CN118585755A - Charging pile safety monitoring and fault diagnosis method and system based on artificial intelligence - Google Patents
Charging pile safety monitoring and fault diagnosis method and system based on artificial intelligence Download PDFInfo
- Publication number
- CN118585755A CN118585755A CN202411056070.9A CN202411056070A CN118585755A CN 118585755 A CN118585755 A CN 118585755A CN 202411056070 A CN202411056070 A CN 202411056070A CN 118585755 A CN118585755 A CN 118585755A
- Authority
- CN
- China
- Prior art keywords
- data
- fault
- model
- prediction
- charging pile
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 43
- 238000003745 diagnosis Methods 0.000 title claims abstract description 39
- 238000012544 monitoring process Methods 0.000 title claims abstract description 29
- 238000013473 artificial intelligence Methods 0.000 title claims abstract description 20
- 238000012549 training Methods 0.000 claims abstract description 28
- 230000002159 abnormal effect Effects 0.000 claims abstract description 13
- 238000007781 pre-processing Methods 0.000 claims abstract description 10
- 238000012545 processing Methods 0.000 claims description 41
- 238000003066 decision tree Methods 0.000 claims description 34
- 238000010276 construction Methods 0.000 claims description 17
- 238000004590 computer program Methods 0.000 claims description 14
- 238000004458 analytical method Methods 0.000 claims description 10
- 238000004364 calculation method Methods 0.000 claims description 9
- 238000003860 storage Methods 0.000 claims description 6
- 230000011218 segmentation Effects 0.000 claims description 4
- 238000012952 Resampling Methods 0.000 claims description 3
- 238000006243 chemical reaction Methods 0.000 claims description 3
- 238000004140 cleaning Methods 0.000 claims description 3
- 238000000354 decomposition reaction Methods 0.000 claims description 3
- 238000011156 evaluation Methods 0.000 claims description 3
- 238000010606 normalization Methods 0.000 claims description 3
- 238000005096 rolling process Methods 0.000 claims description 3
- 238000005516 engineering process Methods 0.000 abstract description 3
- 230000005856 abnormality Effects 0.000 abstract 2
- 238000010586 diagram Methods 0.000 description 9
- 230000006870 function Effects 0.000 description 4
- 238000012423 maintenance Methods 0.000 description 3
- 101001121408 Homo sapiens L-amino-acid oxidase Proteins 0.000 description 2
- 102100026388 L-amino-acid oxidase Human genes 0.000 description 2
- 101100012902 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) FIG2 gene Proteins 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- 101100233916 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) KAR5 gene Proteins 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000001934 delay Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000003672 processing method Methods 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 230000000750 progressive effect Effects 0.000 description 1
- 239000013589 supplement Substances 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/10—Pre-processing; Data cleansing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L53/00—Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
- B60L53/30—Constructional details of charging stations
- B60L53/31—Charging columns specially adapted for electric vehicles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L53/00—Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
- B60L53/60—Monitoring or controlling charging stations
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01D—MEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
- G01D21/00—Measuring or testing not otherwise provided for
- G01D21/02—Measuring two or more variables by means not covered by a single other subclass
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/21—Design or setup of recognition systems or techniques; Extraction of features in feature space; Blind source separation
- G06F18/214—Generating training patterns; Bootstrap methods, e.g. bagging or boosting
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/21—Design or setup of recognition systems or techniques; Extraction of features in feature space; Blind source separation
- G06F18/217—Validation; Performance evaluation; Active pattern learning techniques
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/24—Classification techniques
- G06F18/243—Classification techniques relating to the number of classes
- G06F18/24323—Tree-organised classifiers
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/29—Graphical models, e.g. Bayesian networks
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N5/00—Computing arrangements using knowledge-based models
- G06N5/01—Dynamic search techniques; Heuristics; Dynamic trees; Branch-and-bound
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F2123/00—Data types
- G06F2123/02—Data types in the time domain, e.g. time-series data
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Data Mining & Analysis (AREA)
