CN1188699C - 气流和相关特性的声学测量传感器 - Google Patents

气流和相关特性的声学测量传感器 Download PDF

Info

Publication number
CN1188699C
CN1188699C CNB00808050XA CN00808050A CN1188699C CN 1188699 C CN1188699 C CN 1188699C CN B00808050X A CNB00808050X A CN B00808050XA CN 00808050 A CN00808050 A CN 00808050A CN 1188699 C CN1188699 C CN 1188699C
Authority
CN
China
Prior art keywords
sensor
actuator
outer cover
sound
flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
CNB00808050XA
Other languages
English (en)
Other versions
CN1352743A (zh
Inventor
约瑟夫·鲍莫尔
罗伯特·谢弗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens Building Technologies AG
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of CN1352743A publication Critical patent/CN1352743A/zh
Application granted granted Critical
Publication of CN1188699C publication Critical patent/CN1188699C/zh
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/22Details, e.g. general constructional or apparatus details
    • G01N29/222Constructional or flow details for analysing fluids
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/02Analysing fluids
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/22Details, e.g. general constructional or apparatus details
    • G01N29/24Probes
    • G01N29/2462Probes with waveguides, e.g. SAW devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/22Details, e.g. general constructional or apparatus details
    • G01N29/28Details, e.g. general constructional or apparatus details providing acoustic coupling, e.g. water
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/021Gases
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/028Material parameters
    • G01N2291/02818Density, viscosity
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/028Material parameters
    • G01N2291/02836Flow rate, liquid level
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/04Wave modes and trajectories
    • G01N2291/045External reflections, e.g. on reflectors

Landscapes

  • Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Acoustics & Sound (AREA)
  • Measuring Volume Flow (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

本发明是一种声测量气流的传感器。它包括:传感器主体,它具有靠近前部的阻尼器部分,其中前部与气流相接合;薄膜,它刚性地安装到所述前部,用于将前部与气流密封分开;致动器,它位于前部中,用于与所述薄膜相互作用,其中该致动器是压电堆或磁限堆;声音传导材料,它设置在所述薄膜和致动器之间,所述声音传导材料包括声阻抗,其中所述声音传导材料的声阻抗包括所述致动器的声阻抗和气流的声阻抗的几何平均值;和阻尼器总成,它设置在所述传感器主体的阻尼器部分中,所述阻尼器总成包括在声传播垫圈之间的多个阻尼垫圈,所述阻尼器总成用于衰减通过所述传感器的声能。

