CN1199062C - 光纤 - Google Patents

光纤 Download PDF

Info

Publication number
CN1199062C
CN1199062C CN 01809487 CN01809487A CN1199062C CN 1199062 C CN1199062 C CN 1199062C CN 01809487 CN01809487 CN 01809487 CN 01809487 A CN01809487 A CN 01809487A CN 1199062 C CN1199062 C CN 1199062C
Authority
CN
China
Prior art keywords
optical fiber
refractive index
district
optical
core
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN 01809487
Other languages
English (en)
Other versions
CN1429348A (zh
Inventor
长谷川健美
笹冈英资
西村正幸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Publication of CN1429348A publication Critical patent/CN1429348A/zh
Application granted granted Critical
Publication of CN1199062C publication Critical patent/CN1199062C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/02295Microstructured optical fibre
    • G02B6/02314Plurality of longitudinal structures extending along optical fibre axis, e.g. holes
    • G02B6/02319Plurality of longitudinal structures extending along optical fibre axis, e.g. holes characterised by core or core-cladding interface features
    • G02B6/02323Core having lower refractive index than cladding, e.g. photonic band gap guiding
    • G02B6/02328Hollow or gas filled core
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/02295Microstructured optical fibre
    • G02B6/02314Plurality of longitudinal structures extending along optical fibre axis, e.g. holes
    • G02B6/02319Plurality of longitudinal structures extending along optical fibre axis, e.g. holes characterised by core or core-cladding interface features
    • G02B6/02338Structured core, e.g. core contains more than one material, non-constant refractive index distribution in core, asymmetric or non-circular elements in core unit, multiple cores, insertions between core and clad
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/02295Microstructured optical fibre
    • G02B6/02314Plurality of longitudinal structures extending along optical fibre axis, e.g. holes
    • G02B6/02342Plurality of longitudinal structures extending along optical fibre axis, e.g. holes characterised by cladding features, i.e. light confining region
    • G02B6/02361Longitudinal structures forming multiple layers around the core, e.g. arranged in multiple rings with each ring having longitudinal elements at substantially the same radial distance from the core, having rotational symmetry about the fibre axis
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/293Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means
    • G02B6/29371Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means operating principle based on material dispersion
    • G02B6/29374Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means operating principle based on material dispersion in an optical light guide
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/02214Optical fibres with cladding with or without a coating tailored to obtain the desired dispersion, e.g. dispersion shifted, dispersion flattened
    • G02B6/02219Characterised by the wavelength dispersion properties in the silica low loss window around 1550 nm, i.e. S, C, L and U bands from 1460-1675 nm
    • G02B6/02252Negative dispersion fibres at 1550 nm
    • G02B6/02257Non-zero dispersion shifted fibres, i.e. having a small negative dispersion at 1550 nm, e.g. ITU-T G.655 dispersion between - 1.0 to - 10 ps/nm.km for avoiding nonlinear effects
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/02295Microstructured optical fibre
    • G02B6/023Microstructured optical fibre having different index layers arranged around the core for guiding light by reflection, i.e. 1D crystal, e.g. omniguide
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/264Optical coupling means with optical elements between opposed fibre ends which perform a function other than beam splitting
    • G02B6/266Optical coupling means with optical elements between opposed fibre ends which perform a function other than beam splitting the optical element being an attenuator

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Lasers (AREA)
  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)
  • Light Guides In General And Applications Therefor (AREA)

Abstract

在一种具有芯区3和围绕该芯区3的包层区5的光纤中,其中由次介质2构成的多个区在包层区5的横截面内被彼此相隔分开,该次介质2的折射率不同于构成该包层区5的主介质4的折射率,且该芯区3具有低于所述包层区5的平均折射率,而且次介质区2被沿光纤1的径向有规则地设置,使得具有给定波长、传播系数和电场分布的光沿光纤轴传播并在芯区3内具有不低于50%的总传播功率,并且这种设置在横截面上并不具有平移对称。