- General Physics & Mathematics (AREA)
- Physics & Mathematics (AREA)
- Artificial Intelligence (AREA)
- General Engineering & Computer Science (AREA)
- Evolutionary Computation (AREA)
- Evolutionary Biology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Bioinformatics & Computational Biology (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Life Sciences & Earth Sciences (AREA)
- Transportation (AREA)
- Mechanical Engineering (AREA)
- Power Engineering (AREA)
- Computational Linguistics (AREA)
- Computing Systems (AREA)
- Mathematical Physics (AREA)
- Software Systems (AREA)
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
Abstract
本发明涉及人工智能技术领域,解决了充电桩存在异常的问题,本发明公开一种基于人工智能的充电桩安全性监测与故障诊断方法及系统,方法包括:获取智能充电桩的每个时间序列的相关数据,以形成历史数据集,对历史数据集进行预处理得到处理后数据集,构建工作关联模型,划分为正常状态工作关联模式及异常状态工作关联模式;基于工作关联模型分别计算出相应的关联误差数据;通过关联误差数据集对故障预测预训练模型进行训练及验证,得到故障预测模型得到预测结果;基于预设故障概率模型计算预测结果发生故障的概率,若超过预设概率阈值,则对当前时间序列的相关数据进行分析,得到故障诊断结果。本发明能对充电桩进行分析并判断是否存在异常。
The present invention relates to the field of artificial intelligence technology, solves the problem of abnormalities in charging piles, and discloses a charging pile safety monitoring and fault diagnosis method and system based on artificial intelligence. The method comprises: obtaining relevant data of each time series of intelligent charging piles to form a historical data set, preprocessing the historical data set to obtain a processed data set, constructing a working association model, and dividing it into a normal state working association mode and an abnormal state working association mode; calculating corresponding associated error data based on the working association model; training and verifying the fault prediction pre-training model through the associated error data set to obtain a fault prediction model to obtain a prediction result; calculating the probability of a fault in the prediction result based on a preset fault probability model, and if it exceeds a preset probability threshold, analyzing the relevant data of the current time series to obtain a fault diagnosis result. The present invention can analyze the charging pile and determine whether there is an abnormality.
Description
技术领域Technical Field
本发明涉及人工智能技术领域,尤其涉及一种基于人工智能的充电桩安全性监测与故障诊断方法及系统。The present invention relates to the field of artificial intelligence technology, and in particular to an artificial intelligence-based charging pile safety monitoring and fault diagnosis method and system.
背景技术Background Art
智能充电桩是随着新能源汽车行业的发展而兴起的一种高科技充电设备。具有以下特点:通过互联网技术,智能充电桩可以远程监控充电状态,实现故障诊断和远程维护;智能充电桩配备触摸屏或按键,用户可以通过这些界面进行充电操作,如选择充电模式、支付费用等;智能充电桩能够收集充电数据,包括充电时间、电量、用户使用习惯等,为运营商提供数据支持以优化服务;当出现过载、短路、漏电等不安全情况时,能够自启动保护功能,确保充电过程的安全性;能够根据电网负荷和用户需求,智能调度充电功率和时间,实现有序充电;还能够实现信息安全,防止用户数据泄露或被未授权访问。Smart charging piles are a kind of high-tech charging equipment that has emerged with the development of the new energy vehicle industry. They have the following features: through Internet technology, smart charging piles can remotely monitor the charging status, realize fault diagnosis and remote maintenance; smart charging piles are equipped with touch screens or buttons, and users can perform charging operations through these interfaces, such as selecting charging modes and paying fees; smart charging piles can collect charging data, including charging time, power, user usage habits, etc., to provide data support for operators to optimize services; when unsafe conditions such as overload, short circuit, leakage, etc. occur, they can automatically start protection functions to ensure the safety of the charging process; they can intelligently dispatch charging power and time according to grid load and user needs to achieve orderly charging; they can also achieve information security to prevent user data from being leaked or unauthorized access.
智能充电桩虽然能够实时远程监控充电状态,但在实际操作中还是会遇到一些问题,比如:监控系统可能会出现技术故障,如软件缺陷、硬件损坏或网络连接问题,导致监控数据不准确或监控中断;实时监控涉及大量数据的传输和存储,可能会面临数据泄露或被未授权访问的风险;监控系统需要能够及时识别异常情况并发出报警,如果报警系统响应迟缓,可能无法及时处理问题;恶劣天气或其他环境因素可能影响监控设备的运行,导致监控数据不准确或设备损坏;实时监控系统对时间敏感,任何延迟都可能影响监控效果,需要确保系统具有高度的实时性。Although smart charging piles can remotely monitor the charging status in real time, some problems will still be encountered in actual operation. For example: the monitoring system may have technical failures, such as software defects, hardware damage or network connection problems, resulting in inaccurate monitoring data or monitoring interruption; real-time monitoring involves the transmission and storage of large amounts of data, which may face the risk of data leakage or unauthorized access; the monitoring system needs to be able to identify abnormal situations in a timely manner and issue alarms. If the alarm system responds slowly, it may not be able to handle the problem in time; severe weather or other environmental factors may affect the operation of monitoring equipment, resulting in inaccurate monitoring data or equipment damage; real-time monitoring systems are time-sensitive, and any delays may affect the monitoring effect, so it is necessary to ensure that the system has a high degree of real-time performance.