Description

气流和相关特性的声学测量传感器
相关申请
本申请要求1999年5月24日提交的在先申请No.60/135,644的优先权。
技术领域
本发明涉及流量测量;特别涉及测量气流特性的声学流量测量装置。
背景技术
使用超声波流量计测量气流特性是困难的。这部分是由于使用现有装置造成的低密度和从一个传感器向气体传播的声波的阻抗失配。超声波传感器一般用一个固体元件,向一个流体流注入超声波能。在很多例子中,从固体到流体的运动产生一种阻抗失配,并引起大百分比的声能被反射。对于液体,这个失配是十分小的,即使在使得声波能通过管的金属壁时,仍能够进行流量的超声波测量。对于气流测量,阻抗失配是大的,并且不容易克服。
另外,由于气体的低声阻抗,用声能测量气流参数在特性上也是困难的。在声能从物理上安装到管壁上的能量传感器输入气流中时,外罩和管壁也能够谐振或鸣响。这种谐振使得识别和测量引入到气流中的声信号困难。
因此,需要一种准确测量气流中的流量的装置。也需要一种装置,它能够充分与气流匹配,以克服阻抗失配,并从低电压发射源向气体注入足够的能量。还需要一种装置,它将所述装置与管壁隔音,以避免气体声信号的被干扰。
发明内容
根据本发明,提供一种气流声学测量传感器,它包括:外罩;薄膜,它固定安装到外罩,用于将外罩与气流密封分隔开;致动器,它位于外罩中,用于与所述薄膜相互作用,其中该致动器是压电堆或磁限堆;阻尼器,它设置在外罩和致动器之间,用来衰减从薄膜或致动器产生的能量进入到外罩中;声音传导材料,它设置在所述薄膜和致动器之间,所述声音传导材料的声阻抗介于所述致动器的声阻抗和所述气流的声阻抗之间;管安装件,它由一个隔声器与外罩分开,该隔声器用于隔离致动器发出的声能;和中心管,它穿过所述隔声器延伸,用来连接外罩和中心管,其中该中心管通过由阻尼材料包绕而隔声。
在其他的实施例中,外罩和管安装件压缩在它们之间的所述隔声器。所述隔声器包括具有不连续外表面的阻尼材料。所述不连续的外表面包括飞边和槽。所述堆包括多个偏铌酸铅压电晶体层。传感器还包括:反射器,耦接到所述外罩,用于改变引向传感器的声能或从传感器出来的声能的方向。所述传导材料的声阻抗包括所述致动器的声阻抗和气流的声阻抗的几何平均值。所述薄膜包括金属,该金属由致动器移位以产生声波。所述薄膜包括金属,该金属被气流移位以便向所述致动器发射声能。所述声音传导材料的厚度为所述致动器产生的波长的四分之一。
根据本发明,提供一种气流声学测量传感器,它包括:传感器主体,它具有靠近前部的阻尼器部分,其中前部与气流相接合;薄膜,它刚性地安装到所述前部,用于将前部与气流密封分开;致动器,它位于前部中,用于与所述薄膜相互作用,其中该致动器是压电堆或磁限堆;声音传导材料,它设置在所述薄膜和致动器之间,所述声音传导材料包括声阻抗,其中所述声音传导材料的声阻抗包括所述致动器的声阻抗和气流的声阻抗的几何平均值;和阻尼器总成,它设置在所述传感器主体的阻尼器部分中,所述阻尼器总成包括在声传播垫圈之间的多个阻尼垫圈,所述阻尼器总成用于衰减通过所述传感器的声能。
在另外的实施例中,所述阻尼器部分的壁厚小于在前部的壁厚。所述传感器主体包括金属管,所述阻尼器部分的壁厚约为15到25密耳。所述堆包括多个偏铌酸铅压电晶体层。传感器还包括:反射器,它耦接到传感器组件的前部,用于改变引向所述传感器的声能或从所述传感器发出的声能的方向。所述薄膜包括金属,该金属被所述致动器移位以产生声波。所述薄膜包括金属,该金属被气流移位以便向所述致动器发射声能。所述声音传导材料的厚度为所述致动器产生的波长的四分之一。所述阻尼垫圈的厚度为所述致动器产生的波长的四分之一。
通过以下参照附图的实施例的详细说明,将明了本发明的这些和其他的目的、特征和优点。
附图说明
下面将在参照以下附图的优选实施例中详细说明本发明。
图1是本发明声测量气体流的装置的剖视图;
图2是本发明声测量气体流的装置另一个实施例的剖视图;
图3是本发明图1装置上安装的声反射器的前视图;
图4是本发明图1装置上安装的声音反射器的侧视图;
图5是本发明图1装置上安装的声音反射器的后视图;
