CN1220108C - 光波导阵列电光扫描器馈电控制方法 - Google Patents

光波导阵列电光扫描器馈电控制方法 Download PDF

Info

Publication number
CN1220108C
CN1220108C CN 03134388 CN03134388A CN1220108C CN 1220108 C CN1220108 C CN 1220108C CN 03134388 CN03134388 CN 03134388 CN 03134388 A CN03134388 A CN 03134388A CN 1220108 C CN1220108 C CN 1220108C
Authority
CN
China
Prior art keywords
layer
optical waveguide
voltage
light
waveguide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN 03134388
Other languages
English (en)
Other versions
CN1477435A (zh
Inventor
石顺祥
李家立
马琳
刘继芳
孙艳玲
钟璐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xidian University
Original Assignee
Xidian University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xidian University filed Critical Xidian University
Priority to CN 03134388 priority Critical patent/CN1220108C/zh
Publication of CN1477435A publication Critical patent/CN1477435A/zh
Application granted granted Critical
Publication of CN1220108C publication Critical patent/CN1220108C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

本发明涉及一种快速光波导阵列电光扫描器馈电控制方法。该方法是在Hobbs等人提出的概念基础上,利用光波导阵列电光扫描器周期结构和激光的相干特性,用公式
Figure 03134388.0_AB_0
(d是光波导周期的宽度,m是可分辨扫描角的位置,j表示第j层光波导层,λ为光波长,K=0,±1,±2,...)控制各层光波导的相位延迟差Δφj;用公式
Figure 03134388.0_AB_1
(a为光波导层的厚度,n0为折射率,γ41为线性电光系数,L为光波导的长度)将各光波导层上的电压控制在一个或几个U电压范围内,该U电压为
Figure 03134388.0_AB_2
;用公式
Figure 03134388.0_AB_3
(δdj为光波导层间距误差)对各光波导层增加补偿电压。使用本发明简化了控制电源,补偿了光波导间距误差造成的相位误差及其对输出光束的影响,可广泛用于激光相控阵雷达、激光成像等领域的快速激光束偏转控制。

