到卫星的信号中的多普勒频移,从而获得地面单元可能所处的地球表面的第一位置曲线,使用从地面单元发送到卫星的信号的到达时间确定地面单元可能所处的地球表面的第二位置曲线,并且确定第一位置曲线和第二位置曲线的交叉点,该交叉点定义了地面单元的位置估计。
根据本发明,基于从低地轨道卫星--该卫星位于已知的地球轨道发射的信号,高精度确定移动单元位置,移动单元可以有选择地在地理区域上移动--的系统,包括命令中心,将地理定位信息以及其它数据从命令中心发射到移动单元的发射机,接收从移动单元通过低地轨道卫星到命令中心的多普勒频移,到达时间和到达角度数据以及其它数据的接收机,和位于命令中心的测量/地理定位业务处理器。这样,处理器确定多个地理定位参数的多普勒频移分量,多个地理定位参数的到达时间分量,多个地理定位参数的到达角度分量,以及在移动单元和低地轨道卫星之间传播的移动单元发射机信号的近似位置。命令中心包括接收有关多个固定参考站的差分数据和移动单元的近似位置的接收机。处理器基于移动单元的近似位置和多个固定参考站的已知位置,在该多个固定参考站中确定一个当前与移动单元位于同一个卫星的视域中的固定参考站,并且结合移动单元的近似位置和来自所确定的一个差分站的差分数据,提供移动单元的精确位置。这样,命令中心中的处理器,使用差分技术和位置以及通过陆地无线传输系统或Internet数据传输网络传送的其它数据计算精确位置。
附图的简要描述
图1图示说明在本发明中使用的LEO卫星星座图的LEO卫星全球覆盖。
图2图示说明在本发明中使用的卫星星座图的LEO卫星波束覆盖区。
图3表示本发明的地理定位系统。
图4表示本发明的移动收发机单元。
图5图示说明在本发明中使用的距离测量技术。
图6图示说明在本发明中使用的多普勒测量技术。
图7表示本发明的综合距离和多普勒测量。
图8图示说明本发明的移动单元定位算法。
图9表示本发明的纠错矢量方法。
图10表示差分多普勒基站的典型放置地图。
详细描述
描述了提供改进的基于卫星的跟踪系统的方法和装置。该方法使用位置确知的参考发射机提供纠错矢量,该矢量可以用来改善未知位置发射机的位置估计。
确定地面发射机位置的技术称为地理定位。为了地理定位,要通过卫星地面站和地球轨道上的卫星转发器查询发射机/接收机(收发机)。一旦接收到卫星广播的收发机唯一标识码,收发机将通过卫星转发器将它的标识码发回卫星地面站。环路响应时间用于计算卫星到收发机的距离。卫星在非静止轨道上运动造成的接收信号多普勒频移用于计算信号到卫星的到达角。距离和到达角结合在一起计算收发机的位置估计。这个地理定位过程对一个已知参考站点和所有未知站点的移动和/或固定收发机重复。对参考收发机产生的位置估计和一个预先已知的参考收发机位置进行比较。估计位置和参考端的已知位置之差产生误差矢量。这个误差矢量用于对所有预先未知位置收发机的位置估计,提高对那些收发机位置估计的精度。
为了满足对军警力量和假释犯移动的跟踪,本发明包括一个可以通过低地轨道(LEO)卫星跟踪的腕表大小的发射机和接收机。本发明依靠一颗卫星进行地理定位而不是移动单元--一个实施例是腕戴手表发射机和接收机,因而消除了以前系统所需的体积,成本和功耗。移动单元的另一个实施例包括车载发射机/接收机。在飞行器中的应用,本发明跟随人而不是坠落的飞行器,以便在援助中帮助坠落的飞行员。最后,移动单元被设计为在人员不省人事时也可以被查询,因此对人员位置的确定独立于人员的状态。
根据本发明的细节,发射机可以制造成低功率,即小于1瓦。此外,系统的结构使得电池寿命是大约30天。
本发明使用的卫星系统独立于全球定位系统(GPS)来确定位置,并且提供军用定位能力,以及在不广播位置坐标集的情况下向命令中心报告位置的装置。为了避免他人监测广播,本发明使用安全的扩频通信。
本发明廉价地定位以前标记了的丢失人或物。一旦一个用户失去行为能力或在秘密任务中受伤或其它情况需要被跟踪,卫星就会查询本发明的移动单元来确定用户的位置。这并不要求用户的动作。卫星和用户的移动单元的通信是使用固有的安全扩频通信,因而避免了偷听者收听。由于没有广播位置(信息),因而没有什么可收听的。位置确定是在卫星地面站进行的,然后通知救援者或为跟踪应用提供监视。
以下所发生的事件链用于接收到请求后定位用户。首先,用户用一个请求呼叫本发明的系统。随后,地面站通知卫星广播收发信机的标识码。移动单元接收到这个广播并发送一个响应。卫星将移动单元的信号重发送回地面站,然后地面站计算位置。
到收发信机的下行链路在S波段(2500MHz)中,而来自收发信机的上行链路在L波段(1600MHz)中。这些频率允许使用非常小的天线。
本发明中使用了码分多址(CDMA)直接序列扩频方案以允许同时存在多个分离的发射机。这对低廉地服务大量消费者市场并且提供安全通信是很重要的。
本发明使用60和70年代U.S.Navy Transit Navigation SatelliteSystem开发的多普勒地理定位技术。这个系统被NAVSTAR/GPS卫星替代用于导航。本发明使用多普勒技术是因为它简单并且廉价,同时可以提供满意的位置精度。为了提高该技术的精度,本发明添加了差分多普勒技术,这将在下面讨论。
多普勒技术依靠卫星和移动单元之间的频移。由于卫星沿地球轨道运动,可以检测到所接收的来自地面发射机信号的频移。由于卫星和发射机之间的相对速度产生的多普勒频移代表为发射机必须位于的一个锥面。假设发射机位于地球表面,这就排除了锥面上的大多数可能点。结果一次多普勒测量就确定了一条位置线,这就是锥面和地球的交线。
很短的时间间隔之后(例如,1分钟),进行第二次多普勒测量,确定第二条位置线。这两条所产生的位置线的交点就代表移动单元的位置估计。因为大多数情况下移动单元的移动不是很快,这就足够定位移动单元。
另外,本发明使用伪距离修正技术确定移动单元的位置。
通过结合上述多普勒技术和距离修正技术,本发明只使用一颗卫星就能够提供瞬时定位。多普勒定位已经被NAVSTAR GPS所替代,因为它不能跟踪高速移动的物体,如飞行器。对于本发明,如定位个人,通常人不会高速移动,因此结合多普勒和伪距离修正技术将有效地工作。