Description

光纤
技术领域
本发明涉及适合作为光传输路径、色散补偿器、光学滤波器、光功率均衡器和光学放大器的光纤。
背景技术
通常,由高、低折射率环形层交替设置组成的光纤是已知的,并被公开在J.Marcou等人的“Monomode photonic band gap fibers fordispersion shifting towards short wavelengths”ECOC,99,I-pp.24-25(以下称作D1)和Y.Fink等人的“Guiding optical light in air using anall-dielectric structure”Journal of Lightwave Technology,v0l.17,No.11,1999年11月,pp.2039-2041(以下称作D2)中。
在这些光纤中,光被限制在称为芯区的中心区域,该中心区域被称为包层区的环形层包围。芯区的折射率低于包层区内环形层的折射率。因而,由于折射率径向分布的规则性,光就基于布拉格反射而不是全内反射被限制在芯内。也即,由于在包层区内折射率径向分布的规则性,所以集中在光纤轴上的发散柱面波被强烈地耦合成集中在光纤轴上的会聚的柱面波。结果,发散的柱面波就被包层内的环形层反射并被限制在芯内。
包层内环形层的厚度不必是均匀的。在D1中,折射率分布被设计成具有基于贝塞尔函数的周期性,而在D2中,环形层的厚度被根据贝塞尔函数的零点来确定。
而且,在R.F.Cregan等人的“Single-Mode photonic band gapguidance of light in air”,Science,Vol.285,pp.1537-1539(1999年9月)(以下称作D3)中,公开一种光纤,在其横截面结构中,一种缺陷被引入具有二维平移对称的折射率周期性结构中。在这种光纤的横截面上,具有给定折射率分布的小区域(单元)被有规则地设置,并且其中的一些单元被具有不同折射率分布的单元来替换,致使打破横截面折射率分布的平移对称。这些打破对称的单元被称为缺陷。
这种二维的折射率周期性结构,如果被适当地设计,则可反射属于给定波长带的光而与入射角无关。这种波长带被称作全PBG(全光子带隙)。具有该PBG内波长的光被限制在该周期性结构的缺陷内。该周期性结构和该缺陷沿光纤轴延伸,因而光沿光纤轴传播。
此外,美国专利5,802,236公开一种带有芯和包层的光纤,其中芯的有效折射率高于包层的有效折射率,并且包层具有非周期性设置的包层特征结构。按照这种光学结构,由于芯的有效折射率高于包层的有效折射率,故光是被全内反射限制在芯内。这儿,假设具有空间折射率变化的非均匀区可用具有相同光学特性的均匀介质来替代,则有效折射率就被定义为这种均匀介质的折射率。
通常也还知道,布拉格反射镜可通过有规则地叠置由不同折射率的介质组成的平面薄膜来形成,并且通过满足在该薄膜的光学厚度等于四分之一波长下的四分之一波长条件可获得高反射效率。
发明内容
然而,在D1公开的光纤中,因为该光纤是通过将Ge掺入石英玻璃来形成的,所以相邻两个环形层之间的折射率差很小(折射率差是0.5%)。相应地,包层内环形层的反射效率就变小,因而对芯的光限制(optical confinement)就变弱。结果,光能就泄漏到光纤的外部,使得传输损耗尤其是由于光纤弯曲引起的传输损耗增加。
另一方面,在D2描述的光纤中,包层区是由蹄(折射率是4.6)和聚苯乙烯(折射率是1.59)组成。由于该介质间折射率的巨大差别,所以可获得高反射效率。然而,因为下述原因,这种光纤是难于制作的。根据D2中公开的制作方法,这种光纤是通过在直径为1.92mm的玻璃管的外围交替地沉积厚度约为0.8μm的碲膜和厚度约为1.6μm的聚苯乙烯膜来得到的。但是,通过这种方法来均匀地制作一根长光纤是很困难的。这是因为如果光纤被卷绕(wind in a coil)同时薄膜被沉积在其上,则很难以均匀的厚度来沉积薄膜。另一方面,如果光纤不被绕成卷材形状,则因其长度受限于沉积设备的尺寸,所以很难制作出长光纤。例如,在上述文献中报道的光纤长度是10cm短。此外,由于薄膜是被沉积在圆柱表面上的,故与薄膜被沉积在平面上的传统薄膜成形相比,这种膜厚的控制是困难的。这还使制作沿其轴均匀的光纤变得困难。
此外,在D3描述的光纤中,缺陷的尺寸被限于在横截面折射率分布中周期性结构单元的尺寸的整数倍。相应地,芯的尺寸也被限于单元尺寸的整数倍。芯的直径影响导模(guided mode)的数目和导模光学限制的程度。从而,芯直径选择的有限范围导致光纤可获得光学性能的有限范围。尤其是,很难精密地控制单模操作的波长范围和弯曲的容差。
鉴于以上的问题作出本发明,本发明的目的是提供一种基于受到对光纤芯呈现很强的光限制的布拉格反射限制的光纤,有利于长光纤的制作并且实现芯径选择的高度自由。
为了实现这一目的,提供一种光纤,由芯区和围绕所述芯区的包层区组成,该光纤具有多个在横截面上彼此相隔分开并由次介质构成的区,该次介质的折射率不同于构成所述包层区的主介质的折射率,其中所述芯区具有低于所述包层区的平均折射率,并且其中:由次介质构成的所述区的设置沿所述光纤径向具有这样一种规则性,即使得包层区具有沿径向交替的高平均折射率区和低平均折射率区,并在向外传播的圆柱形光波和向内传播的圆柱形光波之间产生模式耦合,该向外和向内传播的圆柱形光波都具有给定波长、传播系数和电场分布,并且具有所述给定波长、所述传播系数和所述电场分布的光沿光纤轴传播并在所述芯区中具有不低于50%的总传播功率,并且所述设置在横截面上不具有平移对称。
该主介质是一种其自身可实际构成光纤的介质,且该主介质区不必被划分为单个光纤。另一方面,该次介质可以是一种其自身并不构成光纤的介质。例如,该主介质可以是石英玻璃,该次介质可以是气体或可以被排空。
给定圆环区的平均折射率navg由下列等式定义
其中“a”和“b”分别是圆环区的内半径和外半径,r和θ是横截面内的极坐标,n(r,θ)是在(r,θ)处给定折射率的函数。
依照本发明,通过以沿光纤径向的规则性来设置次介质,就可以沿包层区的径向有规则地改变平均折射率。最终,就可以通过布拉格反射将光限制在芯内。并且次介质的使用也能平均折射率比常规的掺杂玻璃技术有更大的变化,而且比常规方法可实现对芯更强的光限制。
此外,由于次介质的设置并不具有平移对称,故芯直径并不限于单元尺寸的整数倍。芯直径选择的更大自由度使其可以最佳化导模的数目和导模的光限制的强度。