图6是根据本发明在管中安装的图1装置的剖视图;
图7是根据本发明的弦式(chordally)安装在带有反射器的管中的图1的两个装置的剖视图;和
图8是根据本发明声测量气流装置的另一实施例的剖视图。
具体实施方式
本发明涉及流量测量,特别涉及,测量在气流中的流动特性的声流量测量装置。本发明提供一种在测量的气流和测定装置之间声匹配接口。这个接口最好包括传导声音的胶。所述的传导声音的胶最好是一种基本不可压缩的材料,在所述装置和气流之间传递声能,减少阻抗失配,从而提高声能的传播。本发明的装置还提供一种装置内的阻尼器,它降低从有源超声波产生装置到与管壁接触的结构的声能耦合。所述阻尼器防止声能被传递到装置的外罩。而且,提供一种所述装置的隔离部分,它使得所述装置能够安装到管上或外罩上,而不对外罩或管传播谐振和其他振动的影响,或从外罩或管吸收谐振和其他振动影响。
详见附图,几个图中的相同的符号本表示相同或相似的元件。图1示出本发明的装置10。装置10包括一个堆(stack)或有源元件6,它提供在管或其他介质中声测量气流特性的声波,最好是超声波。装置10既可以用作声能的发射器,也可以用作接收器。装置10包括一个外罩18,它最好是金属的,如钢、不锈钢、钛等。外罩18的结构和大小使得能够提供装置10内的组件的保护。
有源元件6(下称“堆6”)最好包括一个压电堆或磁限堆。在一个优选实施例中,堆6包括多个薄片形的偏铌酸铅晶体层4,每层4相对于相邻层的极性相反,以使得所述的堆同步膨胀和收缩。各层之间对于电接点的电连接形成在堆6的外周,以致在施加电压时,跨每个晶片或层4产生电位差。在堆6结合在外罩18内前,电连接件13件用环氧树脂粘贴到位。堆6一致地膨胀和收缩,取得一个偏移振幅。例如通过采用电子束焊接方法,这个偏移振幅经由一个1/4波长的阻抗匹配接口施加到一个固定到外罩18上的薄金属薄膜12。薄膜12又使得压缩波在气流中传播,或如果是在接收方式,薄膜12向堆6发射声能,堆6将这个声能转换成电信号。
根据本发明,  一个声音传导材料8分布在薄膜12和堆6之间。材料8最好是基本不可压缩的材料,它提供的声阻抗尽量接近在堆的声阻抗(Z1)和被测量的气流声阻抗(Z2)之间的几何平均数
Figure C0080805000091
可以使用如商标为ULTEM、TORLON和TEFLON的材料。业内人士了解声阻抗是与材料的密度和材料声速成比例的。这样,可以根据所述装置的应用、物理性能和被测量气体选择一种声胶。因为薄膜12是薄的,所以它是“听觉不可见的”,并且在阻抗计算上可以忽略。材料8也是根据它的耐热和加压能力选择。本发明的一些应用可以包括温度大于550华氏度和压力大于6000psi的情况。在其他温度和压力下也可以使用。材料8最好是声波的发射频率的1/4波长。材料8可以约0.1英寸厚。材料8也可以由商标为TEFLON的材料制造,可以约0.12英寸厚。例如,外罩18可以由钢或钛制造,例如带有由TEFLON制造并与它形成一体的阻尼器20。
堆6分布在外罩18内。可以用一个垫片15确保堆6在外罩18内的适当的间距,并支撑材料8离开薄膜12。垫片15的厚度可以约为堆6产生声波的波长的1/4。垫片15可以由塑料制造,如TEFLON,并且薄膜12可以包括一种金属,如钢或钛,厚度为5-10密耳。也可以用垫片15支撑和定位堆6和材料8,并提供在堆6的侧面的电连接件13的空间,并如上所述,在结合时加环氧树脂。
根据本发明,一个阻尼器20设在堆6和外罩18之间。通过收缩配合或在其间施加粘结剂或环氧树脂,将阻尼器20装配到外罩18中。阻尼器20衰减从薄膜12或内部路径进入外罩18的任何声能。这样的能量被有利地衰减,使得保持的能量不干扰由于在声信号通过气流时高度衰减造成的低振幅信号。
堆6被压力支撑板22支撑,它形成堆6的支撑并提供一个压缩圆盘,以提供电连接件13至堆6的通道。在用环氧树脂或硅胶填充空腔17前,用螺母24和隔声垫圈26安装一个例如是钢的金属隔板28。螺母24接受一个中心管32,这在下面说明。通过螺纹将隔板28旋拧到外罩18,所述螺纹部分用环氧树脂密封。隔板28包括用于在其内部安装一个隔声器30的内螺纹。螺母24、垫圈26和隔板28可以包括抗旋转的机构,如销钉,扁平物(flats)等。现在可以用环氧树脂填充空腔17,以提供对堆6抵抗高压气流的支撑。
