CN1197289C - 用于多载波通信系统的可换算模式方法 - Google Patents

用于多载波通信系统的可换算模式方法 Download PDF

Info

Publication number
CN1197289C
CN1197289C CNB018109551A CN01810955A CN1197289C CN 1197289 C CN1197289 C CN 1197289C CN B018109551 A CNB018109551 A CN B018109551A CN 01810955 A CN01810955 A CN 01810955A CN 1197289 C CN1197289 C CN 1197289C
Authority
CN
China
Prior art keywords
code element
pilot tone
subchannel
data symbols
stream
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
CNB018109551A
Other languages
English (en)
Other versions
CN1443407A (zh
Inventor
凯文G·多贝施泰因
布拉德利M·希本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Motorola Solutions Inc
Original Assignee
Motorola Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Motorola Inc filed Critical Motorola Inc
Publication of CN1443407A publication Critical patent/CN1443407A/zh
Application granted granted Critical
Publication of CN1197289C publication Critical patent/CN1197289C/zh
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Digital Transmission Methods That Use Modulated Carrier Waves (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Time-Division Multiplex Systems (AREA)

Abstract

本文公开了一种在多载波通信系统中为不同的子信道数定义同步码元、导频码元和数据码元位置的可换算模式方法。定义了基本模式(510),识别用于对应第一带宽的第一个子信道数数的数据码元、同步码元和导频码元的位置。基本模式被复制或换算以形成扩展模式(512,514),识别用于对应第二带宽的子信道的扩展数目(M)的数据码元、同步码元和导频码元的位置。