设置的平移对称是一种性质,即沿给定方向移动一给定距离时该设置基本上保持不变。此处,给定这种移动操作的方向和距离的矢量被称作点阵矢量。此外,设置的二维平移对称是该设置具有两个独立点阵矢量的一种性质。
优选的是,由次介质构成的区基本上被设置在光纤横截面内中心在光纤轴上的一个或多个同心圆周上。由于这种结构,包含次介质设置于其上的同心圆周之一的环形区的平均折射率可被制成大大不同于相邻环形区的折射率,从而可实现很强的光限制。
作为选择,优选的是,该包层区包含多个同心圆环区,其中具有高平均折射率和低平均折射率的区沿径向交替设置。
这样,通过交替高平均折射率区和低平均折射率区,就可在向外和向内传播的圆柱形光波间产生模式耦合,从而就可以有效地反射向外传播的圆柱形光波并将其限制在芯区。
优选的是,各个圆环区的相应光学厚度实际上等于给定模式光波的四分之一波长。此处,“光学厚度实际上等于四分之一波长”表示这种情形,即特征矩阵Mi的对角线分量基本上为零,该特征矩阵分量Mi被表示如下:
Mi = m 11 m 12 m 21 m 22 = πκ i a i - 1 a i - 2 ×
J ν ( i - 1 ) N ν + 1 ( i ) - J ν + 1 ( i ) N ν ( i - 1 ) - η i - 1 { J ν ( i - 1 ) N ν ( i ) - J ν ( i ) N ν ( i - 1 ) } η i { J ν + 1 ( i - 1 ) N ν + 1 ( i ) - J ν + 1 ( i ) N ν + 1 ( i - 1 ) } J ν ( i ) N ν + 1 ( i - 1 ) - J ν + 1 ( i - 1 ) N ν ( i )
其中ai-1是第i个圆柱区的内半径,a1是第i个圆柱区的外半径,ki是在第i个圆柱区内沿径向的传播常数,ki如下定义:
κ i = n i 2 k 0 2 - β 2
其中,ni是第i个圆柱区的折射率,k0是真空中的波数,β是沿轴向的传播常数。并且,ηi是第i个圆柱区的有效折射率,其中
ηi=-κ0i      对于TE模
ηi=κ0ni 2i    对于TM模
ηi≈-κi/β       对于TLP01
此外,Jv和Nν分别是ν阶的第一类(kind)和第二类贝塞尔函数。同时,Jνiai)被表示为Jν(i),Nνiai)被表示为Nν(i),Jνiai-1)被表示为Jν(i-1),Nνiai-1)被表示为Nγ(i-1)。
尽管,在一些情形下很难使Mi的对角线分量正好等于零,但本发明人已经发现使对角线分量m11和m22基本上交替等于零对于将光紧密地限制在芯中是足够的,也即,使m11在第i区大体等于零,使m22在第(i+1)区大体等于零,依此类推。这种在包层中获得高反射率并将光紧密限制在芯内的条件被称作伪四分之一波长条件。
通过由空隙或石英玻璃来形成芯区,就可降低传输损耗。而且,通过用光学增益介质来构成芯,就可实现具有很小依赖于波长的增益特性的光放大器。在芯区由内芯区和包围该内芯区的外芯区组成、且外芯区具有低于内芯区折射率的结构中,就可以降低基模中的弯曲损耗而不会恶化较高阶模式的截止特性。
此光纤适合用作带通光学滤波器和增益均衡器。而且,可以由这种光纤和具有与这种光纤相反符号色散的另一种光纤构成光学传输路径。
附图说明
图1是表示依照本发明光纤基本结构的横截面图;
图2是示意性表示该结构的视图;
图3和图4分别是表示第一实施例和第二实施例模拟结果的附图;
图5是表示第二实施例中色散D和模场直径MFD对于波长λ的特性图;
图6是表示第三实施例模拟结果的图;
图7是表示第四实施例光纤结构的横截面图。
具体实施方式
以下结合附图详细描述本发明的优选实施例。为了便于理解本说明,在整个附图中,可能时,相同的参考标记表示相同的部分,并且省略重复的说明。
(第一实施例)
图1是表示依照本发明光纤1基本结构的横截面图。如图1所示,该光纤1具有在半径为Rk(k=0...M)、中心在光纤轴上的圆周上等间距设置NK个空隙2的横截面结构。设置在半径为Rk圆周上的这些空隙具有基本上相同的直径dk。图1表示对应于k=0...5的横截面结构的一部分。在图1所示的光纤1中,沿径向空隙2的数目M被设定为M=9,并且Rk、dk、Nk分别取表1中表示的值。
表1:在第一实施例的光纤中空隙2的设置
    k 0  1  2  3  4  5  6  7  8  9
    Rk[μm] 0  3.59  4.35  5.12  5.88  6.64  7.39  8.15  8.91  9.67
    dk[μm] 6.05  0.340  0.335  0.332  0.329  0.327  0.326  0.325  0.324  0.323
    Nk 1  24  30  36  42  48  54  60  66  72
定位在光纤1的中心、具有直径6.05μm的空隙(空腔)对应于芯3,围绕该芯3的区域构成由石英玻璃4和空隙2形成的包层区5。该包层区5是由沿径向交替堆叠的高平均折射率圆环区和低平均折射率圆环区组成。在波长1550nm处,石英玻璃4和空隙2的折射率分别是1.444和1。
在多个空隙2被设置在中心位于光纤轴上的同心圆周上时,该包层5具有这种结构,其中具有高平均折射率的圆环区和具有低平均折射率的圆环区被沿径向交替叠置。图2以示意性的形式表示这种方式。这里,圆环区5k(k=1,...2M)被从内侧向外侧编号。奇数51、53、55、52M-1(=17)的圆环区不包括空隙2而仅由石英玻璃4制成。相应地,这些圆环区的折射率在波长1550nm下全都等于1.444。
另一方面,在位于奇数51、53、55、52M-1(=17)圆环区之间的偶数52、54、56、52M(=18)圆环区内,空隙2被沿圆周以一定的间隔设置,这些圆周的中心都在光纤轴上并且具有等于圆环区内半径和外半径的平均数的半径。圆环区的厚度都是0.40μm。根据等式(1),这些区域的平均折射率在波长1550nm下全是1.350。相应地,偶数圆环区具有低于奇数圆环区的平均折射率。
在波长1550nm下,芯区1和各个圆环区51至518的径向传播常数k、相位厚度δ和特征矩阵的对角线分量m11、m22表示在表2中。层的物理厚度表示为t,相位厚度由δ=κt定义。
表2:实施例1光纤各区的结构参数
    κ     δ     m11     m22