以上这些问题直接或间接的导致监测的结果出现偏差,因此就会造成故障诊断不够精准,因此,是否可以将预测与对充电桩安全性进行监测与故障进行诊断相结合呢,这样能够预知下一时段发生故障的概率,进而在当前时段及时采取相应的措施,报警或者维修系统就能够知晓问题进而工作人员能够及时处理问题。The above problems directly or indirectly lead to deviations in the monitoring results, which will cause the fault diagnosis to be inaccurate. Therefore, is it possible to combine the prediction with the monitoring of the safety of the charging pile and the diagnosis of the fault? In this way, the probability of failure in the next period can be predicted, and then corresponding measures can be taken in time in the current period. The alarm or maintenance system will be able to know the problem and the staff can deal with the problem in time.
发明内容Summary of the invention
本发明针对现有技术中的缺点,提供了一种基于人工智能的充电桩安全性监测与故障诊断方法及系统。In view of the shortcomings of the prior art, the present invention provides a charging pile safety monitoring and fault diagnosis method and system based on artificial intelligence.
为了解决上述技术问题,本发明通过下述技术方案得以解决:一种基于人工智能的充电桩安全性监测与故障诊断方法,包括以下步骤:基于预设时间序列,获取智能充电桩的每个时间序列的相关数据,以形成历史数据集,相关数据至少包括温度数据、电压数据及电流数据;对所述历史数据集进行预处理,得到处理后数据集,构建温度数据、电压数据及电流数据的工作关联模型,并按照工作状态划分为正常状态工作关联模式及异常状态工作关联模式;基于处理后数据集识别出状态工作关联模式并基于工作关联模型分别计算出相应的关联误差数据,以得到关联误差数据集;构建故障预测预训练模型,通过关联误差数据集对故障预测预训练模型进行训练及验证,得到故障预测模型,基于故障预测模型对智能充电桩的下一时刻的状态工作关联模式的关联误差数据进行预测,得到预测结果;基于预设故障概率模型计算预测结果发生故障的概率,若超过预设概率阈值,则对智能充电桩的当前时间序列的相关数据进行分析,得到故障诊断结果。In order to solve the above technical problems, the present invention is solved by the following technical solutions: a charging pile safety monitoring and fault diagnosis method based on artificial intelligence, comprising the following steps: based on a preset time series, obtaining relevant data of each time series of the smart charging pile to form a historical data set, the relevant data at least including temperature data, voltage data and current data; preprocessing the historical data set to obtain a processed data set, constructing a working association model of the temperature data, voltage data and current data, and dividing it into a normal state working association mode and an abnormal state working association mode according to the working state; identifying the state working association mode based on the processed data set and calculating the corresponding associated error data based on the working association model to obtain an associated error data set; constructing a fault prediction pre-training model, training and verifying the fault prediction pre-training model through the associated error data set to obtain a fault prediction model, and predicting the associated error data of the state working association mode of the smart charging pile at the next moment based on the fault prediction model to obtain a prediction result; calculating the probability of failure of the prediction result based on a preset fault probability model, if it exceeds a preset probability threshold, analyzing the relevant data of the current time series of the smart charging pile to obtain a fault diagnosis result.
作为一种可实施方式,所述构建温度数据、电压数据及电流数据的工作关联模式,包括以下过程:所述温度数据为工作前温度数据及工作后温度数据;所述电压数据为输入电压数据及输出电压数据;所述电流数据为输入电流数据及输出电流数据;基于输入电压数据及输入电流数据,得到输入功率数据,基于输出电压数据及输出电流数据,得到输出功率数据,基于工作前温度数据及工作后温度数据得到温度变化数据;基于输入功率数据及输出功率数据,得到功率损耗数据;根据温度变化数据、功率损耗数据及时间,构建工作关联模型,基于工作关联模型,得到关联误差数据;所述工作关联模型,表示如下:As an implementable embodiment, the construction of the working association mode of temperature data, voltage data and current data includes the following process: the temperature data is the temperature data before operation and the temperature data after operation; the voltage data is the input voltage data and the output voltage data; the current data is the input current data and the output current data; based on the input voltage data and the input current data, the input power data is obtained; based on the output voltage data and the output current data, the output power data is obtained; based on the temperature data before operation and the temperature data after operation, the temperature change data is obtained; based on the input power data and the output power data, the power loss data is obtained; according to the temperature change data, the power loss data and the time, a working association model is constructed, and based on the working association model, the association error data is obtained; the working association model is expressed as follows:
; ;
其中,表示关联误差数据,表示温度变化数据,表示第个时间序列的功率损耗数据,表示第个时间序列,表示温度影响因子,表示温度影响的范围,,表示第个时间序列的输入功率数据,表示第个时间序列的输出功率数据。in, represents the associated error data, Indicates temperature change data, Indicates Time series of power loss data, Indicates time series, represents the temperature influence factor, Indicates the range of temperature influence, , Indicates The input power data of a time series, Indicates Time series output power data.