Description

光波导阵列电光扫描器馈电控制方法
技术领域
本发明涉及激光技术领域,具体地说是一种依据光学相控阵原理、利用电光效应实现的快速光波导阵列电光扫描器的馈电控制方法。
背景技术
随着科学技术的发展,激光扫描技术已被广泛地应用于激光雷达、激光制导、激光显示等许多领域。实现激光扫描的技术方案有很多种,如光机扫描、电光扫描、声光扫描、光学相控阵技术等。
光机(转镜)扫描技术在诸如红外成像等许多系统中已被广泛采用,这种技术的优点是扫描范围大、光损耗小,但因其存在机械转动元件,扫描速度慢,且线性扫描范围有限,因而其应用受到限制。近年来,随着微电子机械的发展出现的微镜扫描,具有体积小(微米量级)、重量轻、扫描速度高(可达100Hz~几百kHz)等优点,但由于其振动频率受本身固有振动频率和响应时间的限制,不能作自动寻址扫描,且结构复杂,加工难度大。
电光、声光扫描技术是利用晶体的电光、声光效应改变光束在空间传播方向的技术。这两种扫描技术的扫描寻址速度快、可控性好,但是传统的电光、声光扫描技术控制电压高、扫描范围小、光损耗大,这些缺点直接影响了它们的实际应用。
为此,近年来国际上的研究热点是光学相控阵技术(OPA-Optical PhaseArray)。光束控制技术的基本结构是由若干个阵元构成,工作原理类似微波相控阵,通过控制入射到每个阵元中的光的相位延迟,改变光束的传播方向。光学相控阵具有结构简单、重量轻、精确稳定、方向可任意控制等优点,可通过程序控制多束光同时扫描,并具有动态的聚焦和散焦能力。早在1971年,Meyer在“Optical beam steering using a multichannel lithium tantalate crystal”(Appl.Opt.,11,1972,613~616)中就提出了光学相控阵的概念,通过分立的钽酸锂调制器阵列实现了光学相控阵的光束偏转。不久,Ninomiya在“Ultrahigh resolvingelectrooptic prism array light deflectors”(IEEE J.Quantum Electro.,QE-9(8),1973,791~795)中给出了分立铌酸锂棱镜偏转元件构成的相位阵列,进而又引入了双级排列的新概念,得到了连续的偏转角度控制,提高了分辨率。后来,Bulmer等人在“Perfor-mance criteria and limitations of electro-optic waveguide arraydeflectors”(Appl.Opt.,18,1979,3282-3295)中设计了一种用集成光学的铝镓砷(AlGaAs)通道波导构成的快速、高性能一维相位阵列光束偏转器。1993年,Vasey等人在“Spatial optical beam steering with an AlGaAs integrated phasedarray”(Appl.Opt.,32,1993,3220-3232)中报道了一种50阵元肋骨形波导装置的离散扫描器。
特别应当指出的是,1995年Thomas等人在“Programmable diffractive opticalelement using a multichannel lanthanum-modified lead zirconate titanate phasemodulator”(Opt.Lett.,20,1995,1510-1512)中提出的基于铅镧锆钛烧结体(PLZT)的光学相控阵设计和1996年McManamon等人在“Optical Phased ArrayTechnology”(Proc.IEEE,84,1996,268~298)中提出的基于向列相液晶的紧凑、高分辨率光学相控阵,代表了目前研究的一个方向。这两种光学相控阵均属于平面器件,具有较大的数值孔径,但是由于向列相液晶的相应速度慢(ms量级),在高速扫描的应用中难以很好的发挥作用;PLZT调制电压较高,相应于相位变化2π时,需要调制电压高达318伏,且阵元越多,其驱动电源越复杂,使应用范围受到了限制。
20世纪80年代末,Hobbs等人在美国空军资助下,针对激光雷达、激光扫描等应用,在“Laser Electro-Optic Phased Array Devices(LEOSPARD)”(IEEELaser and Electro-Optics Society Conf.Proc.,1989,94~95)中提出了一种电光相控阵列光束扫描的概念,如图1所示的扫描器部分。在Hobbs等人及现有的技术研究中,为了提高扫描光束的分辨率,应增加光波导层数,而随着波导层数的增加,控制电压越来越高,因而控制电源变得越来越复杂。在现有技术中对电光相控阵列光束扫描器的光波导阵列馈电控制方法,是根据光波导的衍射理论,对于有N个光波导层的阵列,光垂直入射时,扫描光束主瓣的半角宽度为
Δθ = λ Nd - - - ( 1 )
式中,λ是光波长,N是光波导阵列中光波导的总层数,d是一个光波导周期的宽度,则可分辨的扫描偏转角为
θ=mΔθ[m=0,±1,±2,…,±(θPmax/Δθ)int]式中,m是可分辨扫描角的位置,θPmax为主瓣的最大扫描角。