    芯区1     1.26     3.81
    圆环区51     4.41     1.61     3×10-3     -4×10-5
    圆环区52     3.89     1.55     8×10-4     -2×10-3
    圆环区53     4.41     1.60     2×10-3     -2×10-5
    圆环区54     3.89     1.55     4×10-4     -2×10-3
    圆环区55     4.41     1.59     1×10-3     -5×10-5
    圆环区56     3.88     1.55     3×10-4     -1×10-3
    圆环区57     4.41     1.59     1×10-3     -1×10-4
    圆环区58     3.89     1.55     1×10-4     -1×10-3
    圆环区59     4.41     1.58     7×10-4     -2×10-4
    圆环区510     3.89     1.56     1×10-4     -8×10-4
    圆环区511     4.41     1.58     5×10-4     -2×10-4
    圆环区512     3.89     1.56     7×10-5     -7×10-4
    圆环区513     4.41     1.58     4×10-4     -2×10-4
    圆环区514     3.88     1.55     -2×10-5     -7×10-4
    圆环区515     4.41     1.58     3×10-4     -1×10-4
    圆环区516     3.89     1.56     -9×10-6     -5×10-4
    圆环区517     4.41     1.58     3×10-4     -9×10-5
    圆环区518     3.88     1.55     -5×10-5     -5×10-4
如表2中所示,各个层的相位厚度δ大体相当于π/2,特征矩阵的对角线分量分量m11和m22在偶数圆环区和奇数圆环区内分别大体变为零,从而满足伪四分之一波长条件。结果,包层区5有效地反射向外传播的圆柱形光波并将该光波限制在芯区1。因为带有多个空隙的偶数圆环区和不带有空隙的奇数圆环区之间的平均折射率差高达6.7%,所以本发明可实现在包层中比基于掺Ge的石英的常规方法更高的反射率,而这并未被常规方法实现。
依照本实施例的光纤可通过光纤拉制步骤来制作,在该光纤拉制步骤中光纤预制件的一端被加热并拉伸以形成光纤。因此,与通过沉积制造光纤的常规方法相比,本发明的光纤可被制成很长的长度并且沿其长度具有良好的均匀性。例如,通过拉制直径20mm、长度为300mm的预制件,可制作出直径125μm、长度为7.6km的光纤。
在本实施例中被设定为6.05μm的芯直径,并不受对包层结构的规则性限制。这就区别于通常的全PBG引导型光纤,在这种光纤中,芯直径被限制为单元直径的整数倍。本实施例的光纤可提供芯直径的宽选择范围。结果,就可以控制光限制的强度和模的数目。
此外,通过沿径向交替高平均折射率圆环区和低平均折射率圆环区,就在向外和向内传播的圆柱形光波间实现有效的模式耦合,借此就可以反射向外传播的圆柱形光波并将该光波限制在芯内。
图3表示相对于沿径向的光功率分布与光纤1中平均折射率navg分布一起的模拟结果。光纤1在波长1550nm下具有导模,且该导模的模折射率neq是0.9507。而且,该导模的电场分布类似于阶跃折射率型光纤中TE模的电场分布。也即,电场矢量一致于沿相对于光纤轴的圆周方向。
在图3中,在横截面上光功率P沿径向方向的分布被相对于由任意X方向和垂直于该X方向的Y方向组成的两个方向来表示。沿径向的位置被表示为r。应当理解,由于该平均折射率的规则结构,故光功率被限制在芯内。这儿,不低于90%的总传播功率通过该芯传播。由于在此光纤中芯3包括有空隙,故该光纤呈现出诸如低传输损耗、低非线性和低材料色散特性。此外,由于包层区5包括有石英玻璃4和空隙2,故包层区5中的传输损耗也可被降低。
按照这种方式,在将低光学损耗的材料用作包层区的主介质和次介质下,包层中的光学损耗就可被减小。
此外,当芯包括有空隙时,就可以在芯中填充空气或惰性气体(Ar等)或者抽空芯3,从而就可实现具有低传输损耗的光传输路径。使用空气、惰性气体或者真空状态作为芯3,非线性光学效应就可忽略不计,使得能够抑制由于该非线性光学效应引起的传输质量的恶化,从而就可以实现适合于长距离和大容量光通信的光学传输路径。而且,由于芯材料的群速度色散可以忽略不计,故可以实现具有小绝对值的色散,从而实现适合于长距离和大容量光通信的光学传输路径。更进一步,由于该非线性很低,即使色散绝对值很小,由于四波混频引起的传输质量的恶化也不会出现,从而能够进行波分复用并实现大容量的光通信。
(第二实施例)
在依照本发明第二实施例的光纤中,虽然其基本结构等同于图1和2中表示的第一实施例光纤的基本结构,但沿径向的空隙2的数目M是8,并且Rk、dk、Nk取不同于第一实施例的值,如表3中所示。
表3:在第二实施例的光纤中空隙2的设置
    K     0     1     2   3   4   5   6   7   8
    Rk[μm]     0     4.78     5.58   6.39   7.18   7.98   8.78   9.58   10.37
    Dk[μm]     8.41     0.364     0.359   0.355   0.352   0.350   0.348   0.346   0.345
    Nk     1     30     36   42   48   54   60   66   72
如第一实施例的情况中那样,在本实施例中,定位在光纤的中心的具有直径8.41μm的空隙也对应于芯3。
而且在本实施例中,仅包括石英玻璃4并具有高折射率(在波长1550nm下为1.444)的圆环区51、53、55、...515,和沿中心在光纤轴上且半径等于圆环区内外半径平均值的圆周具有空隙2并具有低折射率(在波长1550nm下为1.350)的圆环区52、54、56、...516,被交替设置。