Description

用于多载波通信系统的可换算模式方法
技术领域
本发明通常涉及多载波通信系统,包括但不限于射频(RF)通信系统。本发明尤其涉及用于多载波通信系统的可换算模式(scalablepattern)方法。
背景技术
多载波通信系统在本领域中是公知的。根据许多这样的系统,携带信息的信号,诸如串行数字化语音或数字数据被分解为多个比特流,每个比特流被编成码元(如,16QAM)以形成多个相应的码元流。同步和导频码元被插入到多个码元流中的每个码元流中,产生多个组合码元流。组合码元流用于调制分离的载波信号,产生多个子信道,每个子信道占用单独的频带并传送原始的携带信息信号中的一部分信息。多个子信道合成组合信号,这个组合信号通过RF信道从第一位置发射到第二位置。在第二位置,通常由接收机执行相反的操作,分别对每个子信道进行解调和检测。通过执行导频内插,确定载波的相位并估算信道被损坏的效果,例如衰减,多径效应等等,并且进行错误纠正以克服信道损坏的影响和重建原始信息信号。
通常,任何通信系统可携带的信息的数量是可用带宽的函数。多载波通信系统的优点之一是可以通过增加子信道的数量到子信道总和的带宽不超过可用带宽的程度,以适应不同的信道类型(例如,具有较宽带宽)。然而,在此提到的对应于特定带宽并用于特定数量子信道的插入到数据码元中同步码元和导频码元是唯一定义的而不能够换算。因此,对应不同的带宽,为适应检测不同数量的子信道中的信息,需要为不同的接收机定义唯一导频内插技术。通常,子信道的数量越多且相应带宽越宽,接收机中所需要的计算就越复杂。可简化接收机复杂程度的多载波系统应当是对现有技术的改进。
因此,存在对一种方法的需要,该方法定义可在多载波通信系统中使用的同步、导频和数据码元模式,在不同数量的子信道和不同的相应带宽之间容易地换算。有利的是,这种模式定义应当为第一个子信道定义同步、导频和数据格式,该格式对多个子信道都可以换算,并且对任意经换算的版本允许使用类似的导频内插技术。本发明目的在于满足或至少部分满足这些需要。
附图简要说明
在阅读以下详细描述并参考其中附图后,本发明的前述和其它优点将变得清楚明了。
图1是根据本发明一个实施例的多信道QAM发射机方框图;
图2示出16QAM码元星群的例子根据本发明另一个优选实施例;
图3示出插入同步和导频码元后的码元流的例子;
图4示出用于M个子信道QAM系统的频谱图示例;
图5示出根据本发明实施例的同步、导频和数据码元的模式,分别对应于50KHZ、100KHZ、150KHZ带宽的、在八个,十六个和二十四个子信道之间换算;
图6是根据本发明的一个实施例的多信道QAM接收机方框图;和
图7是根据本发明的一个实施例的多信道图6的QAM接收机中所使用的子信道解调模块的方框图。
具体实施方式
图1示出了根据本发明的一个实施例的M个子信道发射机100.。发射机100完成通过无线信道发射二进制数据流的功能。在一个实施例中,通过使用QAM调制,在M个子信道中的每个子信道将二进制数据分割。可选地,子信道可以使用不同类型的调制,例如QPSK或64-QAM或它们的一些组合。在上个实施例中,发射机100的许多功能是由例如可从摩托罗拉公司购买的DSP56000处理器家族之一的数字信号处理器(后文中“DSP”)。如本领域所熟知的,DSP是一种经过充分优化的微处理器,以极高速度进行数学运算。
发射机100从信息源102接收信号。在图1的实施例中,将要发送的信息由比特流组成。所述比特流可以代表来自计算机、数字化语音、数字化视频、和其它能够由二进制数字流表示的信号。来自信息源的比特流送入串并转换器104,并在这里将其分割成M个不同的流。不同M个比特流中的每个流再被送入码元转换器106,由其将比特流变换成适于所选调制类型的码元。因此,举例来说,当使用16QAM调制时,码元转换器106将M个不同比特流中的每个流变换成QAM码元流。可选地,应该认识到,串并转换器104和码元转换器106可以互换,以使得比特流首先变换成QAM码元,然后QAM码元流再被分割成M个不同的流。
本发明的一个实施例中,从码元转换器106中出来的码元流包含16QAM码元。16QAM系统使用16个分立的复数码元符号字母表。对QAM而言,码元可以看作是图2中所示出的笛卡尔坐标系中的各点,在笛卡尔坐标系中,码元的实部在一个坐标轴上,码元的虚部在另一个坐标轴上。这种图形被称做码元星群。输入码元201可以表示成象3+3i这样的复数。由于在字母表中有16个码元,16QAM星群中的每个复数码元可以被唯一地映射成四个二进制数字。例如,码元3+3i可以映射成二进制数字0110。应当认识到,只要每个四位二进制数映射成唯一的16码元,可以任意选择对应不同码元的二进制数。