作为一种可实施方式,所述预处理,包括数据清洗处理,移除或填补缺失数据,识别并处理异常数据或离群数据;或时间对齐处理;或数据类型转换处理;或时间序列分解处理;或数据重采样处理;或滑动窗口特征处理;或时间特征工程处理;或标准化/归一化处理;或差分处理;或数据去噪处理;或数据分割处理;或数据滚动处理中的一种或多种。As an implementable method, the preprocessing includes one or more of data cleaning processing, removing or filling missing data, identifying and processing abnormal data or outlier data; or time alignment processing; or data type conversion processing; or time series decomposition processing; or data resampling processing; or sliding window feature processing; or time feature engineering processing; or standardization/normalization processing; or difference processing; or data denoising processing; or data segmentation processing; or data rolling processing.
作为一种可实施方式,所述构建故障预测预训练模型,包括以下步骤:基于多个决策树构建初始故障预测模型;通过关联误差数据集中每个数据在故障预测模型的误差总和,得到每个决策树的重要度权重;所述重要度权重为预测准确度评估对应决策树的重要性系数,所述重要性系数,表示如下:As an implementable method, the construction of the fault prediction pre-training model includes the following steps: constructing an initial fault prediction model based on multiple decision trees; obtaining the importance weight of each decision tree by associating the sum of errors of each data in the fault prediction model in the error data set; the importance weight is the importance coefficient of the decision tree corresponding to the prediction accuracy evaluation, and the importance coefficient is expressed as follows:
; ;
其中,T表示决策树数目,表示某棵决策树,y表示某棵决策树对所有样本预测的预测误差总和,X表示相应决策树的重要性系数;根据每个决策树的重要度权重对初始故障预测模型进行更新,直至达到预设迭代次数或初始故障预测模型性能的收敛,进而得到故障预测预训练模型。Where T represents the number of decision trees. represents a decision tree, y represents a decision tree The sum of the prediction errors of all sample predictions, X represents the importance coefficient of the corresponding decision tree; the initial fault prediction model is updated according to the importance weight of each decision tree until the preset number of iterations is reached or the performance of the initial fault prediction model converges, thereby obtaining a fault prediction pre-training model.
作为一种可实施方式,所述故障预测模型,表示如下:As an implementable method, the fault prediction model is expressed as follows:
; ;
其中,表示故障预测模型,N表示决策树数目,表示第棵决策树的预测结果,表示预测结果和真实数据的误差,表示重要性系数。in, represents the fault prediction model, N represents the number of decision trees, Indicates The prediction results of a decision tree, Represents the error between the predicted result and the actual data. Represents the importance coefficient.
作为一种可实施方式,所述预设故障概率模型,表示如下:As an implementable method, the preset fault probability model is expressed as follows:
; ;
其中,表示预测结果发生故障的概率值,表示预测结果的调整因子,表示均值,表示标准差。in, Represents the prediction results The probability of failure occurring, Represents the prediction results The adjustment factor, represents the mean, Represents standard deviation.
作为一种可实施方式,所述对智能充电桩的当前时间序列的相关数据进行分析,得到故障诊断结果,包括以下步骤:至少对当前时间序列关联的输入电压数据及输出电压数据、输入电流数据及输出电流数据、工作前温度数据及工作后温度数据分别进行分析;若输入电压数据及输出电压数据、输入电流数据及输出电流数据、工作前温度数据及工作后温度数据中的任意一项出现问题,则匹配相应的故障诊断结果。As an implementable method, the relevant data of the current time series of the smart charging pile is analyzed to obtain a fault diagnosis result, including the following steps: at least the input voltage data and output voltage data, input current data and output current data, and pre-operation temperature data and post-operation temperature data associated with the current time series are analyzed separately; if there is a problem with any one of the input voltage data and output voltage data, input current data and output current data, and pre-operation temperature data and post-operation temperature data, the corresponding fault diagnosis result is matched.
