CN1212382A - 制造微结构体的方法 - Google Patents

制造微结构体的方法 Download PDF

Info

Publication number
CN1212382A
CN1212382A CN98119503A CN98119503A CN1212382A CN 1212382 A CN1212382 A CN 1212382A CN 98119503 A CN98119503 A CN 98119503A CN 98119503 A CN98119503 A CN 98119503A CN 1212382 A CN1212382 A CN 1212382A
Authority
CN
China
Prior art keywords
microns
ray
making
developer
irradiation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN98119503A
Other languages
English (en)
Other versions
CN1145846C (zh
Inventor
H·雷内克
N·卡皮茨
U·斯皮茨纳
R·-U·巴尔霍恩
B·谢菲梅尔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Boehringer Ingelheim Microparts GmbH
Original Assignee
Huels AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huels AG filed Critical Huels AG
Publication of CN1212382A publication Critical patent/CN1212382A/zh
Application granted granted Critical
Publication of CN1145846C publication Critical patent/CN1145846C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • G03F7/2051Exposure without an original mask, e.g. using a programmed deflection of a point source, by scanning, by drawing with a light beam, using an addressed light or corpuscular source
    • G03F7/2053Exposure without an original mask, e.g. using a programmed deflection of a point source, by scanning, by drawing with a light beam, using an addressed light or corpuscular source using a laser
    • G03F7/2055Exposure without an original mask, e.g. using a programmed deflection of a point source, by scanning, by drawing with a light beam, using an addressed light or corpuscular source using a laser for the production of printing plates; Exposure of liquid photohardening compositions
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/62Pellicles, e.g. pellicle assemblies, e.g. having membrane on support frame; Preparation thereof
    • G03F1/64Pellicles, e.g. pellicle assemblies, e.g. having membrane on support frame; Preparation thereof characterised by the frames, e.g. structure or material, including bonding means therefor
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/0035Multiple processes, e.g. applying a further resist layer on an already in a previously step, processed pattern or textured surface
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • G03F7/2037Exposure with X-ray radiation or corpuscular radiation, through a mask with a pattern opaque to that radiation
    • G03F7/2039X-ray radiation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S430/00Radiation imagery chemistry: process, composition, or product thereof
    • Y10S430/167X-ray
    • Y10S430/168X-ray exposure process

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Optics & Photonics (AREA)
  • Micromachines (AREA)
  • Treatments Of Macromolecular Shaped Articles (AREA)
  • Materials For Photolithography (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Polymerisation Methods In General (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Photosensitive Polymer And Photoresist Processing (AREA)

Abstract

本发明涉及按照LIGA-法制造微结构,它是将塑料层用X-射线按图形深入照射。塑料层中形成的可溶性的或保持可溶性的部分用一种显影剂选择性地溶解。已知的塑料需要很大的照射耗费。本发明的制造方法采用光照硬化的环氧胶,与已知的塑料对比,只需比较短的照射时间。该微结构可以具有很大的纵横比,并且在较大的结构深度下也可进行无异议的显影。制成的结构的精密度达到亚微米的范围。本方法可制成高质量的深度微结构,同时降低照射耗费,因而具有较大的经济性。