当码元转换器106从串并转换器104接收比特流时,它将每个比特流分别解析成与比特数相应的比特组,这些比特组代表所选择的不同的码元调制类型,然后再将码元组映射成合适的码元。因此,在16QAM系统中,比特流被解析成四个比特组成的组。再使用上面讨论的映射,将每个四比特组映射成相应的16-QAM码元。可选地,可以通过使用公知的卷积编码将比特流变换成16-QAM码元流。另外的实施例中,含有将比特流变换成QPSK,64-QAM或其它非16-QAM码元星群的码元转换器106。
返过来看图1,M个复数码元从码元转换器106发送到M个子信道处理块108,110,112。为方便起见,在此将详细描述仅用于第一子信道的处理块108,因为用于其它子信道110,112的处理块的操作方式基本上与第一处理块108相似。最后,转向第一处理块108,来自码元转换器106的数据码元流D1提供给同步/导频码元插入块114。这个块将同步(“sync”)码元和导频码元插入数据码元流D1,产生组合码元流S1。根据本发明的一个实施例,导频和同步码元插入到不同的数据码元流D1到DM中,插入的位置由将在对图5更加详细描述的扩展模式所确定。然后组合流S1又被发送到脉冲整形滤波器模块116中,在这里将每个导频、同步、和数据码元整形以用于发射。整形的目的是限制每个子信道的频谱宽度以便子信道或信号之间不互相重叠。
图3示出了在插入用于时分多路(TDM)系统中的一个时隙的同步和导频码元后的组合码元流的例子。时隙通常包括通过将二进制数据从码元星群映射到码元而获得的数据码元302。在时隙的开始放入同步码元304,使得接收机能够确定执行码元采样的最佳位置。码元流还包含以所选间隔插入的导频码元306。导频码元306被接收机用来确定载波的相位和估算信号从发射机传播到接收机过程中各种信道损坏(如,噪声、失真)对信号的影响。接收机知道将要发送的导频和同步码元的特征以及它们在TDM时隙中的位置。这可以通过对每个时隙使用相同的导频和同步码元或通过对接收机和发射机采用相同的算法计算同步和导频码元而获得。应当注意,导频和同步码元不必来自与数据码元相同的星群。当接收机收到信号时,会在所收到的码元与发射的导频码元之间作比较,以允许接收机估算通信信道损坏的影响。而后,对所收到的码元流信号进行调整以补偿收到的数据码元的相位和幅度错误。
再次返回图1中的子信道处理模块108,通过脉冲整形滤波器116之后,每个子信道流必须被变频至分离的子载波频率。在一个实施例中,这个频率变换是通过复数混频器118完成的,它用子载波信号120来调制子信道码元流。优选地,每个子载波位于不同的频率,使得子信道的频率不重叠。
在子信道码元流已经被移到它们的子载波频率后,这些子信道的输出被叠加模块122合成以形成组合信号S(t)。组合信号S(t)的实部和虚部被模块124,126分开,然后提供给正交上变频器128。如本领域所熟知的,正交上变频器将组合信号S(t)的实部和虚部混合上变至射频。上变频信号供给放大器130,然后再供给天线132以用于发射。
本发明的一个实施例中,脉冲整形滤波器116,子信道混频器118,和求和器122的运算是在DSP中运用快速傅立叶变换(FFT)滤波器组实现的。这种滤波器组完成多子信道调制器的使用方法在由Prentice-Hall公司出版的Ronald E.Crochiere和Lawrence R.Rabiner,所著的“多速率数字信号处理”一文第319-323页示出,本文中引用作为参考。
图4示出用于M个子信道系统的组信号S(t)的频谱的例子。组合信号S(t)由位于各子信道带宽b1,12,…bM的M个子信道402组成,全部M个子信道大约横跨带宽BM。通常,这些子信道M的可以由任意数量的子信道组成。子信道402的间隙选择为足够远以分开子信道402使之不明显重叠,同时又足够近以使得信号的整个带宽不超过可用带宽。
组合信号的带宽BM也较为任意,但应该符合通常权威的规定,比如美国联邦通信委员会(“FCC”)的规定。例如,在746-806MHz频带中,FCC推荐允许三类信道的信道化:50kHz,100kHz或150kHz。根据本发明的一个实施例,带宽BM包括50kHz,100kHz或150kHz,对应于这三类信道,子信道M的数量分别是8,16或24。在一个实施例中,子信道跨越5.4kHz的带宽。这使得对8,16,和24子信道的实施例,占用的信号带宽为44kHz,87kHz,和130kHz,分别适合50kHz,100kHz和150kHz的信道类型。然而应当认识到,带宽BM、子信道的数量和/或子信道的带宽可以调整适合于不同的通信系统参数或不同的常规要求。
图5示出了根据本发明的一个实施例的分别对应50kHz,100kHz和150kHz带宽,识别同步码元502、导频码元504和数据码元的位置的TDM时隙结构500,该结构可在八,十六和二十四个子信道之间换算。图中示出在纵坐标上的标识为1-24的子信道。横坐标代表时间。图中的方块代表时分多路(TDM)时隙中的同步、导频、或数据码元的位置。带阴影的方块是同步码元502和导频码元504的位置。数据码元506的位置由空白方块表示。