根据本发明,隔声器30将装置10的安装部分2和装置10的传感器部分3的声能隔离。中心管32是通过螺纹旋拧到隔板28中,并包括一个通孔,使得到堆6的电连接件能够通过。优点是,中心管32(它最好是金属的)将安装部分2连接到传感器部分3,并且通过在其周围用阻尼材料(如TEFLON)包围隔声,防止声能被引入到中心管32,并防止声能由中心管32传播。这是通过使用垫圈26和隔声器30进行的,它们最好是由阻尼材料制造,如TEFLON。隔声器30最好包括一个不连续的表面,它包括各飞边或槽,进一步防止声能通过。垫圈26和隔声器30防止声能从传感器部分3向安装部分2通过。如果存在这样的声能的话,在工作时,将会干扰从气流中接收的测量信号。
除了由中心管32和螺母24固定到一起外,传感器部分3和安装部分2可以用环氧树脂或其他粘合剂粘结和密封在表面19上。这样密封这些接口以防止气流入内。
安装部分2包括一个管安装件42,它是一个外罩,用于保护连接器44、电子谐调元件40和电连接件13的各部分。空腔41可以任选地充填环氧树脂或其他材料。另外,中心管32最好是用环氧树脂或其他材料填充,以防止气体入内,并填充任何空穴。中心管32可以有喇叭形的端部,以通过隔声材料耦接到外罩18和管安装件42。也可以使用其他安装装置。
管安装件42最好是金属的,如钢、不锈钢、钛等。管安装件42可以包括各种安装配合装置,以将所述装置例如通过管壁安装到气流中。这样的配合装置可以包括一个连接器板、  一个延伸器管、一个压缩安装件或密封、法兰安装件或热帽阀装配或其他机构,以在具体的应用中将安装部分2装配到管壁或其他的安装壁或表面上。优点是,由于本发明的隔声器30,能够实施压缩安装或密封。
可以通过跨各层4施加一个电压向堆6供电。在一个优选实施例中,可以使用多脉冲发射,其中引入和接收多个脉冲。可以使用在美国专利No.5,117,698中使用的技术。例如,在开始,发射一个短脉冲序列,测量在发射和接收之间的整个过渡时间。扣除声信号在传感器和管壁中保留的已知时间tF,在流体中的过渡时间取为tN。那麽,为了测量流速,这个方法发射一个基本长度(N)的脉冲序列,并测定接收脉冲序列(Rx),它的中心部分(在开始的瞬态效应后)具有与发射的脉冲序列相同的频率。那麽,仅需测定与发射信号相位一致的接收信号的这个部分,并且测量在发射的和接收的信号之间的相位差,以测定上游-下游的时间差(Δt),从而测定流速。
因此,时间差Δt是根据一个公式作为这个相位差的函数。
选择脉冲序列的长度N为不会使得该特定实施例的Δt寄存器溢出所允许的最大的Δt。在这个方法中,在进行流速测量前,一个初始化程序测试超声波的频率范围,并测定最佳的频率。
存储和分析接收的脉冲,以测定气流的特性,例如流动速度,流量、气体的声学速度、气体密度和诸如压力和温度等的附加测量参数。脉冲值可以在时间上取样,并平均收敛在所述流动的特性值上。这提供一个稳定准确的结果,因为根据存储脉冲的特性能够测定发射和接收脉冲。可以使用信号处理技术解密用于测量气流流动特性的正确信号。然后用所述正确的信号,而不是可能存在的振动或噪音,测定气流的特性。
另外,因为提供了隔声以及使用不同的多脉冲信号,所以本发明能够取得大于1000比1的信噪比。例如,这可在对堆6仅用峰值约15伏的电压的情况下实现。但是也可以使用其他的电压。例如约直至300伏的电压。为了安全起见低电压是可取的。
本发明可以用在任何气体流中。在优选的实施例中,装置10用在管线中或炉中,测量诸如火炬气、天然气和蒸汽等的气体流动的特性。
见图2,示出本发明的另一个实施例。装置100包括装置10的所有的组件,但是堆6的方向基本与装置100的纵轴线垂直。在安装后使用一个支撑板102固定堆6。然后将支撑板102焊接到外罩104上,以提供堆6的支撑。