根据光波导阵列光束扫描原理,第j层(j=1,2,…,N,表示N层光波导中的任意一层)光波导的相位延迟为1=1+(j-1)Δ,其中1是第1层光波导的相位延迟,所以相应于m=1的第一个可分辨的扫描偏转角θ=Δθ情况,第j层光波导相对于第1层光波导的相位延迟差
式中k0为真空中的波数。又根据AlGaAs半导体材料的电光效应,可得相应于m=1的第一个可分辨的扫描偏转角θ=Δθ时,第j层光波导上的电压U1j
U 1 j = ( j - 1 ) 2 ad n 0 3 γ 41 L sin Δθ - - - ( 3 )
式中,a为光波导层的厚度,n0为折射率,γ41为线性电光系数,L为光波导的长度。
同理可得,对应于扫描偏转角为第m个可分辨的扫描偏转角θ=mΔθ时,第j个(j=1,2,…,N)波导上外加电压为
U mj = ( j - 1 ) 2 ad n 0 3 γ 41 L ( mΔθ ) ( m = 0 , ± 1 , ± 2 , · · · · · · ) - - - ( 4 )
光波导阵列按式(4)加电压后,其输出的等相位面关系和光束方向如图3所示,即可实现激光束扫描。
上述光波导阵列馈电方法虽然可以方便地实现光束扫描,但存在两方面的问题:①由于自上而下光波导层的电位是递增的(如表2所示),第N层的电位必然很高,因而增加了控制电源的复杂性;②在制作光波导阵列的过程中,因制作工艺不理想会造成光波导层间距的不一致,即间距误差,由于上述馈电方法没有考虑该间距误差,从而使光波导阵列的输出光束发生变化,不能按照设计要求输出光束。
发明的内容
本发明的目的是提供一种光波导阵列电光扫描器馈电控制方法,以解决现有光波导阵列电光扫描技术中随着波导层数的增加,控制电压越来越高,控制电源越来越复杂的问题;并解决因制作光波导间距误差,光波导阵列不能按设计要求输出光束的问题。
实现本发明目的的技术方案是在Hobbs等人提出的概念基础上,利用光波导阵列电光扫描器周期结构和激光的相干特性,对普通的光波导阵列馈电控制方法中的相位延迟差、外加电压进行变换,加减整数倍的U电压,再根据光波导间距的误差,增加补偿电压。其方法如下:
1.控制各层光波导的相位延迟差Δ
根据相邻光波导在远场光波的相位差为k0dsinθ-Δ和k0dsinθ-Δ+2Kπ两种情况,所对应的光强分布相同的特性,将各层光波导的相位延迟差Δj设为
式中,k0为真空中的波数,
d是一个光波导周期的宽度,
2kπ是加减的相位,k=0,±1,±2,…是加减2π相位的个数,
λ是光波长,
m是可分辨扫描角的位置,
j表示第j层光波导层,
Δθ扫描光束主瓣的半角宽度,通过第j层(j=1,2,…,N,N是光波导阵列中光波导层的总层数)光波导层的光的相位变化为Δj+2kπ和Δj所对应的等相位面,形成的光束方向相同;
2.控制各波导上的外加电压
根据相位延迟差Δj的变化,对于扫描偏转角为θ=mΔθ时,将各波导层上的外加电压Umj控制为
U mj = ( j - 1 ) 2 ad n 0 3 γ 41 L sin ( mΔθ ) + K 2 γa n 0 3 γ 41 L = ( j - 1 ) 2 ad n 0 3 γ 41 L sin ( mΔθ ) + KU 2 π ( K = 0 , ± 1 , ± 2 , . . . ) - - - ( 6 )
U 2 π = 2 λa n 0 3 γ 41 L - - - ( 7 )
式中,a为光波导层的厚度,
n0为折射率,
γ41为线性电光系数,
L为光波导的长度;
3.调整各光波导层上的电压
根据不同的光波导阵列扫描器的参数,确定U的大小及在各光波导层上加减整数倍的U电压的大小,将各光波导层上的外加电压控制在一个或几个U电压范围内,以最大限度的降低控制电压值;
4.补偿各光波导层上的相位
根据各光波导层的间距误差δdj所产生的相位误差δdJk0sin(mΔθ),在各光波导层上加如下补偿相位:
                δjcom=-δd1k0sin(mΔθ)            (8)式中,k0为真空中的波数,j=1,2,…,N;
5.补偿各光波导层上的电压
根据补偿相位δjcom,在各光波导层上外加补偿电压
δ U jcom = - 2 δ d j a sin ( mΔθ ) n 0 3 γ 41 L - - - ( 9 )
使各光波导层上最终的外加电压为
U mj = ( j - 1 ) 2 ad n 0 3 γ 41 L sin ( mΔθ ) + KU 2 π + δU jcom - - - ( 10 )
即可补偿间距误差产生的相位误差。
本发明根据光波导阵列电光扫描器周期结构和激光的周期性相干特性,采用在各光波导层上加减整数倍U电压的方法,保证其相位状态与加减之前的相位状态所对应的光场分布相同;同时,增加补偿电压δUjcom,补偿光波导的间距误差。本发明的馈电方法,可最大限度地降低电压值,减小了电源设计难度,简化了控制电源;同时,补偿了由于光波导间距误差造成的相位误差,保证了光波导阵列按设计要求输出光束。该馈电方法可应用于激光雷达、激光成像、激光制导、以及激光显示等许多领域内的快速激光束偏转控制。特别适合于在激光相控阵雷达系统中应用。