为了进一步提高精度,本发明使用差分多普勒技术,依靠提供两个固定位置收发信机进行上述方案的运作。第二个收发信机位于固定的已知参考位置。当卫星飞过工作区域,未知收发信机和参考收发信机都会被查询。参考标记的多普勒测量提供一个纠错矢量用于未知标记的位置估计。使用这种差分多普勒方案,估计位置的不确定性可以从1000米减小到30米。
只需要使用很少的参考收发信机就可以服务广大的区域。由于纠错矢量的精度会由于两个信号分离的路径而降低,这两条路径必须通过电离层大致相同的部分以满足技术的精度。幸运的是,卫星上很小的角度差就可以在地球表面产生很大的空间差异。因此,一个固定的参考收发信机可以满足几百英里半径内的精确定位。上述方案提供定位精度将在100米之内的。
本发明最小化移动单元收发机的工作要求,因此使腕表大小的单元成为可能。这种可能性是由于卫星进行地理定位而不是将这些要求(加上GPS)强加到移动单元。
本发明中使用的卫星是低地或中地轨道卫星,这样可以获得较高的仰角。另外,只需要较小的发射机功率而且全向天线不需要跟踪天线。
基于低地轨道卫星的数字电信系统的一个例子是Globalstar。它提供电话和其它数字电信业务,如数字传输,寻呼和传真。Globalstar业务将通过高度1419公里的48卫星星座图提供。Globalstar将在1997年后半年发射卫星,并将在1998年开始最初的商业运行。在美国,Globalstar授权使用扩频通信工作在L和S波段。Odyssey本质上与Globalstar一样,除了卫星处于更高的高度。该系统计划在2000启动。
图1表示低地轨道卫星的全球覆盖,和单一卫星的覆盖区200。本发明中使用的卫星是一系列绕地球轨道运行的低地轨道卫星中的一颗。为了将卫星彼此区分,每个卫星被分配了一个唯一的标识号。卫星的放置满足地球上的每一点都至少位于一颗卫星的覆盖区域中。在适当的纬度,每一点可以看到多颗卫星。星座图中的每颗卫星可以覆盖地球表面大陆大小的一部分,如图2所示,其中给出了低地轨道卫星波束覆盖区200和与之相关的点波束202。
系统综述
图3表示的是本发明用于地理定位功能的系统。如图3中所示,系统300包括一个卫星地面站302,一个低地轨道卫星304,一个参考收发机单元306和一个移动收发机单元310。两个收发机306,310是相同的,除了参考收发机306被放置在已知的位置上,而移动收发机310可以移动到地球上的任意点。本发明的系统允许这些组成中的每个具有一个或多个,例如,地面站302,参考单元306和移动单元310。同样位于地面上的卫星地面站网关302,通过RF通信信道308与视域中的低地轨道卫星304进行数据通信。
根据本发明,不限制移动单元310的数量。因此,移动单元310的数量可以是几百万。移动单元310是便携的,电池供电的,相对低功率的,并且包括相对小的天线。根据本发明,地理定位系统可以定位地球表面或靠近地球表面任何位置的移动单元310。本发明的移动单元310在适当的政府机构所分配的频率上与卫星304通信。这些频率在不同的国家可能是不同的,但是,这些频率对于本领域的技术人员是众所周知的,因此在这里不必提供它们的细节。
图2表示卫星点波束202在地球表面形成的LEO卫星覆盖区200。每个点波束204-232都是由一个卫星沿着卫星覆盖区200移动形成的。图1表示整个卫星星座图的全球覆盖。
卫星覆盖区200中的每个点波束204-232都占有卫星覆盖区200中的唯一位置,因此这些位置可以通过为每个点波束204-232分配一个唯一标识码来彼此区分。因此,可以通过确定移动单元位于哪个点波束来初步定位特定的移动单元。这个信息定义了相对卫星的位置,它的位置通常可以通过对已知轨道运动计算来获得并跟踪。如业界所知,通过结合卫星覆盖区200中的点波束位置204-232以及卫星的位置,可以在大范围内确定移动单元在地球上的位置。
另外,根据本发明,通过唯一点波束204-232确定的位置信息可以用在如差分多普勒这样的地理定位测量中进行模糊分辨,其中有两个确定的位置,一个实位置和一个虚位置,即数学预测两部分(一个实和一个虚位置),只有一个实的,另一个表示为虚位置。唯一的点波束信息可以用来选择实位置。
移动收发机单元
图4表示移动单元310的框图。移动单元310包括接收天线402,接收机404,数字信号处理器406,参考晶体408,本地振荡器410,发射机412,电源/电池414和发射天线416。接收机404通过接收天线402接收来自低地轨道卫星的信号,接收机404将这些信号送到数字信号处理器406,数字信号处理器将接收的电磁能量转换为数据并且进行所有数据解调和处理。数字信号处理器406还完成移动单元310的所有控制和状态功能,并且控制所有接收参数,如频率,定时,多普勒跟踪等等。数字信号处理器406还连接到发射机412,并且将数据转换为电磁能量而且完成所有调制,用于通过发射天线416将信号发射到低地轨道卫星。数字信号处理器406还控制所有发射参数,如频率,定时等。本地振荡器410在非常稳定的参考晶体408的控制下,提供接收和发射数据所需的基本频率。
到达时间的计算
参考图5,距离球面501代表发射机310的信号到达卫星304的时间。由于电磁信号以等于光速的恒定速度传播,所以给出的传播持续时间就意味着信号源一定位于半径等于传播持续时间乘以光速,中心位于接收信号点的球面上。在本发明中,电磁信号源可以是位于地球表面503的移动单元310,而信号可以在绕地球轨道运行的卫星304上接收。因此,到达时间圆表示中心是卫星304,半径等于光速乘以传播持续时间的球面和地球表面的交线。这在图5中示出,其中到达时间圆501确定卫星304和移动单元310之间的距离。
一般情况下,空间点坐标可以通过最小化那个点与三个已知点的三次距离测量来确定。每次距离测量都描述了一个围绕已知点的半球面(或不失一般性,一个完整的球面)。当只进行一次测量时,移动单元310可以位于半径等于距离502并且卫星位于半球501(或球)中心的半球面501(或球面)上的任意位置。当对两个已知点进行距离测量时,移动单元可以位于两个半球(或球)的交线509上的任意位置,而当对三个非共面已知点进行距离测量时,三个半球(或球)相交的唯一点即对应着移动单元310的位置。这提供了带有三个未知数的三个方程。如果地球也作为一个球,那么只要进行两次测量,移动单元的位置就位于地球表面和两个距离测量半球(或球)的交点。这在图5中示出。给定传播持续时间和地球表面的交线是一个中心位于星地轨道上的圆,卫星最低点方向与地球表面相交。较长的传播持续时间所得到的圆具有较大的半径。所确定的到达时间曲线表示的圆描述了测量记录中指示的传播持续时间。