Description

制造微结构体的方法
本发明涉及一种制造微结构体的方法,该微结构体的结构深度为若干微米到毫米范围,横向尺寸在微米范围,该方法是用X-射线照射聚合物后再用适合的显影剂进行显影。
在微电子技术中通过不断地微型化及集成化已开发出不胜枚举的各种各样的能满足不同的技术要求的新产品。微电子工业在不长的时间内在微型化方面远超过其他工业部门。可以预测,其他微型技术,特别是微型机械,集成光学以及微型射流等方面在将来一定会产生巨大的作用。这种工艺与微电子学相结合将为新的电子学的、光学的、生物学的以及机械的功能元件开辟不可估量的前景。当然在微技术中的非电子构件,系统部件及子系统的大批量生产上还要尽可能充分利用半导体技术的效率非常高的加工方法。同时还要在微型机械中使精密机械加工的传统工艺发挥作用,并与经过相应改进过的半导体制造技术熔合在一起,这样就可以不受硅片加工技术的局限,开发新的以各种各样的材料及形状为基础的加工技术。这种要求在很大程度上是通过例如由光刻术,电镀成型,模造所组合成的LIGA-法来实现的,该法是在卡尔斯鲁尔核研究中心发展的。最初的LIGA-法的主要加工步骤是将被加工聚合物按照准确的结构进行照射。这种LIGA-法的基本可行性可用一种由特制的聚甲基丙烯酸甲酯制成的简单微结构,后面简称PMMA来加以论证。可用X-射线照射方法进行加工的还有若干种别的塑料,这里特别提出的有聚氧化亚甲基(POM)及聚酯,特别是聚乙交酯/聚交酯(DE-41 352 A1)。
在用紫外光刻术进行结构化方面采用环氧抗蚀剂SU8在许多已公开的文献中已描述过〔用于微电子机械系统的高纵横比、超厚度、负色调近紫外光刻胶(High-Aspect-Ratio,Ultrathick,Negative-ToneNear-UV Photoresist for MEMS APPLICATIONS):M.Despont,H.Lorenz,N.Fahrin,J.Briügger,P.Renaud and P.Vettiger,电气与电子工程师协会第10届微电子机械系统国际研讨会会议论文集(Proc.of the 10th IEEE Int’l Workshop on Micro ElectroMechanical Systems(MEMS’97))Jan.26-30,1997,Nagoya,Japan;高分辨超厚度光刻胶在微切削加工中的应用(Micromachiningapplications of a high resolution ultrathick photoresist):Lee,La Bianca,et al.,J.Vac.Sci.Technol.B.13(6),Nov/Dec 1995)〕。其他文献曾提出用环氧混合物制作例如微电子、电子或光学构件的封装(参阅PROTAVIC的小册子)。
按照上述的LIGA-法制造比较复杂的其结构深度从若干微米到毫米范围的三维结构时表明现有的塑料需要较高的照射费用。还表明用适当的显影剂对照射过的聚合物部件显影时,未被照射的聚合物部分也会膨胀,从而使精细的微结构遭破坏。另一方面,被膨胀的聚合物部分干燥后会产生张力裂纹,电镀时会造成不能用的微结构体。另一个问题是某些塑料加工费用大,特别是聚乙交酯及聚交酯,这些材料必须压延在衬底上,压延费用也很昂贵。
紫外线硬化的胶系统能用来制造微结构体,这时,例如用在光学部件及流体部件上所必须保证的亚微尺寸精密度,在考虑到所用的射线(波长300nm到460nm)的衍射,散射及干涉效应,当层厚为微米到毫米范围时,该精密度是不能满足的。
本发明的任务是找到一种聚合物,用同步加速器的射线照射时只需比较小的照射耗费,并在X-射线的作用下会解聚或交联,同时可用特殊的显影剂将其选择性地除去。这种聚合物还要易于制成各种实验用样品,并不含有应力裂纹和缺陷。并力求与半导体的加工方法相容。
本发明的目的是提供一种制造微结构体的方法,该微结构的深度为若干微米到毫米的范围,该方法用X-射线对聚合物按图形照射,其特征在于使用紫外线及光线硬化的环氧胶作为聚合物。优选用同步加速器的射线作为X-射线。实施本发明的制造方法可通过压延、挤压、压印、喷涂或旋转涂敷将聚合物涂敷在载体上。本方法可分成若干步骤进行。
出乎意料地发现,在半导体加工以及塑料粘接技术中使用的光照硬化环氧胶通过X-射线照射后是可结构化的,并能满足前面所提出的要求。用X-射线硬化的环氧胶制造微结构体的可能性,重要的是结构中的高纵横比,例如对LIGA-法所要求的,同时许多优越性是出乎意料的,其在至今已发表的文献中没有记载。
按照本发明的方法,可以制成的微结构体的结构深度可从1微米到10毫米,由此经同步加速器的射线照射及经选择性的显影剂显影后,成结构的侵蚀深度从1μm到10000μm,其横向尺寸可从微米到亚微米范围。适合的显影剂为有机溶剂及碱性介质,优先使用例如丙二醇-单甲基醚-醋酸酯(PGMEA)、含乙二醇的氢氧化物溶液或碱金属氢氧化物的乙醇溶液。