见图3、4和5,可以在装置10(或装置100和150)上使用一个反射器200,使得发射的声波改变方向,或定向地接收声波。在垂直安装传感器(相对于管壁垂直安装)的情况下,反射器200提供弦式或带角度的声束注入。反射器200包括一个反射声能的板202。板202最好是刚性材料的,如金属,以使得有效地引导声波。设置一个窗口204,使得声波能够定向传播。反射器200可以是可拆卸的,或永久固定到装置10的传感器部分3上。反射器200的结构允许角度调节,或可以适合于板202相对于堆6的方向的不同的角度。还包括孔206,其作用是在工作时使得气体流动的障碍最小。
见图6和7,示出本发明的两种安装方案。虽然对装置10可以使用带角度的安装,但如图所示的垂直安装较好。对于弦式安装方式,装置10可以在有气流通过的管300中安装反射器200。反射器200将发射的信号引向第二装置10,后者可以包括一个帮助接收所述信号的反射器200。对于进入有限制的管,弦式安装是可取的。因为横跨气流的雷诺数是相当固定的,所以可以在横跨流体的任何地方进行超声波流动测量。其他的安装方案业内人士是可以预期的。例如,可以用热帽安装,此时传感器安装在一个单独的管中,并且传感器与有要测量的气流的管的内径齐平或下凹。
见图8,示出本发明的另一实施例。一个传感器总成150包括一个传感器主体103,它最好包括一个金属管,例如是不锈钢的、钢的或钛的。前部104的结构和大小使得其中容纳堆6,并且与图1的实施例所述的前端部相同。堆6设在第一填充料108中(例如,环氧树脂中),填充料最好是没有空穴的。前部104包括一个台肩106,它提供一个表面,在第一填充料108固化时,抵抗由堆6上的流体施加的压力。传感器的主体103包括一个阻尼器部分110。传感器主体103的阻尼器部分110的厚度最好减小到约5-30密耳,在15到25密耳更好。这个厚度的减小(从端部104的厚度)形成从前部104(与要测量的流体接触或至少部分地插入其中)向后部112的较小的声能的传递。另外,阻尼器部分110的薄壁提供向阻尼器总成115的垫圈114的声能传递。
阻尼器总成115包括多个声能传播垫圈114,和多个阻尼垫圈116。垫圈114最好包括金属,如不锈钢、钢或钛,同时阻尼垫圈116最好包括阻尼材料,如PTFE(如TEFLON)等塑料。垫圈114和116在阻尼总成115中交替(符号S和T)。用结合剂或粘结剂将垫圈114和116结合到传感器主体103。垫圈114和116允许堆的接线(未示出)通过它们的中心区域。优点是,垫圈114在阻尼器部分110中吸取传感器主体103发出的声能。传递到垫圈114的能被垫圈116阻尼逐渐降低。因此,阻尼器总成115衰减了堆或管或与传感器150接触的其他安装部分的大部分声能(如果不是全部的话)。在一个优选实施例中,垫圈116包括的厚度为测定声波长的1/4(如波长传感器150是设计用于测量或设计用于发射)。在这个方法中,相消干扰降低了在前部104和后部112之间传递的声能。垫圈114和116也在阻尼部分10中形成传感器主体103的支撑,它是较细的。
第二填充料120填充垫圈114和116的中心,并填充后部112的一部分。第二填充料120例如可以包括硅橡胶。可以包括一个电路板122(例如印刷电路板)和一个电路组件124(如电感器电路或组件)。可以用电路板122和组件124对堆6来的信号进行调节、升幂、放大或其他处理,或向堆6供电。设置引线插头126,使得能够连接到堆6、电路板122和/或组件124。在一个优选实施例中,使用同心电缆128,但是也可以使用其他的电缆或铺设方法。
应理解,可以单独使用本发明的各个实施例,或将它们的部件结合形成适合特定的任务或应用的不同的配置。而且,每个实施例的各部分可以修改成定制的配套,或另外形成与不同的应用相兼容的本发明的装置。例如,传感器的结构和大小可以形成标准的O形环的大小,或带螺纹,使得能够与管或其他的气体或流体的运载介质接合。
已然说明了声测量气体流动特性的传感器的优选实施例(它们是为了说明,不是限定)。应注意的是,根据上述的原理,业内人士能够做出改变的形式。因此,应理解,可以对公开的本发明的特定实施例做出改变,但是这些都在权利要求的本发明范围内。虽然已根据专利法详细地说明了本发明,但是所要求和希望保护的内容在权利要求中提出。