如图所示,TDM时隙结构500可以认为是定义了三个同步、导频和数据码元的组或模式。对应于带宽50kHz,组510定义了识别用于八个子信道的数据码元、同步码元和导频码元位置的基本模式。组512和514分别定义识别用于十六个子信道的、对应于100kHz带宽和用于二十四个子信道、对应于150kHz带宽的数据码元、同步码元和导频码元位置的扩展模式。视带宽的情况,可使用二者之一任意模式。
观察图5可发现扩展模式512,514是通过对基本模式的一个或多个复制形成的。因此,在所示实施例中,扩展模式512包括定义了8个子信道基本模式的组510的两次复制,而扩展模式510包括定义了8个子信道基本的三个复制。以相似的方式,8个子信道组510可以认为是仅包含8个子信道基本模式的一次复制的扩展模式。因此,由复制基本模式来产生信号。通常,在所示实施例中,当基本模式由P个子信道组成而扩展模式包含基本模式的N次复制,则扩展模式将包含N×P个子信道,式中N和P为正整数,扩展模式通常将占用大于与基本模式相应的带宽的N倍带宽。也就是,参见图4,如果扩展模式M个子信道,且组合信号是用M个子信道码元流来调制M个分离的载波信号而形成,组合信号的带宽BM将为大于组合信号Bp的带宽的N倍,这将通过对P个子信道进行相应步骤得到。
因为扩展模式512,514是基本模式的复制,扩展模式中的数据码元、同步码元和导频码元对应它们在基本模式中的位置。因此,例如在所示实施例中,同步码元占用组510(子信道1-8)中的TDM时隙的每个子信道的前两个位置,类似地,它们占用组子信道9-16中(即,基本模式的第一个复制)和子信道7-24(即,基本模式的第二个复制)的TDM时隙的每个子信道的前两个位置。类似地,导频码元占用(在其它位置中)组510中子信道1,3,6和8中的第五个位置,并且它们占用子信道9,11,14和16,及子信道17,19,22和24中的相应位置,依此类推。
正如将认识到的,尽管图5示出了根据本发明的一个实施例的特定TDM时隙结构500的模式组成方法,也可能是其它时隙结构。例如,基本模式(组510)可以变化成包括数据码元、同步码元和/或导频码元的不同位置,不同数量的子信道,不同长度的TDM时隙等等,而扩展模式可以包含多于三个基本模式的复制。然而,在任何情况下通过对基本模式的一个或多个复制形成导频和同步码元的扩展模式的方式生成TDM时隙结构。扩展模式中的子信道数量将是基本模式中子信道数量的整数倍。
图6示出可以与发射机100(图1中)一同使用的接收机600。接收机600包括天线602,用于在信号已被通信信道损坏后,接收来自发射机的M个子QAM信号。这些损坏可能包括频率选择、瑞利衰落、和Rician衰落,噪声附加,或多普勒频移。然后,信号又被送到正交下变频器,该正交下变频器将接收到的信号从射频下变频至中心频率为0Hz。这个下变频信号又发送到M个子信道解调模块610,612,614和同步模块606中。
同步模块606使用TDM时隙500(图5中)的同步码元确定时隙何时开始,何时对每个数据、同步和导频码元采样,以便可以在码元脉冲形状的中间获得采样值。同步子系统是本领域所公知的。用于4个子信道QAM信号的同步子系统的例子可以在转让给本发明受让者的美国专利号5,343,499题目为“正交幅度调制同步方法”(文中引用为“499专利”)的文中找到,在此全部引用作为参考。应当认识到用于M个子QAM系统的同步子系统可以按专利‘499中教导的4个子信道QAM系统中容易地产生。同步模块606所获得的时间信息被送到M子信道解调器610,612,614。
M个子信道解调器610,612,614从正交下变频器604接收M个子信道信号作为输入,并从同步子系统606接收时间信息。子信道解调器输出损坏的原始数据、导频码元和同步码元。由于通信信道的影响,这些损坏的码元与来自发射机100处(图1)的码元不同。损坏的数据码元从子信道解调模块610,612,614送入码元确定模块616,而损坏的导频和同步码元从子信道解调器610,612,614送入导频内插模块618。
图7更详细地示出其中一个子信道解调模块。从正交下变频604(图6)接收的组合信号送入复数混频器702将被解调的子信道从子载波频率变换到0Hz。这是通过用子载波信号704与接收的经下变频的信号混频得到的。来自混频器702的信号再被送入脉冲整形滤波器706中。脉冲整形滤波器706将除了一个中心频率为0Hz的其它所有子信道从组合信号中除去。脉冲整形滤波器之外的所有信号再被送入码元采样器708中。码元采样器708在脉冲波形的中心采样以获得同步、导频或数据码元。码元采样器使用来自同步模块606(图6)的输入来确定何时采样。