按照本发明的方法,用来照射的是从X-射线源产生的高能量平行射线。射线的波长在0.1nm到10nm范围,优选为0.1nm到1nm。这种照射例如可使用带特殊前置吸收器例如铍箔或聚酰亚胺箔(例如Dupontde Nemours公司的Kapton)的同步加速器在中等环流强度例如25mA下,照射1分钟到300分钟来进行。
照射耗费与从同步加速器分支的电子储环中的电子能量有关,一般情况下的电子能量为1.0GeV到2.7GeV。
图形照射时,通常采用特殊的X-射线掩模例如带金或钨吸收结构的钛-、铍-或金刚石载体箔。
特别适合于本发明方法的材料有环氧胶SU8(微抗蚀技术制品公司提供)或胶制品公司Peters GmbH供应的用于蚀刻导体图形的液态光刻剂,熟知的商品名为ELPEMER。其他可使用的组分例子还有Protex公司在市场供应的防护胶,在商品名为PROTAVIC PU及PROTAVICUV。
制造微结构体所用的环氧胶可按普通方法例如压延、喷涂、挤压或旋转涂敷在20℃到100℃的温度范围涂敷在硬质载体上,优选用导电的金属载体如镍、铜、钢或钛载体。必要时可使用粘接层,粘接胶或特殊的粘接助剂。载体上的胶层厚度一般为1μm到10000μm,优选为10μm到1000μm,特别是100μm到800μm之间。
按图形照射后,用适当的显影剂进行显影。作为显影剂可用以下列通式表示的基于烷基乙二醇-烷基醚-烷基单羧酸酯的体系:
Figure A9811950300051
式中
a=0-5,b=2-4,c=0-5或其异构体如丙二醇-单甲基醚-醋酸酯、丙二醇-单乙基醚-醋酸酯、乙二醇-丁基醚-醋酸酯、丁二醇-异丙基醚-丙酸酯或碱性显影剂如碱金属氢氧化物与乙二醇组合的溶液或碱金属氢氧化物的乙醇溶液。
本发明方法具有下列优点:
-使用的聚合物可微结构化,即所用的聚合物可制成的微结构其结构宽度可小到若干微米,同时具有较高的纵横比(结构高度与宽度之比)由5∶1到1000∶1,优选为10∶1到100∶1。
-与已知的塑料对比,用给定的环氧胶在相同的照射耗费条件下,获得的微结构的结构深度要大得多。与聚甲基丙烯酸甲酯(PMMA)对比其照射灵敏度可提高100倍到1000倍。
-制成的结构的结构深度在横向尺寸上例如为500μm,也在亚微米范围,并且无缺陷。
-能使结构精密度达到亚微米范围。
-微结构具有清晰的陡的边缘及平整的壁面。
-聚合物直到80℃均是机械稳定的,而且具有足够高的热力学强度。
-聚合物可毫无问题地经受电镀工艺过程,对例如酸性铜和镍电镀浴,硫酸及酰氨基硫酸以及配位剂都是稳定的。在20℃-80℃下,微结构可在电镀浴中放置24小时保持不起变化。
-聚合物的表面平滑,可在载体上涂敷成厚度均一的涂层。
-给定的显影剂具有极佳的选择性。
-环氧胶对LIGA-工艺具有非常好的适应性,以及在半导体技术使用的设备上可以很好地进行加工。
用下列实例进一步说明本发明的方法,但不局限于这些实例。实例1
在直径为100mm厚0.5mm由硅(晶片)制成的载体上,用旋转涂敷法涂敷一层环氧胶SU8,层厚为(505+25)μm。放在90℃的加热板上将抗蚀层干燥,然后在具有电子能量为2.3GeV的同步加速器上以平均环流为20mA,扫描器偏移为20mm,扫描速度为1mm/s的条件,通过带试验结构(直径为1μm到500μm的六角棱柱体)的X-射线掩模按图形照射35分钟。显影是用PGMEA,在25℃进行,时间为25分钟。结构完全是自然显影。结构化的环氧胶在典型结构上不含显影液的痕迹,并显示出直到5μm(控制宽度)的每一个棱柱体均有非常好的可显影性。对比实例1
用PMMA制成试验样体在相当的条件下照射60分钟,并用最适合于PMMA的显影剂显影(GG-显影液)。结果是蚀刻深度只达到100μm。对相当的棱柱体结构,直径为50μm的棱柱体为可用极限,直径更小的棱柱体不是被弯曲就是完全被破坏。
从两个实例的对比中可以看出,用PMMA要求制成500μm的结构深度,在所述条件下必须最少照射10小时。这时能达到的纵横比可达40。相反,如果用SU8只需较短的照射时间就可制成纵横比更高的较厚的结构,不仅经济,同时质量也比较好。实例2
在铜制的载体上,用旋转涂敷法涂敷环氧胶ELPEMER SD 2054的涂层,厚度为300μm,在具有电子能量为2.3GeV的同步加速器上以平均环流为20mA,扫描器偏移为20mm条件下,通过带光谱结构图形的X-射线掩模照射15分钟。照射后的显影是用在1∶1的水/乙二醇中溶解的5%氢氧化钠溶液进行,温度为25℃,时间为75分钟。结构完全自然显影,在结构化的环氧胶中在典型的光谱结构栅齿上显示出清晰的起功能判定用的栅齿边缘的图形。光谱图上没有单个的以及统计学的缺陷。对比实例2
在铜板上制成的厚300μm的PMMA的涂层试样用相同的条件进行照射,直到达300μm厚的PMMA的典型照射剂量。照射时间为6小时。显影用GG显影液进行。获得的结构中,在整个栅齿深度上显示出模糊的蚀刻及园角。制成的结构上有许多单一的及统计学的缺陷。
通过上述的两个实例对比得出,在微光谱仪上使用的栅条结构图可用PMMA实现典型的栅齿结构,根据经验,这时微结构的深度应在150μm以内。相反,如用SD 2054,就可以采用更厚些的照射层,并且在明显的较短照射时间条件下制成的栅条结构具有无异议的栅齿形状。