Claims (19)

1.一种气流声学测量传感器,其特征在于,它包括:
外罩;
薄膜,它固定安装到外罩,用于将外罩与气流密封分隔开;
致动器,它位于外罩中,用于与所述薄膜相互作用,其中该致动器是压电堆或磁限堆;
阻尼器,它设置在外罩和致动器之间,用来衰减从薄膜或致动器产生的能量进入到外罩中;
声音传导材料,它设置在所述薄膜和致动器之间,所述声音传导材料的声阻抗介于所述致动器的声阻抗和所述气流的声阻抗之间;
管安装件,它由一个隔声器与外罩分开,该隔声器用于隔离致动器发出的声能;和
中心管,它穿过所述隔声器延伸,用来连接外罩和管安装件,其中该中心管通过由阻尼材料包绕而隔声。
2.根据权利要求1的传感器,其特征在于,外罩和管安装件压缩在它们之间的所述隔声器。
3.根据权利要求2的传感器,其特征在于,所述隔声器包括具有不连续外表面的阻尼材料。
4.根据权利要求3的传感器,其特征在于,所述不连续的外表面包括飞边和槽。
5.根据权利要求1的传感器,其特征在于,所述堆包括多个偏铌酸铅压电晶体层。
6.根据权利要求1的传感器,其特征在于,还包括:
反射器,耦接到所述外罩,用于改变引向传感器的声能或从传感器出来的声能的方向。
7.根据权利要求1的传感器,其特征在于,所述传导材料的声阻抗是所述致动器的声阻抗和气流的声阻抗的几何平均值。
8.根据权利要求1的传感器,其特征在于,所述薄膜包括金属,该金属由致动器移位以产生声波。
9.根据权利要求1的传感器,其特征在于,所述薄膜包括金属,该金属被气流移位以便向所述致动器发射声能。
10.根据权利要求1的传感器,其特征在于,所述声音传导材料的厚度为所述致动器产生的波长的四分之一。
11.一种气流声学测量传感器,其特征在于,它包括:
传感器主体,它具有靠近前部的阻尼器部分,其中前部与气流相接合;
薄膜,它刚性地安装到所述前部,用于将前部与气流密封分开;
致动器,它位于前部中,用于与所述薄膜相互作用,其中该致动器是压电堆或磁限堆;
声音传导材料,它设置在所述薄膜和致动器之间,所述声音传导材料包括声阻抗,其中所述声音传导材料的声阻抗是所述致动器的声阻抗和气流的声阻抗的几何平均值;和
阻尼器总成,它设置在所述传感器主体的阻尼器部分中,所述阻尼器总成包括在声传播垫圈之间的多个阻尼垫圈,所述阻尼器总成用于衰减通过所述传感器的声能。
12.根据权利要求11的传感器,其特征在于,所述阻尼器部分的壁厚小于在前部的壁厚。
13.根据权利要求12的传感器,其特征在于,所述传感器主体包括金属管,所述阻尼器部分的壁厚约为15到25密耳。
14.根据权利要求11的传感器,其特征在于,所述堆包括多个偏铌酸铅压电晶体层。
15.根据权利要求11的传感器,其特征在于,还包括:
反射器,它耦接到传感器组件的前部,用于改变引向所述传感器的声能或从所述传感器发出的声能的方向。
16.根据权利要求11的传感器,其特征在于;所述薄膜包括金属,该金属被所述致动器移位以产生声波。
17.根据权利要求11的传感器,其特征在于,所述薄膜包括金属,该金属被气流移位以便向所述致动器发射声能。
18.根据权利要求11的传感器,其特征在于,所述声音传导材料的厚度为所述致动器产生的波长的四分之一。
19.根据权利要求11的传感器,其特征在于,所述阻尼垫圈的厚度为所述致动器产生的波长的四分之一。
CNB00808050XA 1999-05-24 2000-05-24 气流和相关特性的声学测量传感器 Expired - Lifetime CN1188699C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US13564499P 1999-05-24 1999-05-24
US60/135,644 1999-05-24