来自码元采样器708的损坏的同步、导频、和数据码元被送入同步/导频数据码元解多路复用器710。同步/导频数据码元解多路复用器将从码元采样器708接收的损坏的码元流分割成两个流。然后,损坏的数据码元送入码元确定模块616(图6),而损坏的导频和同步码元送入导频内插模块618(图6)。
导频内插模块618从所有M个子信道解调器610,612,614接收来自同步/导频数据码元解多路复用器710接收的损坏的导频和同步码元。它为每个数据码元产生通信信道影响的估算值。这些信道估算值从导频内插模块618送入码元确定模块616,并在此被用来确定接收机发送的是哪些码元。在转让给本发明的受让者的美国专利申请序列号07/783,289,题目为“具有时域导频分量的通信信号”一文中详细介绍了导频内插模块618可使用的一个特定的基于导频的通信信道估算方法,并在此全部引用作为参考。
在本发明的一个实施例中,用于每个数据码元位置的滤波器系数的确定是基于时隙中正在使用哪个导频和同步码元。滤波器系数是在通信信道增益和相位估计使用的数据码元位置和导频与同步码元位置之间的时间和频率的相对距离函数。因为TDM时隙结构中的对称性,对多个据码元位置重复使用滤波器系数是可能的。例如,考虑图5的TDM时隙500。假设通过使用导频码元518加以估算用于数据码元516的信道增益和相位。当使用导频码元522估算数据码元位置520处的通信信道增益和相位时,可以使用同样的导频插入系数。这是由于数据码元516和导频码元518之间的时间和频率距离与数据码元520和导频码元522之间的距离相同。通过这个例子,应当认识到TDM时隙结构中的对称性可以减少时隙所需要的导频插入系数的组数。这意味着对于计算滤波器系数只需做较少的工作,且节约了要求在接收机硬件中存储滤波器系数的存储器。
根据本发明的原理,当通过复制同步、导频和数据码元若干次而产生TDM时隙时,可以进一步减少接收机的复杂度。首先仅仅使用基本模式内的导频和同步码元计算用于基本模式中的所有数据码元位置的导频插入系数。然后当复制基本模式时,就可将相同的导频插入系数用于复制部分的时隙中的数据码元位置,这可减小接收机中的计算复杂度。
例如,考虑适于恢复十六个子信道的接收机情况,具有根据通过复制八个子信道的基本模式形成扩展模式来定位的同步和导频码元。参见图5,数据码元516(子信道2)和数据码元524(子信道10)占用扩展模式中的相应位置。可以看到,相对于子信道1-8中导频和同步码元的数据码元516位置之间的时间和频率距离与相对于子信道9-16中导频和同步码元的数据码元524位置之间的时间和频率的距离相同。这对于所有其它相应的数据码元位置来说都一样。因此,相对于现有技术而言,可以大大降低用于十六个子信道的接收机的复杂度,因为可由十六个子信道接收机用来恢复在扩展模式中的某个数据码元的导频插入系数(因而,成为导频插入滤波器)与由八个子信道接收机用来恢复在基本模式中相应的导频码元所使用导频插入系数相同。同样,所述的接收机复杂度的减小也适用于二十四个子信道接收机,或任何多个的八倍数个子信道接收机,因为那些接收机也可以用与八个子信道接收机相同的导频插入滤波器组构造。
应当认识接收机复杂度的减小并不依赖于图5中的TDM时隙结构。对于任何通过复制基本模式若干次的方式产生时隙格式的时隙结构来说都是可能的。通常,随之而来的是任何M个子信道接收机可以使用相同的导频插入滤波器实现导频插入,这是M个子信道的子集P所需要的,其中,M是P的倍数,并且P码元流中的同步和导频码元的位置定义了基本模式,该格式被复制若干次以形成扩展模式。
返回来看图6,码元确定模块616使用来自子信道解多路复用器610,612,614的损坏的码元,以及来自导频内插模块618的信道增益和相位估计值来确定被发射机100发出的是哪个16-QAM码元。在‘289专利中描述了一种实现方法。码元确定模块616向并行码元到串行比特转换器620输出16-QAM码元。并行码元到串行比特转换器将16-QAM码元从M子信道映射成串行比特流。这个用来从16-QAM码元获得比特流的映射与码元转换器106(图1)所用的映射相反。
如同发射机100(图1)一样,接收机600的许多(如果不是全部)功能可以在DSP中实现。接收机600的其它实现也是可能的。例如,如果发射机100(图1)使用了不同于16QAM的信号星群,接收机M并行复数码元到串行比特模块620就必须使用与发射机100(图1)相同的星群。如果接收机使用了所熟知的卷积编码而不使用从比特到码元星群的映射,接收机将使用相应的解码方法以回到串行比特流。在转让给本发明的受让人的美国专利5,134,635,题目为“使用信道状态信息的软件判决解码的卷积解码”一文中描述了这种方法,在此全部引用作为参考。
本发明可以在不背离其精神或本质特征的情况下以其它特定形式实现。在各个方面,上述实施例都应认为是示例性而非限制性的。因此,本发明范围应当由所附权利要求而非上文描述确定。所有来自权利要求的主旨和等同物范围内的改变应当包含在权利要求的范围内。