Claims (9)

1.一种制造微结构体的方法,该结构体的结构深度从若干微米到毫米范围,该方法通过用X-射线按图形对聚合物照射,并有选择地溶解所形成的可溶性的或保持可溶性的部分,其特征在于,作为聚合物使用一种光照硬化及紫外光照硬化的环氧胶。
2.权利要求1的方法,其特征在于,作为X-射线使用同步加速器产生的射线。
3.权利要求1和2的方法,其特征在于,环氧胶优选通过旋转涂敷法或喷注法涂布在载体上。
4.权利要求1-3的方法,其特征在于,制成的微结构体具有的结构深度为1微米-10000微米,优选为10微米-1000微米,特别优选为100微米-800微米。
5.权利要求1-4的方法,其特征在于,制成的微结构的横向尺寸可达到10微米以下的范围。
6.权利要求1-5的方法,其特征在于,制成的微结构的纵横比可为5∶1-1000∶1,优选为10∶1-100∶1。
7.权利要求1-6的方法,其特征在于,作为选择性的显影剂为有机溶剂,含乙二醇的碱金属氢氧化物溶液或碱金属氢氧化物的乙醇溶液。
8.权利要求1-6的方法,其特征在于,使用的选择性显影剂是基于烷基乙二醇-烷基醚-烷基单羧酸酯,优选为丙二醇-单甲基醚-醋酸酯、乙二醇-丁基醚-醋酸酯、丁二醇-异丙基醚-丙酸酯。
9.权利要求1-8的方法,其特征在于,使用粘接助剂。
CNB981195032A 1997-09-19 1998-09-18 制造微结构体的方法 Expired - Fee Related CN1145846C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19741492A DE19741492A1 (de) 1997-09-19 1997-09-19 Verfahren zur Herstellung von Mikrostrukturkörpern
DE19741492.3 1997-09-19

Publications (2)

Publication Number Publication Date
CN1212382A true CN1212382A (zh) 1999-03-31
CN1145846C CN1145846C (zh) 2004-04-14