附图说明
图1是本发明控制的光波导阵列电光快速扫描器实例图
图2是本发明实例输出的等相位面与光束方向图
图3是现有技术控制的光波导阵列电光快速扫描器的输出的等相位面与光束方向图
具体实施方式
以下参照附图详细说明本发明的控制过程及效果。
参照图1,一个光波导阵列电光扫描器由控制系统控制激光束扫描。该光波导阵列电光扫描器中设有4层光波导层(N=4)和5层电极层,该控制系统的馈电过程如下:
1.按上述(5)式控制光波导阵列电光扫描器各层光波导的相位延迟差
Figure C0313438800091
2.按上述(6)(7)式
U mj = ( j - 1 ) 2 ad n 0 3 γ 41 L sin ( mΔθ ) + K 2 λa n 0 3 γ 41 L = ( j - 1 ) 2 ad n 0 3 γ 41 L sin ( mΔθ ) + KU 2 π ( K = 0 , ± 1 , ± 2 , . . . )
U 2 π = 2 λa n 0 3 γ 41 L
给光波导阵列电光扫描器的各层光波外加控制电压。
3.根据不同的光波导阵列扫描器的参数,调整各光波导层上的外加电压(不同的光波导阵列扫描器的参数,对应不同的U电压)。若U电压在2V以下,则可将光波导层上的电压控制在几个U电压以内;若U电压在5V~10V之间,则应将光波导层上的电压控制在一个U电压内。当波长λ=0.9μm,光波导周期的宽度d=1.5μm,光波导层厚度a=1.0μm,电光系数γ41=1.1×10-12m/V,折射率n=3.59,通光长度L=1.0cm时,由(7)式可得出U=3.537V。对于N=4的光波导阵列扫描器,Δθ=0.15rad,相应不同扫描角度其各光波导层的电压值如表1所示。
表1本发明控制4层光波导阵列各光波导层上的电压(V)
                    扫描偏转角±mΔθ
    0   ±Δθ  ±2Δθ  ±3Δθ  ±4Δθ
  波导层数j     1     0 0   0   0   0
    2     0 ±0.881  ±1.742  ±2.564  ±3.328
    3     0 ±1.762  ±3.484  ±1.591  ±3.12
    4     0 ±2.643  ±1.689  ±0.618  ±2.911
由表1可以看出,各波导层上的电压很低,减小了电源设计难度,简化了控制电源。
4.根据各光波导层的间距差δdj,按上述(8)式,补偿间距差δdj产生的相位延迟差
               δjcom=-δdjk0sin(mΔθ)
5.按上述(9)式对各光波导层加补偿电压
δ U jcom = - 2 δ d j a sin ( mΔθ ) n 0 3 γ 41 L
此时,各光波导层上所加的电压变为
U mj = ( j - 1 ) 2 ad n 0 3 γ 41 L sin ( mΔθ ) + K U 2 π + δ U jcom
本发明实例的光波导阵列输出等相位面与光束方向如图2所示。
由图2可见,平面光波通过长度为L的光波导阵列后,各光波导层的光的相位都随该层上所加的控制电压发生变化,等相位面随之变化,光束传播方向随等相位面法线方向的变化而变化。通过第4层光波导层的光的相位变化为Δ4-2π与Δ4所对应的等相位面,所形成的对应的光束方向相同。
参照图3,现有技术的AlGaAs阵列电光相控阵列光束扫描器,所采用的馈电方法是按上述公式(2)、公式(4)给出光波导阵列的相位延迟差并施加控制电压,各光波导层的控制电压如表2所示,其平面光波通过长度为L的光波导阵列后,各光波导层的光的相位都随该层上所加的控制电压发生变化。由于各光波导层所加的控制电压递增,所以各光波导层的光的相位延迟也是递增的,等相位面变为一倾斜面,光束传播方向随等相位面法线方向的变化而变化。
 表2现有技术控制4层光波导阵列各光波导层上的电压(V)
                       扫描偏转角±mΔθ
    0  ±Δθ  ±2Δθ  ±3Δθ  ±4Δθ
波导层数j     1     0     0     0     0     0
    2     0  ±0.881  ±1.742  ±2.564  ±3.328
    3     0  ±1.762  ±3.484  ±5.128  ±6.657
    4     0  ±2.643  ±5.226  ±7.692  ±9.985
由表2可知,对于光波导总层数N=4,扫描偏转角位置m=±4时,对应的第4层光波导上的电压是±9.985V,远大于表1中的电压值。对于光波导总层数N很大的实际情况,第N层光波导上的电压将会很高。
比较图2和图3,从图2可知,在各光波导层上加减整数倍的U电压后,其相位状态所对应的远场分布与图3加减之前的相位状态所对应的远场分布相同。因此通过适当地调整各光波导层上的电压,即加减整数倍的U电压,将各光波导层上的电压控制在一个或几个U电压范围内,就可以最大限度地降低控制电压值,从而减小了电源设计难度,简化了控制电源。