实际上,图5表示了两次独立的距离测量,可以用来获得移动单元310的位置的估计,然而,在本发明的地理定位方法中,只需要一次距离测量。距离半球510与地球表面503相交产生位置弧线505,507。地面上的发射机310必须位于这个位置弧线505,507上以便产生在卫星上测量的到达时间。在两次距离测量的情况下,两条位置弧线505,507的交点509就表示测量的位置。
根据本发明,卫星处的信号到达时间是通过从卫星地面站302发送信号,通过卫星转发器304,到发射机310,指示发射机310应答一个确认(一次查询)来测量的。所测量的总时延包括从地面站302到卫星304的传输时间,转发器时延,和从卫星304到地面上的收发机310的传输时间。因为卫星304和地面站302的位置都是已知的,因而可以消除从地面站302到卫星304的传输时间。同样,转发器时延也可以通过距离修正校准测量获得。因此在卫星304处的信号到达时间是可以确定的。
使用多普勒频移计算到达角
图6表示根据本发明使用一个卫星304的地理定位过程的一部分。本发明的地理定位系统在接收到涉及移动单元310的测量记录时激活有关特定移动单元310的地理定位过程。地理定位过程确定满足测量记录中包含的多普勒分量数据的到达频率抛物线。这个到达频率抛物线或位置线616在图6中表示。由于卫星304绕地球轨道运行并且移动单元310位于地球表面503,所以卫星304相对移动单元310的运动方向是连续变化的。因为这个方向连续变化,而卫星的轨道速度保持相对恒定,所以卫星相对于移动单元310的径向速度分量连续变化。在任何瞬时,卫星304具有特定的速度或距离速率矢量614。作为连续速度变化的结果,相对地球表面上的固定移动单元310的多普勒分量连续变化。信号的多普勒频移表现为一个以卫星速度矢量614为中心,与速度矢量614的夹角和多普勒频移成比例的锥面610。从以卫星速度矢量614为中心的锥面610上的任何一点都可以报告一个给定的多普勒分量。
在进行多普勒测量时,移动单元310的位置必须位于多普勒锥面610上的某个位置。如果假设移动单元310位于地球的球状表面上,移动单元310将会位于多普勒锥面614和地球503的交线上的某个位置。这条交线(已知为位置线616)典型地是一条抛物线。以卫星304的地面轨道为中心并从卫星304延伸的抛物线上的任意点都可以报告一个给定的多普勒分量。较高的多普勒速率导致较窄的抛物线,而当零多普勒效应时--这发生在卫星304位于头顶正上方--多普勒曲线具有无限的宽度并且本质上是一条垂直星地轨道的直线。到达频率曲线表示描述测量记录中所指示的多普勒分量的曲线。如果第二多普勒测量在随后的某个时间点进行(图6B),就将确定第二条位置抛物线616b。两次多普勒测量的两条位置线616a和616b的交点618将确定移动单元310在地球表面上的位置。在这里指出了两次多普勒测量,其中只有一次是本发明的地理定位过程所必须的。
多普勒锥面610是通过测量接收信号的多普勒频移产生的。在转发器的实施中,在卫星304和地面站302之间的传输中有一个已知的第二多普勒频移。由于卫星304的位置和速度是已知的,这个第二多普勒频移可以除去以计算卫星304接收的信号的多普勒频移。
多普勒和距离联合测量
参考图7,它表示了距离和多普勒联合测量,多普勒锥面610和距离测量的位置圆周705相交产生两个位置估计点701,703。而真实位置可以通过许多种方法解出,这将在下面描述。
移动单元310的位置可以只通过一次多普勒和距离联合测量确定。假设收发机单元310位于地球表面503上,多普勒锥面610和距离球面501将相交于地球表面上两个可能的收发机单元位置701,703。到达频率曲线和到达时间圆周相交得到了位置确定问题的两个位置解。一个将是真实位置,而另一个将是虚位置。对于给定的卫星通道和移动单元和卫星之间的几何关系,这两个位置将处于与星地轨道垂直的同一条直线上,并且距离速率(即多普勒频移)在最近时间点将是零。这两个点中的一个位于地面轨道的右侧,而另一个位于地面轨道的左侧。地面轨道代表多普勒效应的对称轴,由于地球自转,它与真实的星地轨道有一个偏移量。在不考虑地球自转的情况下,这两个位置是不可区分的。然而,地球自转将改变多普勒特性,产生分辨的不确定性。如果有两个或更多的卫星传送数据,这种不确定性可以简单地通过几何考虑解决。如前所述,位置的不确定性也可以通过已知卫星ID号和移动单元310位于波束覆盖小区ID号204-232中的哪一个来解决。在测量中,使用小区ID位置参数可以解决不确定性。
参考图2,图中示出了一个低地轨道卫星波束覆盖200和多个点波束202。当进行位置测量时,点波束202与位置的距离和多普勒线相交在大多数情况下将产生唯一的位置解。因此,可以将真实位置从错误的位置估计中区分出来。解两个位置解的其它技术可以从简单考虑上次报告的位置的方法,到更复杂的方法,如在位置解中考虑地球自转运动的影响。后一种技术当前用于搜索和救援卫星系统(SARSAT),以及Argos环境研究卫星跟踪系统。
地理定位方法
现在翻到图8,它描述了本发明的方法800。本发明的方法包括四个主要部分。首先,通过两次测量确定参考收发机的位置:(1)通过收发机的响应时间测量参考收发机的距离(803),(2)通过多普勒频移测量参考收发机的到达角(805)。在两次测量完成之后,计算位置(807)。
其次,通过比较参考收发机的已知位置和在第一部分中确定的位置,产生误差矢量(809)。
第三,通过两次同样的测量估计未知位置收发机的位置,即(1)通过收发机的响应时间测量参考收发机的距离(811);(2)通过多普勒频移测量参考收发机的到达角(813)。计算未知位置收发机的位置估计(815)。