Publications (2)

Publication Number Publication Date
CN1352743A CN1352743A (zh) 2002-06-05
CN1188699C true CN1188699C (zh) 2005-02-09

Family

ID=22469002

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB00808050XA Expired - Lifetime CN1188699C (zh) 1999-05-24 2000-05-24 气流和相关特性的声学测量传感器

Country Status (5)

Country Link
CN (1) CN1188699C (zh)
AU (1) AU5041500A (zh)
DE (1) DE10084627B4 (zh)
GB (1) GB2364122B (zh)
WO (1) WO2000072000A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102870010A (zh) * 2010-03-23 2013-01-09 贝克休斯公司 用于生成宽带宽声能的装置与方法

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040095847A1 (en) * 2002-11-18 2004-05-20 Baker Hughes Incorporated Acoustic devices to measure ultrasound velocity in drilling mud
US7075215B2 (en) 2003-07-03 2006-07-11 Pathfinder Energy Services, Inc. Matching layer assembly for a downhole acoustic sensor
US6995500B2 (en) 2003-07-03 2006-02-07 Pathfinder Energy Services, Inc. Composite backing layer for a downhole acoustic sensor
US7036363B2 (en) 2003-07-03 2006-05-02 Pathfinder Energy Services, Inc. Acoustic sensor for downhole measurement tool
DE102008033098C5 (de) * 2008-07-15 2016-02-18 Krohne Ag Ultraschallwandler
US8117907B2 (en) 2008-12-19 2012-02-21 Pathfinder Energy Services, Inc. Caliper logging using circumferentially spaced and/or angled transducer elements
DE102009039633A1 (de) * 2009-09-01 2011-03-03 Truttenbach Asset Management Gbr (Vertretungsberechtigter Gesellschafter: Andreas Truttenbach, 77866 Rheinau) Ultraschall-Durchflussmesser
US8181534B2 (en) 2010-01-06 2012-05-22 Daniel Measurement And Control, Inc. Ultrasonic flow meter with transducer assembly, and method of manufacturing the same while maintaining the radial position of the piezoelectric element
US7954387B1 (en) * 2010-08-18 2011-06-07 General Electric Company Ultrasonic transducer device
DE102010063538A1 (de) * 2010-12-20 2012-06-21 Endress + Hauser Flowtec Ag Ultraschall-Durchflussmessgrät
CN102879044A (zh) * 2011-07-15 2013-01-16 上海一诺仪表有限公司 超声波换能器壳体结构
DE102011082615A1 (de) * 2011-09-13 2013-03-14 Endress + Hauser Flowtec Ag Ultraschallwandler eines Ultraschall-Durchflussmessgeräts
EP2762842B1 (de) * 2013-01-28 2024-02-14 Krohne AG Ultraschallwandler für ein ultraschalldurchflussmessgerät
US9711709B2 (en) * 2013-08-08 2017-07-18 General Electric Company Transducer systems
CN104597131B (zh) * 2014-12-15 2017-11-10 武汉新创光科科技有限公司 一种城市餐饮油烟监测探头
US10161919B2 (en) * 2016-10-25 2018-12-25 Fisher Controls International Llc Acoustic emission sensors with integral acoustic generators
DE102016105338B4 (de) * 2016-03-22 2022-01-05 Endress+Hauser Flowtec Ag Ultraschallwandler zur Verwendung in einem Ultraschall- Durchflussmessgerät oder in einem Ultraschall-Füllstandsmessgerät
EP3699556B1 (en) * 2019-02-22 2024-01-03 OneSubsea IP UK Limited Flowmeter with ribbed transducer housings
CN110530426A (zh) * 2019-09-06 2019-12-03 克里特集团有限公司 一种物联网管线监测装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4649754A (en) * 1983-02-07 1987-03-17 Nusonics, Inc. High pressure transducer
US4646754A (en) * 1985-02-19 1987-03-03 Seale Joseph B Non-invasive determination of mechanical characteristics in the body
US4976150A (en) * 1986-12-30 1990-12-11 Bethlehem Steel Corporation Ultrasonic transducers
US5159838A (en) * 1989-07-27 1992-11-03 Panametrics, Inc. Marginally dispersive ultrasonic waveguides
US5275060A (en) * 1990-06-29 1994-01-04 Panametrics, Inc. Ultrasonic transducer system with crosstalk isolation
US5515733A (en) * 1991-03-18 1996-05-14 Panametrics, Inc. Ultrasonic transducer system with crosstalk isolation