在波长1550nm下,芯区1和各个圆环区51至516的传播系数k、相位厚度δ和特征矩阵的对角线分量m11、m22表示在表4中。
表4:实施例2的光纤各区的结构参数
    κ     δ     m11   m22
  芯区1     0.52     2.18
  圆环区51     4.25     1.54     -7×10-5   -2×10-3
  圆环区52     3.71     1.60     2×10-3   -2×10-4
  圆环区53     4.25     1.55     -1×10-5   -1×10-3
  圆环区54     3.71     1.59     1×10-3   -2×10-4
  圆环区55     4.25     1.55     -1×10-5   -1×10-3
  圆环区56     3.71     1.59     1×10-3   -1×10-4
  圆环区57     4.25     1.55     -7×10-5   -8×10-4
  圆环区58     3.71     1.59     9×10-4   -3×10-5
  圆环区59     4.25     1.55     -4×10-5   -7×10-4
  圆环区510     3.71     1.58     6×10-4   -1×10-4
  圆环区511     4.25     1.56     -4×10-6   -5×10-4
  圆环区512     3.71     1.58     5×10-4   -9×10-5
  圆环区513     4.25     1.56     -3×10-5   -4×10-4
  圆环区514     3.71     1.58     4×10-4   -7×10-5
  圆环区515     4.25     1.56     -2×10-5   -4×10-4
  圆环区516     3.71     1.58     3×10-4   -1×10-4
如表4中所示,各个层的相位厚度δ大体相当于π/2,特征矩阵的对角线分量m11、m22在偶数圆环区和奇数圆环区内分别大体变为零,从而满足伪四分之一波长条件。因此,包层区5可反射向外传播的圆柱形光波并将该光波紧密限制在芯区1。
图4表示在第二实施例中沿径向光纤1的光功率分布和平均折射率navg分布的模拟结果。此光纤1具有在波长1550nm下的导模,且该导模的模折射率neq是0.9899。而且,该导模的电场分布类似于阶跃折射率型光纤中LP01模的电场分布。也即,该电场的方向在横截面内基本是一致的。通过将该方向取作Y轴并将该横截面内垂直于该方向的方向取作X轴,沿各个轴的光功率P分布就如图4中所示。应当理解,由于该平均折射率的规则结构,该光功率被限制在芯内。这儿,不低于90%的总传播功率通过该芯区传播。
而且在第二实施例的光纤中,由于该芯3包括有空隙,故该光纤具有诸如低光学损耗、低非线性和低材料色散的性质。并且,由于包层区5包括有石英玻璃4和空隙2,故包层5中的光学损耗很低且反射率很高。此外,由于主介质是石英玻璃而次介质是空气,故可很容易将基于布拉格反射引导的光纤制成很长的长度,并可通过与常规方法相比的光纤拉制具有很高的均匀性。
图5表示对于波长λ,本实施例光纤的色散D和模场直径MFD的特性曲线。模场直径MFD在波长1600nm附近取最小值,这表明包层区5的反射波长带(wavelength band)在1600nm附近。而且,随着波长偏离1600nm,模场直径MFD增大,这表明随着波长偏离该反射波长带,就较少地满足伪四分之一波长条件,并且光限制变弱。
随着光限制变弱,由于光泄漏到光纤外引起的光损耗就增加。因而,随着光学波长偏离该反射波长带,光学损耗就增大。结果,就能实现一种采用该反射波长带作为传输带的光学滤波器以及一种采用依赖于光损耗的波长的增益均衡器。
此外,随着光学波长偏离该反射波长带,模的群折射率增大,从而导致色散绝对值的增加。在该反射波长带的短波长一侧,色散和色散斜率变为负,而在该反射波长带的长波长一侧,色散和色散斜率变为正。该光纤的这种特性适合于光传输路径的色散和色散斜率补偿。
(第三实施例)
依照本发明第三实施例的光纤具有与第一和第二实施例光纤相同的基本结构。但是,在第三实施例中,沿径向的空隙数M是9,并且Rk、dk和Nk取不同于第一和第二实施例的值,如表5中所示。
表5:在第三实施例的光纤中空隙2的设置
    K     0     1     2     3     4     5     6     7     8     9
    Rk[μm]     0     5.38     7.84     10.29     12.73     15.17     17.61     20.04     22.47     24.90
    dk[μm]     7.36     0.434     0.465     0.484     0.497     0.506     0.513     0.519     0.524     0.527
    Nk     1     24     30     36     42     48     54     60     66     72
与第一和第二实施例相比,定位在光纤中心的圆环区是由纯石英玻璃形成并构成芯3。该圆环区的直径是7.36μm。包围该芯3的包层区5是由掺杂有30mol% Ge的石英玻璃4和空隙2组成。在波长1550nm下芯3的折射率、掺Ge石英玻璃4和空隙2的折射率分别是1.444、1.488和1。
同样,在本实施例中,仅包含掺Ge石英玻璃4并具有高折射率(在波长1550nm下是1.488)的圆环区51、53、55、...517,和具有沿中心在光纤轴上且其半径等于圆环区内外半径平均值的圆周的空隙2并具有低折射率(在波长1550nm下为1.460)的圆环区52、54、56、...518,被交替设置。
在波长1550nm下,芯区1和各个圆环区51至518沿径向的传播系数k、相位厚度δ和特征矩阵的对角线分量m11、m22表示在表6中。
表6:第三实施例光纤各区的结构参数
    κ     δ     m11     m22