最后,将误差矢量运用于估计的位置以获得未知位置收发机的最后位置(817)。
参考图9,查询参考收发机时测量的纠错矢量903,用于在局部区域内纠正移动用户收发机的位置。这种技术的优点是,通过同时测量参考收发机的位置和移动收发机的位置,可以去除与这两次测量相关的任何误差。相关的误差包括所有系统误差,如卫星位置和速度误差,电离层传播时延误差,对流层传播时延误差,和地表高度建模误差。
为了确定纠错矢量903,首先测量参考收发机的位置。这就是“测量的位置”905。下一步,确定测量的位置905和已知位置901之差,这个差就代表纠错矢量903。然后,在初始位置估计911的基础上,用纠错矢量903纠正用户收发机310的位置,得到改进的位置估计907。
翻到图10,它表述了位于具有代表性的五州地区的可能的参考收发机的代表性地图。具有代表性的站点包括Washington,D.C.(4),Blacksburg,Virginia(3),Richmond,Virginia(2),和中West Virginia(1)。
减小误差
如上所述,本发明的地理定位技术的精度可能不足以在所有情况下将移动单元310定位到所需的精度。定位误差的多种来源是可以用标准差或其它统计方差项表示的随机误差。在确定已经获得了足够的位置精度前可以多进行几次位置计算。可以对给定的移动单元310进行重复测量以获得更多的测量值。这样,定位过程可以进行多次测量以获得平均的结果。从多个位置参数集中确定的平均位置估计可以减小位置估计中的不准确性,从而提高定位精度。
如上所述确定了位置之后,及时对给定点的平均测量建立一个误差椭圆。这个误差椭圆是由平均的测量次数,表征位置参数的方差项和当前估计的位置定位确定的。这个误差分布是一个以估计位置为中心的椭圆。当误差最小时,这个椭圆将更圆,并且覆盖相对小的区域。当误差变大时,椭圆的区域增加(更加不圆)同时它的形状变得更加扁平。
地理定位测量的性能基于多种地理定位技术和对与每种技术相关的地理定位误差的估计的唯一组合。这些定位技术和它们各自的误差是由卫星工作轨道动态和几何,信噪比的测量和它们的精度,由GPS误差导致的卫星304的位置(从这个位置可以得到卫星的星历)误差,卫星平面和移动单元同步模型,和移动单元地理定位的计算方法(即,到达频率和到达时间曲线)所限定的。性能分析包括几个独立的步骤。这些步骤包括建立反应运作概念的模型并提供方均根(RMS)误差估计,确定定位误差和参量误差分析的误差源的敏感度,选择几何和参数以获得实际测量的期望值,并对实测数据进行模型校准。
这个模型的主要优点是使用了实际地理定位处理算法,用统计分布表示误差源。通过调整误差分布并去除偏置来校准误差分析。使用差分地理定位技术提供作为运行方案的一个函数来确定算法性能的机制。这就在提供移动单元位置估计的同时提供了RMS误差。RMS误差与移动单元位置分布在统计上是匹配的。可以调整误差分布并去除偏置以充分地反应移动单元RMS位置误差,同时对独立误差分布正确建模。实际移动单元位置误差的每一个误差源的相对贡献可以作为测量持续时间的函数来确定。
建立移动单元地理定位精度的方法将联合来自各种地理定位技术的误差因子。在计算中,偏置被去除而产生的RMS误差在算法中传递。在分析中,对一个估计的所有RMS误差将转换为正交RMS误差。在联合相互独立的方差时,相关的所估计和正交RMS误差将被投影到一个普通的直角坐标系中,并且使用估计的和以及投影的RMS误差和的平方根计算得到的估计以及RMS误差沿每个坐标轴平方。
绝对移动单元地理定位误差的RMS是通过联合单星估计中的绝对地理定位误差的相互独立的RMS误差和相对移动单元地理定位RMS误差获得的。移动单元310的地理定位以及相对RMS误差是通过测量的参数,相关的RMS测量误差和相对RMS位置误差确定的轨迹集计算的。将所有RMS参数误差投影到普通的欧氏坐标系,移动单元位置的估计是通过最小化它到每一条轨迹的加权(通过投影的积,如果有RMS误差)距离建立的。在每个坐标上得到的移动单元位置估计的RMS参数误差由N(∑i-1 Nσi -1)-1给出,其中N是使用的轨迹的数目,σi是RMS参数在估计的移动单元位置沿轨迹(i到N)的法线坐标上的误差。请注意,估计中使用的RMS误差权重和产生的RMS参数误差依赖于测量的沿轨迹的法线通过估计点的RMS误差值,因此导致误差与距离有关的分布。由于在计算法线时不确定性可能出现在所使用的轨迹面的分支上,所以应该使用移动单元的真实位置。
到达频率曲线和到达时间曲线相交成直角的位置将在多普勒分量和传播持续时间测量上具有小的误差,从而产生小的地理定位误差。这些位置远离卫星最低点方向与地球表面的相交处。到达频率曲线与到达时间圆切向相交越厉害,小的测量误差就越易导致很大的地理定位误差。此外,误差在垂直星地轨道的方向上通常要大于平行星地轨道的方向。
在确定误差椭圆后,可以获得与位置定位测量相关的位置精度参数。位置精度通常表示为圆误差概率(CEP),其中位置精度定义为一个以位置测量为圆心的圆。误差精确度(如误差椭圆)和位置精确度(如CEP)比较。此后是确定误差是否小于位置精度。如果误差椭圆中一块预定比例的区域可以落入CEP中,误差就小于位置精度。除非误差椭圆的区域充分地限制在CEP中,否则就需要进一步求精。如果误差不小于允许的误差,测量过程将被指示进行另一次测量。这种求精将导致误差椭圆的区域收缩。在某些点,误差椭圆收缩为一个点,该点确定误差小于位置精度。在这点,地理定位系统不再要求对移动单元310的位置求精,公布位置,并且将过程终止。
内容
因为本发明独立于GPS,因此不需要GPS接收机的体积,功耗和成本。差分GPS要求每部GPS接收机都要接收到另外一个参考信号以便接收机操作。通过在中央卫星地面站计算收发机的位置,本发明的收发机可以保持简单,廉价并且不需要为处理额外的参考信号而消耗功率。因此,它的电池寿命超过差分GPS接收机。
此外,GPS要求同时从多个卫星接收到信号以计算位置。本发明中使用的距离和多普勒联合技术只要求与一个非静止轨道卫星通信。因此,在只有一条卫星链路的情况下,距离和多普勒联合技术可以获得位置估计,而GPS不能。