Claims (1)

1.一种光波导阵列电光扫描器馈电控制方法,按如下步骤进行:
第一步,控制各层光波导的相位延迟差Δ,即根据相邻光波导在远场光波的相位差为k0dsinθ-Δ和k0dsinθ-Δ+2Kπ两种情况,所对应的光强分布相同的特性,将各层光波导的相位延迟差Δj设为
式中,k0为真空中的波数,
d是一个光波导周期的宽度,
2Kπ是加减的相位,K=0,±1,±2,...是加减2π相位的个数,
λ是光波长,
m是可分辨扫描角的位置,
j表示第j层光波导层,
Δθ扫描光束主瓣的半角宽度,
通过第j层,j=1,2,…,N,N是光波导阵列中光波导层的总层数,光波导层的光的相位变化为Δj+2Kπ和Δj所对应的等相位面,形成的光束方向相同;
第二步,控制各波导上的外加电压,即根据相位延迟差Δj的变化,对于扫描偏转角为θ=mΔθ时,将各波导层上的外加电压Umj控制为
U mj = ( j - 1 ) 2 ad n 0 3 γ 41 L sin ( mΔθ ) + K 2 λa n 0 3 γ 41 L = ( j - 1 ) 2 ad n 0 3 γ 41 L sin ( mΔθ ) + KU 2 π , K = 0 , ± 1 , ± 2 , . . . ( 6 )
U 2 π = 2 λa n 0 3 γ 41 L - - - ( 7 )
式中,a为光波导层的厚度,
n0为折射率,
γ41为线性电光系数,
L为光波导的长度;
第三步,调整各光波导层上的电压,即根据不同的光波导阵列扫描器的参数,确定在各光波导层上加减整数倍的U电压的大小,若U电压在2V以下,可将光波导层上的电压控制在几个U电压以内;若U电压在5V~10V之间,可将光波导层上的电压控制在一个U电压内,以最大限度的降低控制电压值;
第四步,根据各光波导层的间距误差δdj所产生的相位误差δdjk0sin(mΔθ),在各光波导层上加如下补偿相位:
δjcom=-δdjk0sin(mΔθ)        (8)
式中,k0为真空中的波数,j=1,2,…,N;
第五步,补偿各光波导层上的电压,即根据补偿相位δjcom,在各光波导层上外加补偿电压
δ U jcom = - 2 δ d j a sin ( mΔθ ) n 0 3 γ 41 L - - - ( 9 )
使各光波导层上最终的外加电压为
U mj = ( j - 1 ) 2 ad n 0 3 γ r 1 L sin ( mΔθ ) + K U 2 π + δ U jcom - - - ( 10 )
即可补偿间距误差产生的相位误差。
CN 03134388 2003-07-16 2003-07-16 光波导阵列电光扫描器馈电控制方法 Expired - Fee Related CN1220108C (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 03134388 CN1220108C (zh) 2003-07-16 2003-07-16 光波导阵列电光扫描器馈电控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 03134388 CN1220108C (zh) 2003-07-16 2003-07-16 光波导阵列电光扫描器馈电控制方法