  芯区1     0.62     2.29
  圆环区51     1.59     1.49     -1×10-3     -2×10-3
  圆环区52     1.07     1.63     2×10-2     -4×10-3
  圆环区53     1.59     1.51     -6×10-4     -6×10-3
  圆环区54     1.07     1.60     7×10-3     -2×10-3
  圆环区55     1.59     1.53     -5×10-4     -4×10-3
  圆环区56     1.07     1.59     4×10-3     -2×10-3
  圆环区57     1.59     1.53     -4×10-4     -2×10-3
  圆环区58     1.07     1.58     2×10-3     -1×10-3
  圆环区59     1.59     1.54     -3×10-4     -2×10-3
  圆环区510     1.07     1.57     1×10-3     -1×10-3
  圆环区511     1.59     1.54     -3×10-4     -1×10-3
  圆环区512     1.07     1.57     9×10-4     -9×10-4
  圆环区513     1.59     1.54     -2×10-4     -9×10-4
  圆环区514     1.07     1.56     4×10-4     -9×10-4
  圆环区515     1.59     1.55     -2×10-4     -7×10-4
  圆环区516     1.07     1.56     3×10-4     -8×10-4
  圆环区517     1.59     1.55     -2×10-4     -6×10-4
  圆环区518     1.07     1.56     2×10-4     -7×10-4
如表6中所示,各个层的相位厚度δ相当于约π/2,特征矩阵的对角线分量m11、m22在偶数圆环区和奇数圆环区内分别大体变为零,从而满足伪四分之一波长条件。因此,包层区5可有效反射向外传播的圆柱形光波并将该光波紧密地限制在芯。
图6表示在第三实施例的光纤1中沿径向的光功率P分布和平均折射率navg分布的模拟结果。此光纤具有在波长1550nm下的导模,且该导模的模折射率neq是1.4359。而且,该导模的电场分布类似于阶跃折射率型光纤中LP01模的电场分布。也即,电场的方向在横截面内基本是一致的。通过将该方向取作Y轴并将在横截面内垂直于该方向的方向取作X轴,光功率P沿各个轴的分布被表示在图6中。应当理解,由于该平均折射率的规则结构,光功率被限制在芯内。这儿,不低于90%的总传播功率通过该芯区传播。
同样,在第三实施例的光纤中,由于该芯3是石英玻璃,故可实现低光学损耗。并且,由于包层区5是由石英基玻璃4和空隙2组成,故包层5中的光学损耗很低且反射率很高。此外,由于主介质是石英基玻璃而次介质是空气,故可将基于布拉格反射引导的光纤制成很长的长度,并且与通过沉积制造光纤的常规方法相比,沿光纤拉制长度具有很高的均匀性。
同时,在这种光纤中,通过向芯的至少一部分掺入像Er的元素,该芯可被形成为光增益介质。通常,光增益介质中的增益具有波长依赖性。在该第三实施例的光纤中,像第二实施例光纤中的情形一样,光损耗依赖于波长。从而,通过设计光损耗的波长依赖性使其消除增益特性的波长依赖性,就可实现具有很小波长依赖性的增益特性。结果,就可实现一种适合于长距离和大容量光通信的光学放大器,其具有很小波长依赖性的增益特性。
此外,如图7中所示,芯区3可由内芯31和包围该内芯31的外芯32组成,该外芯32具有低于内芯31的折射率(以下称“第四实施例”)。在传统的基于全内反射的光纤中,诸如色散、有效纤芯的光学性质被弯曲损耗所限制。在本实施例中,由于内芯31和外芯32间的全内反射,光被限制在内芯区31内。并且,包层5内平均折射率沿径向分布的规则性防止了光泄漏到光纤的外面,从而与仅包括芯区3的光纤(在这种光纤中,外芯32对应于包层区)相比,就可减小弯曲损耗。结果,就使可实现光纤特性的范围加宽。此外,虽然基模弯曲损耗的减小经常伴随高阶模截止特性的降低,但依照本实施例的光纤,由于包层区的反射具有模式选择特性,故通过设计包层结构使得基模的光有选择地被反射,就可减小基模的弯曲损耗而不会降低高阶模的截止特性。
此外,在本发明的光纤中,当光具有不满足伪四分之一波长条件的波长时,该光就不被包层区反射,从而光就穿过包层区泄漏到外面,因而该光并不沿光纤长度被引导。因此,本发明的光纤就可用作光学滤波器,其仅传输具有满足伪四分之一波长条件的波长的光,也即在反射波长带内的光。
上述的伪四分之一波长条件是这样一种条件,即在该条件下,包层区最有效地反射光波,并且存在一个最好的满足该条件且反射率最大的波长。随着光的波长偏离该波长,包层的反射率减小,并且泄漏损耗增大。这种特性可用来实现取决于波长的传输损耗。在波分复用光通信中,取决于波长的传输损耗可用作增益均衡器,其使波长信道间的光功率差最小。因此,就可实现大容量和长距离的光通信。
此外,在本发明的光纤中,在该反射波长宽边缘的附近可实现大色散,并且该反射波长带两个边缘间色散符号是不同的,从而在给定的波长带内可实现正色散或负色散。因此,通过构成包括这种光纤和具有相反符号色散的光纤的光传输路径,就可以补偿该光传输路径的色散。从而,就可实现具有很小总色散和巨大传输容量的光传输路径。
如上文所述,依照本发明,可得到巨大的平均折射率差,并同时实现包层内的高反射率。尽管本发明的光纤在具有空隙和使用布拉格反射的方面类似于通常的全PBG光纤,但是本发明的光纤在空隙的设置并不具有平移对称的方面显著不同于通常的全PBG光纤。由于本发明的光纤并不具有平移对称,故芯直径可实现值的范围变宽。结果,导模数和导模的光限制程度就可控制在很宽的范围。此外,通过选择石英玻璃作为主介质、气体或真空态作为次介质,就可以将光纤制成很长的长度,并具有与常规方法相比良好的均匀性。
工业实用性
依照本发明的光纤适合于光传输路径、色散补偿器、光学滤波器、光功率均衡器、光放大器等。