Claims (25)

1.定位移动单元的方法包括以下步骤:
a)获得移动单元在地球上可能位于的第一曲线;
b)获得移动单元在地球上可能位于的第二曲线;
c)确定地球上两条曲线的交点,该交点代表移动单元的位置估计;
d)对一个参考单元执行步骤a)到c)以获得参考单元的位置估计,其中参考单元的位置是已知的;
e)比较参考单元的位置估计和参考单元的已知位置,产生误差矢量;以及
f)将该误差矢量应用于移动单元的位置估计以获得移动单元的位置。
2.根据权利要求1的方法,其特征在于获得第一曲线的步骤a)包括以下子步骤:
(ⅰ)在卫星上确定来自移动单元的信号的到达时间;
(ⅱ)从信号的到达时间计算移动单元必须位于的一个球面;和
(ⅲ)从球面和地球的交线获得第一曲线。
3.根据权利要求1的方法,其特征在于获得第二曲线的步骤b)包括以下子步骤:
(ⅰ)在卫星上确定来自移动单元的信号的到达角;
(ⅱ)从信号的到达角计算移动单元必须位于的一个锥面;和
(ⅲ)从锥面和地球的交线获得第二曲线。
4.操作具有至少一颗低地轨道卫星并且具有至少一个和所述低地轨道卫星通信的移动单元的地理定位系统的方法,所述方法包括以下步骤:
使用上述低地轨道卫星在该低地轨道卫星和上述移动单元之间通信,该低地轨道卫星将来自移动单元的电磁信号转发到系统地面站终端而不对该电磁信号做进一步处理;
在上述低地轨道卫星和上述移动单元之间通信以获得一组地理定位参数;
获得上述移动单元的近似地理位置,所述地理位置具有与之相关的误差;
通过在低地轨道卫星和参考站之间通信确定上述近似地理位置的地理定位精度;和
使用上述地理定位精度对移动单元的近似地理位置求精。
5.根据权利要求4的方法,其特征在于地理定位参数是从低地轨道卫星和移动单元之间信号的多普勒频移测量中获得的。
6.根据权利要求4的方法,其特征在于地理定位参数是从低地轨道卫星和移动单元之间信号的到达时间测量中获得的。
7.根据权利要求5的方法,其特征在于地理定位参数是从低地轨道卫星和移动单元之间信号的到达时间测量中获得的。
8.操作使用从地球表面或近地表面的移动单元向排布在已知绕地球轨道上的卫星星座图中一颗卫星发射的电磁信号的地理定位系统的方法,所述方法能够以一定精度确定移动单元位置,该移动单元和低地轨道卫星相对其它移动单元和低地轨道卫星能够有选择地移动,所述方法包括以下步骤:
a)在整个地理区域上的固定测量站点分布多个参考站转发器;
b)通过在卫星地面站测量移动单元发射机信号的第一多个地理定位参数的多普勒频移分量,第一多个地理定位参数的到达时间分量,和第一多个地理定位参数的到达角度分量确定移动单元的近似位置;
c)通过在卫星地面站测量移动单元发射机信号的第二多个地理定位参数的多普勒频移分量,第二多个地理定位参数的到达时间分量,和第二多个地理定位参数的到达角度分量确定多个参考站中至少一个的近似位置;
d)比较多个参考站中至少一个的近似位置和多个参考站中至少一个事先已知的精确位置,得到差分误差矢量;和
e)将差分误差矢量应用于步骤b)中得到的移动单元的近似位置,获得移动单元的精确位置。
9.根据权利要求8的方法,其特征在于还包括以下步骤:
f)通过一颗低地轨道卫星指示移动单元发射机发射。
10.根据权利要求8的方法,还包括通过确定多个参考站中每一个的精确纬度和经度来确定多个参考站中每一个的精确位置的步骤,以及确定多个参考站中至少一个的近似位置的步骤c)包括确定多个参考站中所述至少一个的近似纬度和经度。
11.根据权利要求8的方法,其特征在于所述的比较步骤d)还包括提取精确纬度和近似纬度之间的第一差值,提供相应于所述第一差值的幅度和南或者北方向上的差分纬度修正,以及提取精确经度和近似经度之间的第二差值,提供相应于所述第二差值的幅度和东或者西方向上的差分经度修正。
12.根据权利要求8的方法,其特征在于所述应用差分误差矢量的步骤e)包括联合移动单元近似纬度和上述差分纬度修正获得修正的移动单元纬度以及联合移动单元近似经度和上述差分经度修正获得修正的移动单元经度。
13.根据权利要求8的方法,其特征在于所述应用步骤e)是由命令中心进行的。
14.根据权利要求8的方法,其特征在于还包括在移动单元接收广播的标识码并且将广播的标识码和移动单元中存储的标识码相比较的步骤。
15.在低地轨道卫星发射的信号的基础上高精度确定移动单元的位置的系统,该卫星放置在确知的地球轨道上,移动单元能够在整个地理区域中有选择地移动,所述系统包括:
a)一个命令中心;
b)从命令中心向移动单元发射地理定位信息和其它数据的发射机;
c)接收从移动单元通过多个低地轨道卫星到命令中心的多普勒频移,到达时间和到达角度数据,以及其它数据的接收机;和