Publications (2)

Publication Number Publication Date
CN1477435A CN1477435A (zh) 2004-02-25
CN1220108C true CN1220108C (zh) 2005-09-21

Family

ID=34154465

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 03134388 Expired - Fee Related CN1220108C (zh) 2003-07-16 2003-07-16 光波导阵列电光扫描器馈电控制方法

Country Status (1)

Country Link
CN (1) CN1220108C (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4847436B2 (ja) * 2004-02-26 2011-12-28 シオプティカル インコーポレーテッド シリコン−オン−インシュレータ(soi)構造における光の能動操作
CN107167779B (zh) * 2017-05-15 2019-11-26 西安电子科技大学 基于LabVIEW的光波导相控阵扫描电压校准系统
EP3646113A4 (en) * 2017-06-30 2021-06-16 The Board of Trustees of the Leland Stanford Junior University ACOUSTO-OPTICAL BEAM SYSTEM
WO2019080038A1 (en) * 2017-10-26 2019-05-02 Shenzhen Genorivision Technology Co. Ltd. LIDAR LIGHT SOURCE
CN110609398A (zh) * 2018-06-15 2019-12-24 北京万集科技股份有限公司 调相器模块及相控阵激光雷达

Also Published As

Publication number Publication date
CN1477435A (zh) 2004-02-25

Similar Documents

Publication Publication Date Title
CN1124512C (zh) 光束偏转器
CN1248039C (zh) 具有光学晶体的偏光装置及光学开关应用和偏光方法
KR102542466B1 (ko) 빔 스티어링 소자 및 이를 적용한 시스템
CN107085386B (zh) 一种可分布式多维高速光束扫描方法及装置
CN107885008B (zh) 一种级联液晶光学相控阵天线、成型及应用方法
CN106450750B (zh) 一种太赫兹光电导相控阵天线系统
CN1220108C (zh) 光波导阵列电光扫描器馈电控制方法
KR102587957B1 (ko) 레이저빔 위상 변조 소자, 레이저빔 스티어링 소자 및 이를 포함하는 레이저빔 스티어링 시스템
CN217820840U (zh) 一种接收模组及激光雷达系统
CN113126061B (zh) 一种激光雷达及其扫描方法
CN1249474C (zh) 光开关和光束定向组件
CN209911543U (zh) 一种激光雷达
US11883859B2 (en) Laser cleaning method and device for improving uniformity of laser cleaning surface
CN102165562B (zh) 半导体制造装置
CN204129401U (zh) 一种双模复合红外电控液晶微透镜阵列芯片
CN104298046A (zh) 基于光波导阵列电光扫描器端面的扫描光束边瓣压缩方法
CN102248284A (zh) 光栅高速直写装置
CN100365471C (zh) 光学相控阵器
CN104298047A (zh) 一种双模复合红外电控液晶微透镜阵列芯片
KR20140043524A (ko) 태양 전지용 기판의 관통홀 형성을 위한 레이저 가공 장치 및 이를 이용한 관통홀 형성 방법
CN114647078A (zh) 一种基于压电电机调节的大视场高分辨率激光扫描系统
DE102018208188A1 (de) Strahlablenkungseinheit zur Beeinflussung eines Winkels eines aus der Strahlablenkungseinheit ausgekoppelten Lichtstrahls und Verfahren zum Betreiben einer Strahlablenkungseinheit
CN113020820A (zh) 一种分段式回转扫描微孔阵列加工装置及其加工方法
CN1226815C (zh) 利用垂直腔面发射半导体激光器制作相控阵激光装置
CN1614986A (zh) 使用光调制器的扫描设备

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C19 Lapse of patent right due to non-payment of the annual fee
CF01 Termination of patent right due to non-payment of annual fee