一种基于人工智能的充电桩安全性监测与故障诊断系统,包括数据获取模块、处理构建模块、识别计算模块、构建预测模块及判断分析模块;所述数据获取模块,用于基于预设时间序列,获取智能充电桩的每个时间序列的相关数据,以形成历史数据集,相关数据至少包括温度数据、电压数据及电流数据;所述处理构建模块,用于对所述历史数据集进行预处理,得到处理后数据集,构建温度数据、电压数据及电流数据的工作关联模型,并按照工作状态划分为正常状态工作关联模式及异常状态工作关联模式;所述识别计算模块,用于基于处理后数据集识别出状态工作关联模式并基于工作关联模型分别计算出相应的关联误差数据,以得到关联误差数据集;所述构建预测模块,用于构建故障预测预训练模型,通过关联误差数据集对故障预测预训练模型进行训练及验证,得到故障预测模型,基于故障预测模型对智能充电桩的下一时刻的状态工作关联模式的关联误差数据进行预测,得到预测结果;所述判断分析模块,基于预设故障概率模型计算预测结果发生故障的概率,若超过预设概率阈值,则对智能充电桩的当前时间序列的相关数据进行分析,得到故障诊断结果。A charging pile safety monitoring and fault diagnosis system based on artificial intelligence includes a data acquisition module, a processing construction module, an identification calculation module, a construction prediction module and a judgment analysis module; the data acquisition module is used to obtain relevant data of each time series of the intelligent charging pile based on a preset time series to form a historical data set, and the relevant data at least includes temperature data, voltage data and current data; the processing construction module is used to pre-process the historical data set to obtain a processed data set, construct a working association model of temperature data, voltage data and current data, and divide it into a normal state working association mode and an abnormal state working association mode according to the working state; the identification calculation module is used to Based on the processed data set, the state-work association mode is identified and the corresponding association error data are calculated based on the work association model to obtain the association error data set; the prediction construction module is used to construct a fault prediction pre-training model, train and verify the fault prediction pre-training model through the association error data set to obtain a fault prediction model, and predict the association error data of the state-work association mode of the smart charging pile at the next moment based on the fault prediction model to obtain a prediction result; the judgment and analysis module calculates the probability of failure of the prediction result based on a preset fault probability model. If it exceeds the preset probability threshold, the relevant data of the current time series of the smart charging pile is analyzed to obtain a fault diagnosis result.
一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,所述计算机程序被处理器执行时实现如下所述的方法:基于预设时间序列,获取智能充电桩的每个时间序列的相关数据,以形成历史数据集,相关数据至少包括温度数据、电压数据及电流数据;对所述历史数据集进行预处理,得到处理后数据集,构建温度数据、电压数据及电流数据的工作关联模型,并按照工作状态划分为正常状态工作关联模式及异常状态工作关联模式;基于处理后数据集识别出状态工作关联模式并基于工作关联模型分别计算出相应的关联误差数据,以得到关联误差数据集;构建故障预测预训练模型,通过关联误差数据集对故障预测预训练模型进行训练及验证,得到故障预测模型,基于故障预测模型对智能充电桩的下一时刻的状态工作关联模式的关联误差数据进行预测,得到预测结果;基于预设故障概率模型计算预测结果发生故障的概率,若超过预设概率阈值,则对智能充电桩的当前时间序列的相关数据进行分析,得到故障诊断结果。A computer-readable storage medium stores a computer program, which implements the following method when executed by a processor: based on a preset time series, obtain relevant data of each time series of a smart charging pile to form a historical data set, wherein the relevant data at least includes temperature data, voltage data and current data; preprocess the historical data set to obtain a processed data set, construct a working association model of the temperature data, voltage data and current data, and divide the data into a normal state working association mode and an abnormal state working association mode according to the working state; identify the state working association mode based on the processed data set and calculate corresponding associated error data based on the working association model to obtain an associated error data set; construct a fault prediction pre-training model, train and verify the fault prediction pre-training model through the associated error data set to obtain a fault prediction model, and predict the associated error data of the state working association mode of the smart charging pile at the next moment based on the fault prediction model to obtain a prediction result; calculate the probability of failure of the prediction result based on a preset fault probability model, and if it exceeds a preset probability threshold, analyze the relevant data of the current time series of the smart charging pile to obtain a fault diagnosis result.