Family

ID=7843022

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB981195032A Expired - Fee Related CN1145846C (zh) 1997-09-19 1998-09-18 制造微结构体的方法

Country Status (9)

Country Link
US (1) US6251567B1 (zh)
EP (1) EP0903638B1 (zh)
JP (1) JPH11160871A (zh)
KR (1) KR19990029914A (zh)
CN (1) CN1145846C (zh)
AT (1) ATE224553T1 (zh)
CA (1) CA2247777C (zh)
DE (2) DE19741492A1 (zh)
TW (1) TW515932B (zh)

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5842787A (en) * 1997-10-09 1998-12-01 Caliper Technologies Corporation Microfluidic systems incorporating varied channel dimensions
JP2000338299A (ja) * 1999-05-28 2000-12-08 Mitsubishi Electric Corp X線露光装置、x線露光方法、x線マスク、x線ミラー、シンクロトロン放射装置、シンクロトロン放射方法および半導体装置
JP2002093684A (ja) * 2000-09-18 2002-03-29 Canon Inc X線露光装置、x線露光方法、半導体製造装置および微細構造体
US6764652B2 (en) * 2001-01-24 2004-07-20 The Regents Of The University Of Michigan Micromachined device for receiving and retaining at least one liquid droplet, method of making the device and method of using the device
ATE541237T1 (de) 2001-08-01 2012-01-15 Oregon State Strukturierte polymerstrukturen, insbesondere mikrostrukturen, und herstellungsverfahren dafür
US6740474B2 (en) * 2001-11-06 2004-05-25 Eastman Kodak Company Technique for making deep microstructures in photoresist
US7459127B2 (en) * 2002-02-26 2008-12-02 Siemens Healthcare Diagnostics Inc. Method and apparatus for precise transfer and manipulation of fluids by centrifugal and/or capillary forces
US6858378B1 (en) * 2002-04-17 2005-02-22 Sandia National Laboratories Photoimageable composition
JP4296062B2 (ja) * 2002-08-30 2009-07-15 服部 正 パターン成形用型の製造方法
US7094354B2 (en) * 2002-12-19 2006-08-22 Bayer Healthcare Llc Method and apparatus for separation of particles in a microfluidic device
US6916090B2 (en) * 2003-03-10 2005-07-12 Hewlett-Packard Development Company, L.P. Integrated fluid ejection device and filter
JP3892407B2 (ja) * 2003-03-25 2007-03-14 富士通株式会社 撮影装置
US7435381B2 (en) * 2003-05-29 2008-10-14 Siemens Healthcare Diagnostics Inc. Packaging of microfluidic devices
US20080257754A1 (en) * 2003-06-27 2008-10-23 Pugia Michael J Method and apparatus for entry of specimens into a microfluidic device
US20040265171A1 (en) * 2003-06-27 2004-12-30 Pugia Michael J. Method for uniform application of fluid into a reactive reagent area
US20040265172A1 (en) * 2003-06-27 2004-12-30 Pugia Michael J. Method and apparatus for entry and storage of specimens into a microfluidic device
US7347617B2 (en) * 2003-08-19 2008-03-25 Siemens Healthcare Diagnostics Inc. Mixing in microfluidic devices
US7282324B2 (en) 2004-01-05 2007-10-16 Microchem Corp. Photoresist compositions, hardened forms thereof, hardened patterns thereof and metal patterns formed using them
GB0419990D0 (en) * 2004-09-09 2004-10-13 Suisse Electronique Microtech Marking articles
US8148055B2 (en) * 2006-06-30 2012-04-03 Infineon Technologies Ag Method for developing a photoresist
WO2010141131A1 (en) 2009-06-04 2010-12-09 Lockheed Martin Corporation Multiple-sample microfluidic chip for dna analysis
GB2497501A (en) 2010-10-15 2013-06-12 Lockheed Corp Micro fluidic optic design
US9322054B2 (en) 2012-02-22 2016-04-26 Lockheed Martin Corporation Microfluidic cartridge