Claims (6)

1.一种用于在使用时分复用时隙的通信系统中、在时分复用时隙内定位同步和导频码元的方法,包括如下步骤:
定义用于对应于第一信道宽度BP的P个子信道的同步、导频和数据码元的基本模式;
复制所述基本模式N次,以形成用于对应第二信道宽度BM的N×P个子信道的同步、导频和数据码元的扩展模式,所述第二信道宽度BM为大于第一信道宽度BP的N倍;
将信息信号细分成M个比特流,其中M=N×P;
将M个比特流中的每一个编码成数据码元以形成M个码元流;和
将所述同步和导频码元插入所述M个码元流中,产生M个组合码元流,所述同步和导频码元被插入由所述扩展模式确定的位置。
2.根据权利要求1所述的方法,进一步包括如下步骤:用所述M个组合码元流的每个分别调制载波信号,产生具有所述带宽BM的M个子信道。
3.根据权利要求2所述的方法,进一步包括如下步骤:
将所述M个子信道组合成组合信号;和
通过RF信道发射所述组合信号。
4.根据权利要求3的方法,进一步包括如下步骤;
接收所述组合信号;
恢复所述M个组合码元流;
在所述M个组合码元流中进行导频插入,以估算信道损坏对所述M个组合码元流中的数据码元的影响;和
修正所述数据码元以克服所述信道损坏的影响。
5.根据权利要求4的方法,其中,所述在M个组合码元流中执行导频插入的步骤是由一组导频插入滤波器实现的,导频插入滤波器能够对具有P个子信道且包含在由所述基本模式确定的位置处的同步、导频和数据码元的组合信号进行导频插入。
6.一种包括由通信器件执行的如下步骤的方法:
接收发射的信号,其中,所述的发射信号包括被细分成M个比特流的信号,将所述M个比特流的每一个编码成数据码元以形成M个码元流,将同步和导频码元插入所述M个码元流中的每一个,产生填充时分复用时隙的M个组合码元流,所述同步和导频码元被插入到M个码元流中的由扩展模式确定的位置,所述扩展模式包括基本模式的两个或多个复制,其为所述M个组合码元流的子集P码元流识别同步码元和导频码元的位置,用所述M个组合码元流调制分离的载波信号以产生M个子信道,并将所述M个子信道合并成所述发射的信号;
恢复所述M个组合码元流;
通过使用能够对所述M个组合码元流的子集P码元流进行导频插入的一组导频插入滤波器,对所述M个组合码元流进行导频插入以获得相干解调,并估算信道损坏对所述M个组合码元流中数据码元的影响,其中所述基本模式为所述M个组合码元流的子集P码元流识别同步码元和导频码元的位置;和
修正所述数据码元以恢复所述信道损坏的影响。
CNB018109551A 2000-08-01 2001-07-02 用于多载波通信系统的可换算模式方法 Expired - Lifetime CN1197289C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US09/630,235 2000-08-01
US09/630,235 US6424678B1 (en) 2000-08-01 2000-08-01 Scalable pattern methodology for multi-carrier communication systems