一种基于人工智能的充电桩安全性监测与故障诊断装置,包括存储器、处理器以及存储在所述存储器中并可在所述处理器上运行的计算机程序,所述处理器执行所述计算机程序时实现如权下所述的方法:基于预设时间序列,获取智能充电桩的每个时间序列的相关数据,以形成历史数据集,相关数据至少包括温度数据、电压数据及电流数据;对所述历史数据集进行预处理,得到处理后数据集,构建温度数据、电压数据及电流数据的工作关联模型,并按照工作状态划分为正常状态工作关联模式及异常状态工作关联模式;基于处理后数据集识别出状态工作关联模式并基于工作关联模型分别计算出相应的关联误差数据,以得到关联误差数据集;构建故障预测预训练模型,通过关联误差数据集对故障预测预训练模型进行训练及验证,得到故障预测模型,基于故障预测模型对智能充电桩的下一时刻的状态工作关联模式的关联误差数据进行预测,得到预测结果;基于预设故障概率模型计算预测结果发生故障的概率,若超过预设概率阈值,则对智能充电桩的当前时间序列的相关数据进行分析,得到故障诊断结果。A charging pile safety monitoring and fault diagnosis device based on artificial intelligence comprises a memory, a processor and a computer program stored in the memory and executable on the processor, wherein the processor implements the following method when executing the computer program: based on a preset time series, obtaining relevant data of each time series of a smart charging pile to form a historical data set, wherein the relevant data at least comprises temperature data, voltage data and current data; preprocessing the historical data set to obtain a processed data set, constructing a working association model of the temperature data, voltage data and current data, and dividing the data into a normal state working association mode and an abnormal state working association mode according to the working state; identifying the state working association mode based on the processed data set and calculating the corresponding associated error data based on the working association model to obtain an associated error data set; constructing a fault prediction pre-training model, training and verifying the fault prediction pre-training model through the associated error data set to obtain a fault prediction model, predicting the associated error data of the state working association mode of the smart charging pile at the next moment based on the fault prediction model to obtain a prediction result; calculating the probability of failure of the prediction result based on a preset fault probability model, and if the probability exceeds a preset probability threshold, analyzing the relevant data of the current time series of the smart charging pile to obtain a fault diagnosis result.
本发明由于采用了以上技术方案,具有显著的技术效果:通过本发明的方法及系统,设计故障预测模型,能够预知下一时段发生故障的概率,进而对本时段的各种数据进行分析,这样就会防患于未然,报警或者维修系统就能够知晓问题进而工作人员能够及时处理问题。The present invention has significant technical effects due to the adoption of the above technical solutions: through the method and system of the present invention, a fault prediction model is designed, which can predict the probability of failure in the next time period, and then analyze various data in this time period, so as to prevent problems before they occur. The alarm or maintenance system can know the problem and the staff can deal with the problem in time.
附图说明BRIEF DESCRIPTION OF THE DRAWINGS
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。In order to more clearly illustrate the embodiments of the present invention or the technical solutions in the prior art, the drawings required for use in the embodiments or the description of the prior art will be briefly introduced below. Obviously, the drawings described below are only some embodiments of the present invention. For ordinary technicians in this field, other drawings can be obtained based on these drawings without paying creative labor.
图1是本发明方法的整体流程示意图;FIG1 is a schematic diagram of the overall process of the method of the present invention;
图2是本发明系统的整体结构示意图;FIG2 is a schematic diagram of the overall structure of the system of the present invention;
图3本发明一个实施例对应的流程示意图。FIG. 3 is a schematic diagram of a flow chart corresponding to an embodiment of the present invention.
具体实施方式DETAILED DESCRIPTION
下面结合实施例对本发明做进一步的详细说明,以下实施例是对本发明的解释而本发明并不局限于以下实施例。The present invention is further described in detail below in conjunction with embodiments. The following embodiments are for explanation of the present invention but the present invention is not limited to the following embodiments.
实施例1Example 1
一种基于人工智能的充电桩安全性监测与故障诊断方法,如图1所示,包括以下步骤:A charging pile safety monitoring and fault diagnosis method based on artificial intelligence, as shown in FIG1, includes the following steps:
S100、基于预设时间序列,获取智能充电桩的每个时间序列的相关数据,以形成历史数据集,相关数据至少包括温度数据、电压数据及电流数据;S100, based on a preset time series, obtaining relevant data of each time series of the smart charging pile to form a historical data set, where the relevant data at least includes temperature data, voltage data, and current data;
S200、对所述历史数据集进行预处理,得到处理后数据集,构建温度数据、电压数据及电流数据的工作关联模型,并按照工作状态划分为正常状态工作关联模式及异常状态工作关联模式;S200, preprocessing the historical data set to obtain a processed data set, constructing a working association model of temperature data, voltage data, and current data, and dividing the data into a normal state working association mode and an abnormal state working association mode according to the working state;
S300、基于处理后数据集识别出状态工作关联模式并基于工作关联模型分别计算出相应的关联误差数据,以得到关联误差数据集;S300, identifying the state work association mode based on the processed data set and calculating the corresponding association error data based on the work association model to obtain the association error data set;
S400、构建故障预测预训练模型,通过关联误差数据集对故障预测预训练模型进行训练及验证,得到故障预测模型,基于故障预测模型对智能充电桩的下一时刻的状态工作关联模式的关联误差数据进行预测,得到预测结果;S400, constructing a fault prediction pre-training model, training and verifying the fault prediction pre-training model through an associated error data set to obtain a fault prediction model, and predicting the associated error data of the state working associated mode of the smart charging pile at the next moment based on the fault prediction model to obtain a prediction result;
S500、基于预设故障概率模型计算预测结果发生故障的概率,若超过预设概率阈值,则对智能充电桩的当前时间序列的相关数据进行分析,得到故障诊断结果。S500: Calculate the probability of a failure of the prediction result based on a preset failure probability model. If the probability exceeds a preset probability threshold, analyze the relevant data of the current time series of the smart charging pile to obtain a fault diagnosis result.