d)位于命令中心中的测量/地理定位/业务处理器,该处理器确定多个地理定位参数的多普勒频移分量,多个地理定位参数的到达时间分量,多个地理定位参数的到达角度分量,和传播于移动单元与低地轨道卫星之间的移动单元发射机信号的近似位置,其中命令中心包括接收多个固定参考站的差分数据和上述移动单元的近似位置的接收机,而所述处理器在移动单元的近似位置和多个固定参考站的已知位置的基础上在上述多个固定参考站中确定一个目前与移动单元在同一颗卫星的视域内的固定参考站,并且所述处理器联合移动单元的近似位置和来自确定的一个差分站的差分数据,提供移动单元的精确位置。
16.定位移动单元的装置包括:
a)获得移动单元在地球上可能位于的第一曲线,以及参考单元在地球上可能位于的第一曲线的第一装置;
b)获得移动单元在地球上可能位于的第二曲线,以及参考单元在地球上可能位于的第二曲线的第二装置;
c)确定地球上移动单元的第一和第二曲线的第一交点,以及地球上参考单元的第一和第二曲线的第二交点的装置,所述第一和第二交点分别代表移动单元和参考单元的位置估计;
d)比较参考单元的位置估计和参考单元的已知位置,产生误差矢量的装置;以及
e)将该误差矢量应用于移动单元的位置估计以获得移动单元的位置的装置。
17.根据权利要求16的装置,其特征在于第一获取装置还包括:
在卫星上确定来自移动单元的信号和来自参考单元的信号的到达时间的装置;
通过参考单元的信号到达时间计算移动单元必须位于的球面,并且通过参考单元的信号到达时间计算参考单元必须位于的球面的装置;和
从移动单元的球面和地球的交线获得移动单元的第一曲线,并且从参考单元的球面和地球的交线获得参考单元的第一曲线的装置。
18.根据权利要求1的方法,其特征在于第二获得装置还包括:
在卫星上确定来自移动单元的信号的到达角,以及在卫星上确定来自参考单元的信号的到达角的装置;
从移动单元的信号的到达角计算移动单元必须位于的一个锥面,以及从参考单元的信号的到达角计算参考单元必须位于的一个锥面的装置;和
从移动单元的锥面和地球的交线获得移动单元的第二曲线,以及从参考单元的锥面和地球的交线获得参考单元的第二曲线的装置。
19.操作具有至少一颗低地轨道卫星并且具有至少一个和所述低地轨道卫星通信的移动单元的地理定位系统的装置,所述装置包括:
使用上述低地轨道卫星在所述低地轨道卫星和上述移动单元之间通信的装置,该低地轨道卫星将来自移动单元的电磁信号转发到系统地面站终端而不对该电磁信号做进一步处理;
在上述低地轨道卫星和上述移动单元之间通信以获得一组地理定位参数的装置;
获得上述移动单元的近似地理位置的装置,所述地理位置具有与之相关的误差;
通过在低地轨道卫星和参考站之间通信确定上述近似地理位置的地理定位精度的装置;和
使用上述地理定位精度对移动单元的近似地理位置求精的装置。
20.根据权利要求19的装置,其特征在于地理定位参数是从低地轨道卫星和移动单元之间信号的多普勒频移测量中获得的。
21.根据权利要求19的装置,其特征在于地理定位参数是从低地轨道卫星和移动单元之间信号的到达时间测量中获得的。
22.根据权利要求21的装置,其特征在于地理定位参数是从低地轨道卫星和移动单元之间信号的到达时间测量中获得的。
23.使用从地球表面或近地表面的移动单元向排布在已知绕地球轨道上的卫星星座图中一个卫星发射的电磁信号的地理定位系统,所述方法能够以一定精度确定移动单元位置,该移动单元和低地轨道卫星相对其它移动单元和低地轨道卫星能够有选择地移动,所述方法包括以下步骤:
a)在整个地理区域上的固定测量站点分布多个参考站转发器;
b)处理器(1)通过在卫星地面站测量移动单元发射机信号的第一多个地理定位参数的多普勒频移分量,第一多个地理定位参数的到达时间分量,和第一多个地理定位参数的到达角度分量确定移动单元的近似位置,(2)通过在卫星地面站测量移动单元发射机信号的第二多个地理定位参数的多普勒频移分量,第二多个地理定位参数的到达时间分量,和第二多个地理定位参数的到达角度分量确定多个参考站中至少一个的近似位置,并且(3)比较多个参考站中至少一个的近似位置和多个参考站中至少一个事先已知的精确位置,得到差分误差矢量,并且将差分误差矢量应用于(1)中得到的移动单元的近似位置,获得移动单元的精确位置。
24.地理定位一个装置的方法包括确定表示固定参考站的已知位置和测量的位置之差的误差矢量,并将那个误差矢量用于装置的测量位置的步骤。
25.定位移动单元的方法包括确定参考单元的位置,计算表示实际已知位置和测量的位置之差的误差矢量,使用与测量参考单元的位置相同的技术估计移动单元的位置,并且将误差矢量应用于移动单元的估计位置以确定移动单元的最后位置的步骤。
CN 97196336 1996-07-12 1997-07-03 精确地理定位的方法和装置 Pending CN1238868A (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US2162096P 1996-07-12 1996-07-12
US60/021,620 1996-07-12
US87757197A 1997-06-17 1997-06-17
US08/877,571 1997-06-17