Claims (12)

1.一种光纤,由芯区和围绕所述芯区的包层区组成,该光纤具有多个在横截面上彼此相隔分开并由次介质构成的区,该次介质的折射率不同于构成所述包层区的主介质的折射率,其中所述芯区具有低于所述包层区的平均折射率,并且其中:
由次介质构成的所述区的设置沿所述光纤径向具有这样一种规则性,即使得包层区具有沿径向交替的高平均折射率区和低平均折射率区,并在向外传播的圆柱形光波和向内传播的圆柱形光波之间产生模式耦合,该向外和向内传播的圆柱形光波都具有给定波长、传播系数和电场分布,并且具有所述给定波长、所述传播系数和所述电场分布的光沿光纤轴传播并在所述芯区中具有不低于50%的总传播功率,并且所述设置在横截面上不具有平移对称。
2.依照权利要求1的光纤,其中由次介质构成的所述区基本上被设置在光纤横截面内中心在光纤轴上的一个或多个同心圆周上。
3.依照权利要求1的光纤,其中所述包层区包括多个同心圆环区,其中具有高平均折射率和低平均折射率的区域被沿径向交替设置。
4.依照权利要求3的光纤,其中所述各个圆环区的光学厚度实际上等于给定模光波的四分之一波长。
5.依照权利要求1的光纤,其中所述主介质是石英玻璃,所述次介质是气体或真空。
6.依照权利要求1的光纤,其中所述芯区是空隙。
7.依照权利要求1的光纤,其中所述芯区由石英玻璃制成。
8.依照权利要求1的光纤,其中所述芯区由光学增益介质制成。
9.依照权利要求1的光纤,其中所述芯区包括内芯区和围绕所述内芯区的外芯区,而且所述外芯区具有低于所述内芯区的折射率。
10.一种带通光学滤波器,由依照权利要求1所述的光纤构成。
11.一种增益均衡器,由依照权利要求1所述的光纤构成。
12.一种光通信路径,包括依照权利要求1的光纤和色散与该光纤符号相反的光纤。
CN 01809487 2000-05-15 2001-05-02 光纤 Expired - Fee Related CN1199062C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP142119/2000 2000-05-15
JP2000142119A JP4211194B2 (ja) 2000-05-15 2000-05-15 光ファイバ