在步骤S200中,所述构建温度数据、电压数据及电流数据的工作关联模式,如图3所示,包括以下过程:In step S200, the construction of the working association mode of temperature data, voltage data and current data, as shown in FIG3 , includes the following processes:
S210、所述温度数据为工作前温度数据及工作后温度数据;所述电压数据为输入电压数据及输出电压数据;所述电流数据为输入电流数据及输出电流数据;S210, the temperature data is the temperature data before operation and the temperature data after operation; the voltage data is the input voltage data and the output voltage data; the current data is the input current data and the output current data;
S220、基于输入电压数据及输入电流数据,得到输入功率数据,基于输出电压数据及输出电流数据,得到输出功率数据,基于工作前温度数据及工作后温度数据得到温度变化数据;S220, obtaining input power data based on the input voltage data and the input current data, obtaining output power data based on the output voltage data and the output current data, and obtaining temperature change data based on the pre-operation temperature data and the post-operation temperature data;
S230、基于输入功率数据及输出功率数据,得到功率损耗数据;S230, obtaining power loss data based on the input power data and the output power data;
S240、根据温度变化数据、功率损耗数据及时间,构建工作关联模型,基于工作关联模型,得到关联误差数据;所述工作关联模型,表示如下:S240, constructing a working correlation model according to the temperature change data, the power loss data and the time, and obtaining correlation error data based on the working correlation model; the working correlation model is expressed as follows:
; ;
其中,表示关联误差数据,表示温度变化数据,表示第个时间序列的功率损耗数据,表示第个时间序列,表示温度影响因子,表示温度影响的范围,,表示第个时间序列的输入功率数据,表示第个时间序列的输出功率数据。in, represents the associated error data, Indicates temperature change data, Indicates Time series of power loss data, Indicates time series, represents the temperature influence factor, Indicates the range of temperature influence, , Indicates The input power data of a time series, Indicates Time series output power data.
在此,基于输入电压数据及输入电流数据,得到输入功率数据,其输入功率数据的表达式可以表示为,表示第个时间序列的输入电压数据,表示第个时间序列的输入电流数据,基于输出电压数据及输出电流数据,得到输出功率数据,其输出功率数据的表达式可以为,表示第个时间序列的输出电压数据,表示第个时间序列的输出电流数据,而输入电压数据、输入电流数据、输出电压数据及输出电流数据都是可以实时获取的,可以不用通过相关的计算得到,实时获取方式通过现有技术手段可以实现,在此只要基于实时获取的这些数据进行后续的相关运用才是本实施例的具体要解决的问题。Here, based on the input voltage data and the input current data, the input power data is obtained, and the expression of the input power data can be expressed as , Indicates The input voltage data of a time series, Indicates Based on the input current data of a time series, the output power data is obtained based on the output voltage data and output current data. The expression of the output power data can be , Indicates Time series of output voltage data, Indicates The output current data of a time series, and the input voltage data, input current data, output voltage data and output current data can all be obtained in real time, and do not need to be obtained through relevant calculations. The real-time acquisition method can be achieved through existing technical means. Here, the specific problem to be solved in this embodiment is to perform subsequent related applications based on these data obtained in real time.
在一个实施例中,所述预处理,包括数据清洗处理,移除或填补缺失数据,识别并处理异常数据或离群数据;或时间对齐处理;或数据类型转换处理;或时间序列分解处理;或数据重采样处理;或滑动窗口特征处理;或时间特征工程处理;或标准化/归一化处理;或差分处理;或数据去噪处理;或数据分割处理;或数据滚动处理中的一种或多种。此处的预处理,可以根据数据集的具体情况来选择预处理的具体处理方式,最终要得到处理后数据集。In one embodiment, the preprocessing includes one or more of data cleaning, removing or filling missing data, identifying and processing abnormal data or outlier data; or time alignment; or data type conversion; or time series decomposition; or data resampling; or sliding window feature processing; or time feature engineering; or standardization/normalization; or difference processing; or data denoising; or data segmentation; or data rolling processing. The preprocessing here can select a specific processing method of the preprocessing according to the specific situation of the data set, and finally obtain the processed data set.