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102870010A (zh) * 2010-03-23 2013-01-09 贝克休斯公司 用于生成宽带宽声能的装置与方法
CN102870010B (zh) * 2010-03-23 2016-05-11 贝克休斯公司 用于生成宽带宽声能的装置与方法

Also Published As

Publication number Publication date
DE10084627B4 (de) 2006-09-21
WO2000072000A1 (en) 2000-11-30
CN1352743A (zh) 2002-06-05
GB2364122A (en) 2002-01-16
GB0128030D0 (en) 2002-01-16
DE10084627T1 (de) 2002-07-11
AU5041500A (en) 2000-12-12
GB2364122B (en) 2003-07-02

Similar Documents

Publication Publication Date Title
CN1188699C (zh) 气流和相关特性的声学测量传感器
US8256565B2 (en) Enclosures for containing transducers and electronics on a downhole tool
US7913806B2 (en) Enclosures for containing transducers and electronics on a downhole tool
US7397168B2 (en) Transducer housing for an ultrasonic fluid meter
US5640371A (en) Method and apparatus for beam steering and bessel shading of conformal array
US8011083B2 (en) Process of manufacturing a transducer assembly for an ultrasonic fluid meter
CN101258772B (zh) 超声波传感器
RU2532651C2 (ru) Ультразвуковой расходомер, блок преобразователя и способы их изготовления
RU2540235C2 (ru) Ультразвуковой преобразователь для применения в текучей среде
JP2783684B2 (ja) 充填状態測定装置
US20090235501A1 (en) Systems and methods of a transducer having a plastic matching layer
JPH09126861A (ja) 超音波変換器
CN106415217A (zh) 用于确定流体容器中流体表面的水平的设备和方法
JP2020170995A (ja) 超音波センサ
Zhang et al. Modeling and underwater characterization of cymbal transducers and arrays
CN112912698A (zh) 具有透镜组合的超声流量计
EA003030B1 (ru) Устройство для приема сейсмических волн и способ его соединения с твердой средой
RU169297U1 (ru) Накладной преобразователь электроакустический к ультразвуковым расходомерам
US4219889A (en) Double mass-loaded high power piezo-electric underwater transducer
US5321333A (en) Torsional shear wave transducer
US7614309B2 (en) Cup-shaped ultrasonic transducer for a flowmeter
CN115506781B (zh) 钻铤结构
US6892565B2 (en) Gas sensor and gas concentration detecting device
RU2381598C2 (ru) Ультразвуковой расходомер и преобразователь для него
US4471475A (en) Single element cantilever mounted shear wave transducer

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
ASS Succession or assignment of patent right

Owner name: SIEMENS BUILDING TECH AG

Free format text: FORMER OWNER: SIEMENS ENERGY + AUTOMATION INC.

Effective date: 20101101

C41 Transfer of patent application or patent right or utility model
TR01 Transfer of patent right

Effective date of registration: 20101101

Address after: American Georgia

Patentee after: Siemens Building Tech AG

Address before: American Georgia

Patentee before: Siemens Energy & Automation, Inc.

CX01 Expiry of patent term
CX01 Expiry of patent term

Granted publication date: 20050209