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2163435B (en) * 1984-07-11 1987-07-22 Asahi Chemical Ind Image-forming materials sensitive to high-energy beam
EP0947882B1 (en) * 1986-07-11 2006-03-29 Canon Kabushiki Kaisha X-ray reduction projection exposure system of reflection type
US4940651A (en) * 1988-12-30 1990-07-10 International Business Machines Corporation Method for patterning cationic curable photoresist
DE4107851A1 (de) * 1991-03-12 1992-09-17 Basf Ag Verfahren zur herstellung von mikroformkoerpern mit hohem aspektverhaeltnis
DE4141352A1 (de) * 1991-12-14 1993-06-17 Basf Ag Verfahren zur herstellung von mikrostrukturkoerpern
FR2757961B1 (fr) * 1996-12-27 1999-02-26 Ecole Polytech Procede de fabrication de microstructures par conformation multicouche d'une resine photosensible et microstructures ainsi obtenues

Also Published As

Publication number Publication date
JPH11160871A (ja) 1999-06-18
EP0903638A1 (de) 1999-03-24
TW515932B (en) 2003-01-01
CN1145846C (zh) 2004-04-14
DE19741492A1 (de) 1999-03-25
CA2247777C (en) 2010-06-29
DE59805591D1 (de) 2002-10-24
CA2247777A1 (en) 1999-03-19
ATE224553T1 (de) 2002-10-15
EP0903638B1 (de) 2002-09-18
KR19990029914A (ko) 1999-04-26
US6251567B1 (en) 2001-06-26

Similar Documents

Publication Publication Date Title
CN1145846C (zh) 制造微结构体的方法
Delamarche et al. Stability of molded polydimethylsiloxane microstructures
Zhou Nanoimprint lithography: an enabling process for nanofabrication
Banks Microengineering, MEMS, and interfacing: a practical guide
Cadarso et al. Direct writing laser of high aspect ratio epoxy microstructures
Li Microfabrication techniques for producing freestanding multi-dimensional microstructures
JP4936519B2 (ja) ナノ構造及びマイクロ構造を有する構造体の成形用モールドの製造方法及び該モールドを用いる該構造体の製造方法
CN114433260A (zh) 一种基于纳米裂纹的纳流控芯片及其加工方法
Khosla et al. New technologies for large-scale micropatterning of functional nanocomposite polymers
Cheng et al. Design and fabrication of a hybrid nanofluidic channel
Kurematsu et al. Comparison of gas permeable mold with acryl substituents for silver nano-paste imprint patterning
WO2009129430A9 (en) Methods for forming metal-polymer hybrid tooling for forming parts having micro features
Schneider et al. Comparison of PMMA and SU-8 resist moulds for embossing of PZT to produce high-aspect-ratio microstructures using LIGA process
Guckel et al. Direct, high throughput LIGA for commercial applications: a progress report
Candeloro et al. Fabrication technologies
CN1300638C (zh) 用x射线曝光制造不同深宽比的微机械构件的方法
Daniau et al. Metallic microdevices fabricated by deep-etch UV lithography
Guy et al. Photochemistry in electronics
Hall et al. Sidewall morphology of electroformed LIGA parts-implications for friction, adhesion, and wear control
Keatch et al. Application of photosensitive resins to microengineering target components
Zeng et al. Nanofabrication in cellulose acetate
Yang et al. Poly (methyl methacrylate)(PMMA) Nozzle Structure and Fabrication Optimization for Electrohydrodynamic (EHD) Nozzle Manufacture.
Yang et al. A circular microchannel integrated with embedded sprial electrodes used for fluid transportation
Watanabe et al. EUVL Research Activity at Center for EUV Lithography
Marin Inclined lithography and photoresist optimization for fabrication of 3D mesh structures

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C56 Change in the name or address of the patentee

Owner name: BOEHRINGER INGELHEIM MICROPART

Free format text: FORMER NAME OR ADDRESS: STEGGE MICRO-PARTS CO., LTD.

CP03 Change of name, title or address

Address after: Borussia Dortmund

Patentee after: Boehringer Ingelheim Micropart

Address before: The Federal Republic of Germany Dortmund

Patentee before: Steag Mikcroparts GmbH

C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20040414

Termination date: 20100918