Publications (1)

Publication Number Publication Date
CN1238868A true CN1238868A (zh) 1999-12-15

Family

ID=26694906

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 97196336 Pending CN1238868A (zh) 1996-07-12 1997-07-03 精确地理定位的方法和装置

Country Status (4)

Country Link
EP (1) EP0908022A2 (zh)
CN (1) CN1238868A (zh)
AU (1) AU4643997A (zh)
WO (1) WO1998002762A2 (zh)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100385829C (zh) * 2001-10-25 2008-04-30 高通股份有限公司 在卫星系统中协助束标识
CN100406907C (zh) * 2002-01-07 2008-07-30 摩托罗拉公司 用于确定位置信息的方法
CN100420958C (zh) * 2001-06-25 2008-09-24 高通股份有限公司 在严重的精度减弱的情况下提供准确定位估计的方法和装置
CN101975962A (zh) * 2010-09-26 2011-02-16 东莞市泰斗微电子科技有限公司 一种卫星导航定位方法及相应的装置
CN101285877B (zh) * 2007-04-13 2011-05-25 株式会社Ntt都科摩 测位系统、测位用ic芯片、测位方法
CN101344585B (zh) * 2007-07-13 2011-12-14 株式会社Ntt都科摩 测位系统、测位用ic芯片、测位方法
CN101723187B (zh) * 2008-10-23 2012-07-25 宝山钢铁股份有限公司 一种港口货轮卸船机的自动防撞系统及方法
CN103713302A (zh) * 2013-12-20 2014-04-09 北京华力创通科技股份有限公司 一种基于北斗卫星辅助mes定位的方法和系统
CN103780288A (zh) * 2007-09-29 2014-05-07 鼎桥通信技术有限公司 信号处理方法
CN104160673A (zh) * 2012-02-03 2014-11-19 波音公司 基于信任度的安全路由
CN104267392A (zh) * 2014-08-27 2015-01-07 深圳市邦彦信息技术有限公司 一种卫星通信系统终端位置的定位方法和装置
CN104730551A (zh) * 2015-03-12 2015-06-24 北京理工大学 一种星地双基地差分干涉基线坐标以及形变量测量方法
CN105372688A (zh) * 2015-12-08 2016-03-02 广州中海达卫星导航技术股份有限公司 一种小体积定位模块
CN105759289A (zh) * 2014-12-15 2016-07-13 国际商业机器公司 用于处理gps漂移的方法和系统
CN109154666A (zh) * 2016-05-20 2019-01-04 迈锐奥塔企业有限公司 近地轨道卫星通信系统中的位置估计
CN110050199A (zh) * 2016-11-08 2019-07-23 西格弗克斯公司 用于由发射设备向非地球同步卫星发射信号的方法
CN110730913A (zh) * 2017-06-19 2020-01-24 通用电气航空系统有限责任公司 用于退化可视环境的分布式多节点低频雷达系统的方法和设备
CN111385729A (zh) * 2018-12-11 2020-07-07 中兴通讯股份有限公司 一种测速定位的方法和终端
CN112596026A (zh) * 2020-12-08 2021-04-02 宁波大学 一种未知发射机位置的椭圆目标定位方法
CN115144877A (zh) * 2022-06-23 2022-10-04 上海德寰通信技术有限公司 一种卫星信号获取方法、装置、地面终端及介质

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6377208B2 (en) 1997-02-21 2002-04-23 Hughes Electronics Corporation Method and system for determining a position of a transceiver unit utilizing two-way ranging in a polystatic satellite configuration
GB2323988A (en) 1997-04-01 1998-10-07 Ico Services Ltd Refining a satellite position estimate
US6141331A (en) * 1998-05-18 2000-10-31 Motorola, Inc. Selective call receiver with automatic re-registration capability
AU5907999A (en) * 1998-09-08 2000-03-27 Motorola, Inc. Movable subscriber device location using dual satellites
US6229477B1 (en) * 1998-10-16 2001-05-08 Hughes Electronics Corporation Method and system for determining a position of a communication satellite utilizing two-way ranging
US7257418B1 (en) 2000-08-31 2007-08-14 The Directv Group, Inc. Rapid user acquisition by a ground-based beamformer
US7133772B2 (en) 2002-07-30 2006-11-07 Global Locate, Inc. Method and apparatus for navigation using instantaneous Doppler measurements from satellites
US6975266B2 (en) * 2003-06-17 2005-12-13 Global Locate, Inc. Method and apparatus for locating position of a satellite signal receiver
JP4978337B2 (ja) * 2007-06-28 2012-07-18 富士通東芝モバイルコミュニケーションズ株式会社 携帯端末
US20100066603A1 (en) * 2008-09-15 2010-03-18 O'keefe Kyle System and Methods for Real Time Kinematic Surveying Using GNSS and Ultra Wideband Ranging
FR2943138B1 (fr) * 2009-03-13 2013-03-08 Centre Nat Etd Spatiales Procede de geopositionnement utilisant des donnees d'assistance
DE102010052474B4 (de) * 2010-11-26 2017-07-27 Deutsches Zentrum für Luft- und Raumfahrt e.V. Flugführungssystem
US20140199941A1 (en) * 2013-01-17 2014-07-17 Delphi Technologies, Inc. System and method for controlling ground transceiver communications with a satellite transceiver
EP2784534A1 (en) * 2013-03-28 2014-10-01 Glowlink Communications Technology, Inc. Determining transmit location of an emitter using a single geostationary satellite
US9407317B2 (en) * 2013-04-03 2016-08-02 Umm Al-Qura University Differential ultra-wideband indoor positioning method
FR3018926B1 (fr) * 2014-03-21 2018-03-30 Thales Procede de geopositionnement avec indice de confiance et terminal associe
US11726162B2 (en) 2021-04-16 2023-08-15 Rockwell Collins, Inc. System and method for neighbor direction and relative velocity determination via doppler nulling techniques
US11977173B2 (en) 2019-11-27 2024-05-07 Rockwell Collins, Inc. Spoofing and denial of service detection and protection with doppler nulling (spatial awareness)
US11665658B1 (en) 2021-04-16 2023-05-30 Rockwell Collins, Inc. System and method for application of doppler corrections for time synchronized transmitter and receiver
US11737121B2 (en) 2021-08-20 2023-08-22 Rockwell Collins, Inc. System and method to compile and distribute spatial awareness information for network
KR20220152230A (ko) * 2020-02-11 2022-11-15 에이에스티 앤 사이언스, 엘엘씨 우주 중계의 위상 어레이을 이용한 무선 주파수 장치의 지오로케이션
KR102596643B1 (ko) * 2021-01-28 2023-10-31 조선대학교산학협력단 인공위성의 통신 제어 장치 및 방법
CN114394263B (zh) * 2021-10-14 2024-02-09 中国科学院国家授时中心 一种空间站共视时间比对轨道误差修正方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5629707A (en) * 1995-01-06 1997-05-13 Motorola, Inc. Flexible signal source location apparatus and method therefor