Publications (2)

Publication Number Publication Date
CN1443407A CN1443407A (zh) 2003-09-17
CN1197289C true CN1197289C (zh) 2005-04-13

Family

ID=24526346

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB018109551A Expired - Lifetime CN1197289C (zh) 2000-08-01 2001-07-02 用于多载波通信系统的可换算模式方法

Country Status (7)

Country Link
US (1) US6424678B1 (zh)
EP (2) EP2285037A1 (zh)
CN (1) CN1197289C (zh)
AU (2) AU7172601A (zh)
CA (1) CA2412387C (zh)
HK (1) HK1058591A1 (zh)
WO (1) WO2002011331A2 (zh)

Families Citing this family (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE285650T1 (de) * 1999-06-16 2005-01-15 Sony Int Europe Gmbh Optimierte synchronisierungspräambelstruktur für ofdm-system
CN1152492C (zh) * 1999-09-30 2004-06-02 富士通株式会社 多载波传输系统中的发射机、接收机以及发射/接收方法
AU2001278971A1 (en) * 2000-07-21 2002-02-05 Pmc-Sierra, Ltd. Systems and methods for reduction of peak to average signal levels of multi-bearer single-carrier and multi-carrier waveforms
DE60028200T2 (de) * 2000-08-01 2007-03-15 Sony Deutschland Gmbh Vorrichtung und Verfahren zur Kanalschätzung für OFDM-System
US6721267B2 (en) * 2000-08-01 2004-04-13 Motorola, Inc. Time and bandwidth scalable slot format for mobile data system
US6804223B2 (en) * 2000-11-30 2004-10-12 Ipr Licensing, Inc. Reverse link pilot integrated with block codes
US7065151B2 (en) * 2000-12-21 2006-06-20 Agere Systems Inc. Channel optimization system
US7116722B2 (en) * 2001-02-09 2006-10-03 Lucent Technologies Inc. Wireless communication system using multi-element antenna having a space-time architecture
US7027485B2 (en) * 2001-02-21 2006-04-11 Koninklijke Philips Electronics N.V. Signal discriminator for a spread spectrum system
KR100830495B1 (ko) * 2001-12-29 2008-05-21 엘지전자 주식회사 도플러 천이 추정 방법 및 이를 이용한 데이터 전송 방법
GB2386519B (en) * 2002-03-12 2004-05-26 Toshiba Res Europ Ltd Adaptive Multicarrier Communication
US7363039B2 (en) 2002-08-08 2008-04-22 Qualcomm Incorporated Method of creating and utilizing diversity in multiple carrier communication system
US6961595B2 (en) 2002-08-08 2005-11-01 Flarion Technologies, Inc. Methods and apparatus for operating mobile nodes in multiple states
JP4381749B2 (ja) * 2002-09-19 2009-12-09 パナソニック株式会社 無線通信装置及び無線通信方法
US6909761B2 (en) * 2002-12-19 2005-06-21 Motorola, Inc. Digital communication system having improved pilot encoding
US6904550B2 (en) * 2002-12-30 2005-06-07 Motorola, Inc. Velocity enhancement for OFDM systems
BRPI0407606A (pt) 2003-02-19 2006-02-21 Flarion Technologies Inc métodos e aparelho de codificação aprimorada em sistemas de comunicação multi-usuário
US8593932B2 (en) 2003-05-16 2013-11-26 Qualcomm Incorporated Efficient signal transmission methods and apparatus using a shared transmission resource
US7925291B2 (en) 2003-08-13 2011-04-12 Qualcomm Incorporated User specific downlink power control channel Q-bit
US7272109B2 (en) * 2003-08-27 2007-09-18 Conexant Systems, Inc. Modified OFDM subcarrier profile
US8599764B2 (en) * 2003-09-02 2013-12-03 Qualcomm Incorporated Transmission of overhead information for reception of multiple data streams
US7221680B2 (en) * 2003-09-02 2007-05-22 Qualcomm Incorporated Multiplexing and transmission of multiple data streams in a wireless multi-carrier communication system
US8477809B2 (en) 2003-09-02 2013-07-02 Qualcomm Incorporated Systems and methods for generalized slot-to-interlace mapping
US8509051B2 (en) 2003-09-02 2013-08-13 Qualcomm Incorporated Multiplexing and transmission of multiple data streams in a wireless multi-carrier communication system
BRPI0415840A (pt) * 2003-10-24 2007-01-02 Qualcomm Inc multiplexação por divisão de freqüência de múltiplos fluxos de dados em um sistema de comunicação de multi-portadora sem fio
US8526412B2 (en) 2003-10-24 2013-09-03 Qualcomm Incorporated Frequency division multiplexing of multiple data streams in a wireless multi-carrier communication system
US6985535B2 (en) * 2003-10-31 2006-01-10 Motorola, Inc. Channel condition estimation for pilot coefficient selection
TWI279998B (en) * 2004-05-25 2007-04-21 Realtek Semiconductor Corp Adaptive channel estimation method for multi-carrier communication system
US7907671B2 (en) * 2004-12-03 2011-03-15 Motorola Mobility, Inc. Method and system for scaling a multi-channel signal
US8009551B2 (en) * 2004-12-22 2011-08-30 Qualcomm Incorporated Initial pilot frequency selection
JP4526977B2 (ja) * 2005-03-02 2010-08-18 株式会社エヌ・ティ・ティ・ドコモ 送信機および送信制御方法
US8098722B2 (en) * 2005-03-29 2012-01-17 Qualcomm Incorporated Method and apparatus for equalization control
EP3029846A3 (en) * 2005-05-13 2016-08-17 Dspace Pty Ltd Method and system for communicating information in a digital signal
US7706431B2 (en) * 2005-06-30 2010-04-27 Nokia Corporation System and method for providing optimized receiver architectures for combined pilot and data signal tracking
US7760827B2 (en) * 2005-11-30 2010-07-20 Motorola, Inc. Method and apparatus for improving recovery performance of time windowed signals
EP1811712B1 (en) * 2006-01-19 2013-06-05 Samsung Electronics Co., Ltd. Method and apparatus for transmitting and receiving common channel in a cellular wireless communication system supporting scalable bandwidth
US8665799B2 (en) 2006-09-14 2014-03-04 Qualcomm Incorporated Beacon assisted cell search in a wireless communication system
UA94482C2 (ru) * 2006-10-03 2011-05-10 Квелкомм Інкорпорейтед Передача синхронизации в системе беспроводной связи
HUE051741T2 (hu) 2007-01-11 2021-03-29 Qualcomm Inc DTX és DRX használata vezeték nélküli kommunikációs rendszerben
US20080239936A1 (en) * 2007-03-28 2008-10-02 Motorola, Inc. Method and apparatus for mitigating interference in multicarrier modulation systems
EP2134015B1 (en) * 2007-04-05 2014-09-10 NEC Corporation Time reference identification
US20090175210A1 (en) * 2007-07-26 2009-07-09 Qualcomm Incorporated Multiplexing and transmission of multiple data streams in a wireless multi-carrier communication system
CN104335669A (zh) * 2012-04-22 2015-02-04 埃勒塔系统有限公司 用于在移动例如蜂窝通信网络中移动中继干扰缓解的设备和方法
GB201302414D0 (en) 2013-02-12 2013-03-27 Sepura Ltd Mobile communication system
EP2957082B8 (en) 2013-02-12 2020-06-10 Sepura Limited Tetra-based mobile communications system
US10523362B2 (en) * 2017-12-18 2019-12-31 Ciena Corporation Systems and methods for error-free reconstruction of transmitted symbols in a coherent receiver