Publications (2)

Publication Number Publication Date
CN1429348A CN1429348A (zh) 2003-07-09
CN1199062C true CN1199062C (zh) 2005-04-27

Family

ID=18649144

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 01809487 Expired - Fee Related CN1199062C (zh) 2000-05-15 2001-05-02 光纤

Country Status (9)

Country Link
EP (1) EP1285291B1 (zh)
JP (1) JP4211194B2 (zh)
KR (1) KR100801864B1 (zh)
CN (1) CN1199062C (zh)
AU (2) AU5267801A (zh)
CA (1) CA2406988C (zh)
DE (1) DE60144016D1 (zh)
DK (1) DK1285291T3 (zh)
WO (1) WO2001088578A2 (zh)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6892018B2 (en) 2000-11-20 2005-05-10 Crystal Fibre A/S Micro-structured optical fiber
GB0129638D0 (en) * 2001-12-11 2002-01-30 Blazephotonics Ltd A method and apparatus relating to optical fibre waveguides
AUPR949901A0 (en) * 2001-12-17 2002-01-24 University Of Sydney, The Ring structures in optical fibres
US7321712B2 (en) 2002-12-20 2008-01-22 Crystal Fibre A/S Optical waveguide
AU2003290349A1 (en) 2002-12-20 2004-07-14 Blazephotonics Limited Photonic bandgap optical waveguide
US6901197B2 (en) 2003-01-13 2005-05-31 Sumitomo Electric Industries, Ltd. Microstructured optical fiber
KR100694794B1 (ko) * 2004-06-21 2007-03-14 전남대학교산학협력단 텅스텐-텔루라이트 유리박막의 제조 방법 및 텅스텐-텔루라이트 유리박막을 갖는 광대역 평판형 증폭기
FR2924866B1 (fr) * 2007-11-09 2014-04-04 Alcatel Lucent Dispositif a fibre optique dopee aux terres rares pour l'emission ou l'amplification d'un signal dans la bande "s"
US11034607B2 (en) 2013-09-20 2021-06-15 University Of Southampton Hollow-core photonic bandgap fibers and methods of manufacturing the same
GB2562971B (en) * 2013-09-20 2019-04-17 Univ Southampton Hollow-core photonic bandgap fibers
US9917410B2 (en) * 2015-12-04 2018-03-13 Nlight, Inc. Optical mode filter employing radially asymmetric fiber
JP2017156633A (ja) * 2016-03-03 2017-09-07 古河電気工業株式会社 レーザシステム

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4139262A (en) * 1974-09-06 1979-02-13 Siemens Aktiengesellschaft Filter for a light wave in a light guiding fiber
US5471553A (en) * 1992-09-30 1995-11-28 Asahi Kasei Kogyo Kabushiki Kaisha Multicore hollow optical fiber and a method for preparation thereof
US5448674A (en) * 1992-11-18 1995-09-05 At&T Corp. Article comprising a dispersion-compensating optical waveguide
GB2310506B (en) * 1996-02-22 2000-10-25 Hitachi Cable Rare earth element-doped multiple-core optical fiber and optical systems using them
US5802236A (en) * 1997-02-14 1998-09-01 Lucent Technologies Inc. Article comprising a micro-structured optical fiber, and method of making such fiber
EP1279978A4 (en) * 2000-02-28 2006-01-04 Sumitomo Electric Industries OPTICAL FIBER

Also Published As

Publication number Publication date
WO2001088578A2 (en) 2001-11-22
DK1285291T3 (da) 2011-04-26
KR20030004404A (ko) 2003-01-14
JP2001324637A (ja) 2001-11-22
EP1285291B1 (en) 2011-02-09
CA2406988A1 (en) 2001-11-22
WO2001088578A3 (en) 2002-04-25
EP1285291A2 (en) 2003-02-26
KR100801864B1 (ko) 2008-02-12
CN1429348A (zh) 2003-07-09
JP4211194B2 (ja) 2009-01-21
AU5267801A (en) 2001-11-26
AU2001252678B2 (en) 2005-03-03
CA2406988C (en) 2010-01-19
DE60144016D1 (de) 2011-03-24

Similar Documents

Publication Publication Date Title
US7636505B2 (en) Microstructured optical fiber
US9796618B2 (en) Multi-core optical fiber ribbons and methods for making the same
US7349611B2 (en) Photonic bandgap fibre, and use thereof
JP5579707B2 (ja) シングル・モード光ファイバにおける曲げに対する敏感性および破局的な曲げ損失の低減ならびにその作製方法
CN1199062C (zh) 光纤
JP3854627B2 (ja) 空孔付き単一モード光ファイバ
CN1103454C (zh) 一种单模光纤
CN1891649A (zh) 低损耗光纤的设计及其制造方法
WO2002026648A1 (en) Multi-component all glass photonic band-gap fiber
CN111443419B (zh) 一种大模场抗弯多芯少模光纤
US8503846B2 (en) All solid photonic bandgap fiber
US6606440B2 (en) Microstructured optical fiber
JP2009211066A (ja) フォトニックバンドギャップ光ファイバ及びその製造方法
KR100963812B1 (ko) 미세구조 광섬유 및 이의 제조방법
AU2001252678A1 (en) Microstructured optical fiber
JP5605630B2 (ja) 光ファイバ
CN102023334B (zh) 一种大模场光纤
CN1514262A (zh) 与正色散和正色散斜率单模光纤匹配使用的色散补偿传输光纤及用途
JP4310923B2 (ja) 光ファイバ
JP5660673B2 (ja) 光ファイバ
CN115849700A (zh) 一种全固态大模场硫系玻璃光子晶体光纤的制备方法
KR100443680B1 (ko) 포토닉 밴드갭을 이용한 광섬유 및 그 제조방법
CN115291318A (zh) 一种19芯超低损耗色散补偿多芯光子晶体光纤
KR20070023693A (ko) 마이크로구조의 광섬유

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20050427

Termination date: 20160502