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100420958C (zh) * 2001-06-25 2008-09-24 高通股份有限公司 在严重的精度减弱的情况下提供准确定位估计的方法和装置
CN100385829C (zh) * 2001-10-25 2008-04-30 高通股份有限公司 在卫星系统中协助束标识
CN100406907C (zh) * 2002-01-07 2008-07-30 摩托罗拉公司 用于确定位置信息的方法
CN101285877B (zh) * 2007-04-13 2011-05-25 株式会社Ntt都科摩 测位系统、测位用ic芯片、测位方法
CN101344585B (zh) * 2007-07-13 2011-12-14 株式会社Ntt都科摩 测位系统、测位用ic芯片、测位方法
CN103780288A (zh) * 2007-09-29 2014-05-07 鼎桥通信技术有限公司 信号处理方法
CN101723187B (zh) * 2008-10-23 2012-07-25 宝山钢铁股份有限公司 一种港口货轮卸船机的自动防撞系统及方法
CN101975962A (zh) * 2010-09-26 2011-02-16 东莞市泰斗微电子科技有限公司 一种卫星导航定位方法及相应的装置
CN101975962B (zh) * 2010-09-26 2012-11-14 东莞市泰斗微电子科技有限公司 一种卫星导航定位方法及相应的装置
CN104160673B (zh) * 2012-02-03 2018-03-27 波音公司 提高路由安全的方法和系统
CN104160673A (zh) * 2012-02-03 2014-11-19 波音公司 基于信任度的安全路由
CN103713302B (zh) * 2013-12-20 2016-03-02 北京华力创通科技股份有限公司 一种基于北斗卫星辅助mes定位的方法和系统
CN103713302A (zh) * 2013-12-20 2014-04-09 北京华力创通科技股份有限公司 一种基于北斗卫星辅助mes定位的方法和系统
CN104267392A (zh) * 2014-08-27 2015-01-07 深圳市邦彦信息技术有限公司 一种卫星通信系统终端位置的定位方法和装置
US10605925B2 (en) 2014-12-15 2020-03-31 International Business Machines Corporation Processing GPS drifting
CN105759289A (zh) * 2014-12-15 2016-07-13 国际商业机器公司 用于处理gps漂移的方法和系统
CN104730551B (zh) * 2015-03-12 2017-03-22 北京理工大学 一种星地双基地差分干涉基线坐标以及形变量测量方法
CN104730551A (zh) * 2015-03-12 2015-06-24 北京理工大学 一种星地双基地差分干涉基线坐标以及形变量测量方法
CN105372688A (zh) * 2015-12-08 2016-03-02 广州中海达卫星导航技术股份有限公司 一种小体积定位模块
CN109154666A (zh) * 2016-05-20 2019-01-04 迈锐奥塔企业有限公司 近地轨道卫星通信系统中的位置估计
CN110050199A (zh) * 2016-11-08 2019-07-23 西格弗克斯公司 用于由发射设备向非地球同步卫星发射信号的方法
CN110730913A (zh) * 2017-06-19 2020-01-24 通用电气航空系统有限责任公司 用于退化可视环境的分布式多节点低频雷达系统的方法和设备
CN110730913B (zh) * 2017-06-19 2023-10-13 通用电气航空系统有限责任公司 退化可视环境的分布式多节点低频雷达系统的方法和设备
CN111385729A (zh) * 2018-12-11 2020-07-07 中兴通讯股份有限公司 一种测速定位的方法和终端
CN112596026A (zh) * 2020-12-08 2021-04-02 宁波大学 一种未知发射机位置的椭圆目标定位方法
CN112596026B (zh) * 2020-12-08 2024-01-19 江苏智海智能科技有限公司 一种未知发射机位置的椭圆目标定位方法
CN115144877A (zh) * 2022-06-23 2022-10-04 上海德寰通信技术有限公司 一种卫星信号获取方法、装置、地面终端及介质
CN115144877B (zh) * 2022-06-23 2023-07-04 上海德寰通信技术有限公司 一种卫星信号获取方法、装置、地面终端及介质

Also Published As

Publication number Publication date
AU4643997A (en) 1998-02-09
WO1998002762A3 (en) 1998-04-30
WO1998002762A2 (en) 1998-01-22
EP0908022A2 (en) 1999-04-14

Similar Documents

Publication Publication Date Title
CN1238868A (zh) 精确地理定位的方法和装置
US6201497B1 (en) Enhanced global navigation satellite system
JP2903052B2 (ja) 地表上にいる利用者の位置決めの装置と方法
US5099245A (en) Vehicle location system accuracy enhancement for airborne vehicles
US5959575A (en) Interior GPS navigation
Rodgers et al. A GPS-based telemetry system
CA1333197C (en) Vehicle location system accuracy enhancement for airborne vehicles
EP0512789B1 (en) Vehicle tracking system employing global positioning system (GPS) satellites
US4751512A (en) Differential navigation system for remote mobile users
US5502446A (en) GPS-based automatic target reporting and finding network and components
US6801854B1 (en) Space based augmentation systems and methods using ionospheric bounding data to determine geographical correction source
US6243648B1 (en) Fast acquisition position reporting system
US6285318B1 (en) Micro-miniature beacon transmit-only geo-location emergency system for personal security
US6480788B2 (en) System and method for fast acquisition reporting using communication satellite range measurement
US8630796B2 (en) System and method for fast acquisition position reporting
US20080036654A1 (en) Method for fusing multiple gps measurement types into a weighted least squares solution
JPS6140578A (ja) 衛星を用いる航行システム
EP1546753A1 (en) Laas navigation system
CN108693546B (zh) 以优化精度因子发射定位信号至漫游者的中继载运工具
US20060227043A1 (en) Passive geostationary satellite position determination
EP2367023A1 (en) Aircraft landing system using relative GNSS
US7528777B2 (en) Geographic and space positioning system and process
Grisso et al. Precision Farming Tools. Global Positioning System (GPS)
Kumar et al. Global positioning system
CN1007293B (zh) 利用卫星和存贮的地形图定位和传输消息的系统

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C01 Deemed withdrawal of patent application (patent law 1993)
WD01 Invention patent application deemed withdrawn after publication