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5343499A (en) 1990-06-12 1994-08-30 Motorola, Inc. Quadrature amplitude modulation synchronization method
US5381449A (en) 1990-06-12 1995-01-10 Motorola, Inc. Peak to average power ratio reduction methodology for QAM communications systems
US5519730A (en) * 1990-06-12 1996-05-21 Jasper; Steven C. Communication signal having a time domain pilot component
US5134635A (en) 1990-07-30 1992-07-28 Motorola, Inc. Convolutional decoder using soft-decision decoding with channel state information
US5241544A (en) 1991-11-01 1993-08-31 Motorola, Inc. Multi-channel tdm communication system slot phase correction
US5533004A (en) 1994-11-07 1996-07-02 Motorola, Inc. Method for providing and selecting amongst multiple data rates in a time division multiplexed system
US5809083A (en) * 1994-11-23 1998-09-15 At&T Wireless Services, Inc. Differentially encoded pilot word system and method for wireless transmissions of digital data
JPH1051354A (ja) * 1996-05-30 1998-02-20 N T T Ido Tsushinmo Kk Ds−cdma伝送方法
US5867478A (en) * 1997-06-20 1999-02-02 Motorola, Inc. Synchronous coherent orthogonal frequency division multiplexing system, method, software and device

Also Published As

Publication number Publication date
EP1307991A4 (en) 2007-07-04
AU2001271726B2 (en) 2005-07-07
CN1443407A (zh) 2003-09-17
HK1058591A1 (en) 2004-05-21
WO2002011331A3 (en) 2002-04-18
CA2412387C (en) 2005-05-03
US6424678B1 (en) 2002-07-23
WO2002011331A2 (en) 2002-02-07
AU7172601A (en) 2002-02-13
CA2412387A1 (en) 2002-02-07
EP2285037A1 (en) 2011-02-16
EP1307991A2 (en) 2003-05-07

Similar Documents

Publication Publication Date Title
CN1197289C (zh) 用于多载波通信系统的可换算模式方法
US6721267B2 (en) Time and bandwidth scalable slot format for mobile data system
US7269127B2 (en) Preamble structures for single-input, single-output (SISO) and multi-input, multi-output (MIMO) communication systems
CN1042886C (zh) 发送及接收原始信息信号的方法
US9350583B2 (en) Method and apparatus for automatically detecting a physical layer (PHY) mode of a data unit in a wireless local area network (WLAN)
CN101019457B (zh) 用于发送和接收与不同多路接入技术相关联的数据块的方法、装置和通信接口
AU2001271726A1 (en) Scalable pattern methodology for multi-carrier communication systems
CN1961513B (zh) 多载波通信环境中语音业务的自适应调度
CN101124795A (zh) 无线通信系统中的受约束跳频
CN1525674B (zh) 多个发送/接收正交频分多路复用系统和方法
CN1150682C (zh) 数字可变码元速率调制
KR101407367B1 (ko) 다중 입력 다중 출력 다중 대역 ofdm 통신 시스템에 관한 인터리빙 방법 및 시스템
CN109314929A (zh) 多载波唤醒无线帧的波形编码
HUE027901T2 (en) A multichannel communication system that uses open frequency hopping
KR20040111206A (ko) 직교 주파수 분할 다중 방식을 사용하는 통신 시스템에서기지국 구분을 위한 파일럿 패턴 송수신 장치 및 방법
CN1777167A (zh) 无线局域网的间发和连续数据通信的正交频分复用传输法
CN101394386B (zh) 多载波信号产生方法、无线电发射装置和无线电接收装置
CN101064710A (zh) 基于多载波调制系统的通信装置
WO2020134855A1 (zh) 一种卫星通信系统
US20030016622A1 (en) Dual domain differential encoder/decoder
CN103491036B (zh) 用于无线基带处理的装置和方法
CN1144434C (zh) 正交多载波信号的生成方法及解码方法
CN1787506B (zh) 正交频分复用系统的导频分配方法和装置
CN102379110B (zh) 将数据码元映射到子信道中的方法和模块、发射机和系统
CN101166170B (zh) 一种简单的基于多子带滤波器组的发射和接收装置与方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
REG Reference to a national code

Ref country code: HK

Ref legal event code: DE

Ref document number: 1058591

Country of ref document: HK

C14 Grant of patent or utility model
GR01 Patent grant
C56 Change in the name or address of the patentee

Owner name: MOTOROLA SOLUTIONS INC.

Free format text: FORMER NAME: MOTOROLA INC.

CP03 Change of name, title or address

Address after: Illinois, USA

Patentee after: Motorala Solutions

Address before: Illinois, USA

Patentee before: Motorola Inc.

CX01 Expiry of patent term

Granted publication date: 20050413

CX01 Expiry of patent term