决策树通常用于分类和回归任务。通过一系列的问题将数据分割成越来越小的子集,直到满足停止条件,最终在每个叶节点上给出一个预测结果。决策树由节点(包括内部节点和叶节点)和边组成。内部节点表示属性测试,叶节点给出预测结果。在每个内部节点,决策树选择一个特征和阈值来分割数据。特征选择基于不纯度度量。数据根据特征值被分割成不同的子集,这个过程递归进行,直到满足停止条件。停止条件可以是达到预设的最大深度、节点中的样本数量小于某个阈值、或进一步分割不会显著减少不纯度。在分类问题中,叶节点通常给出一个类别标签;在回归问题中,叶节点给出一个数值。因此,本实施例是采用决策树构建的故障预测预训练模型,包括以下步骤:基于多个决策树构建初始故障预测模型;通过关联误差数据集中每个数据在故障预测模型的误差总和,得到每个决策树的重要度权重;所述重要度权重为预测准确度评估对应决策树的重要性系数,所述重要性系数,表示如下:Decision trees are commonly used for classification and regression tasks. Through a series of questions, the data is divided into smaller and smaller subsets until the stopping condition is met, and finally a prediction result is given at each leaf node. A decision tree consists of nodes (including internal nodes and leaf nodes) and edges. Internal nodes represent attribute tests, and leaf nodes give prediction results. At each internal node, the decision tree selects a feature and a threshold to split the data. Feature selection is based on impurity measurement. The data is divided into different subsets according to the feature value, and this process is recursively performed until the stopping condition is met. The stopping condition can be that the preset maximum depth is reached, the number of samples in the node is less than a certain threshold, or further segmentation does not significantly reduce the impurity. In classification problems, leaf nodes usually give a category label; in regression problems, leaf nodes give a numerical value. Therefore, this embodiment is a fault prediction pre-training model constructed using a decision tree, including the following steps: constructing an initial fault prediction model based on multiple decision trees; obtaining the importance weight of each decision tree by associating the sum of the errors of each data in the fault prediction model in the error data set; the importance weight is the importance coefficient of the decision tree corresponding to the prediction accuracy evaluation, and the importance coefficient is expressed as follows:
; ;
其中,T表示决策树数目,表示某棵决策树,y表示某棵决策树对所有样本预测的预测误差总和,X表示相应决策树的重要性系数;根据每个决策树的重要度权重对初始故障预测模型进行更新,直至达到预设迭代次数或初始故障预测模型性能的收敛,进而得到故障预测预训练模型。Where T represents the number of decision trees. represents a decision tree, y represents a decision tree The sum of the prediction errors of all sample predictions, X represents the importance coefficient of the corresponding decision tree; the initial fault prediction model is updated according to the importance weight of each decision tree until the preset number of iterations is reached or the performance of the initial fault prediction model converges, thereby obtaining a fault prediction pre-training model.
本实施例中,故障预测模型,表示如下:In this embodiment, the fault prediction model is expressed as follows:
; ;
其中,表示故障预测模型,N表示决策树数目,表示第棵决策树的预测结果,表示预测结果和真实数据的误差,表示重要性系数。in, represents the fault prediction model, N represents the number of decision trees, Indicates The prediction results of a decision tree, Represents the error between the predicted result and the actual data. Represents the importance coefficient.
本发明的一个实施例中,所述预设故障概率模型,表示如下:In one embodiment of the present invention, the preset fault probability model is expressed as follows:
; ;
其中,表示预测结果发生故障的概率值,表示预测结果的调整因子,表示均值,表示标准差。根据测算,预测结果是在一定范围内满足正态分布的,所以通过计算故障概率进行判断出现故障的可能性,若超过设置的阈值,则说明需要执行后续具体的故障分析过程即后续的操作步骤。in, Represents the prediction results The probability of failure occurring, Represents the prediction results The adjustment factor, represents the mean, Indicates standard deviation. According to the calculation, the prediction result satisfies the normal distribution within a certain range, so the possibility of failure is judged by calculating the failure probability. If it exceeds the set threshold, it means that the subsequent specific failure analysis process, that is, the subsequent operation steps, need to be performed.
在一个实施例中,所述对智能充电桩的当前时间序列的相关数据进行分析,得到故障诊断结果,包括以下步骤:至少对当前时间序列关联的输入电压数据及输出电压数据、输入电流数据及输出电流数据、工作前温度数据及工作后温度数据分别进行分析;若输入电压数据及输出电压数据、输入电流数据及输出电流数据、工作前温度数据及工作后温度数据中的任意一项出现问题,则匹配相应的故障诊断结果。In one embodiment, the analysis of the relevant data of the current time series of the smart charging pile to obtain the fault diagnosis result includes the following steps: at least the input voltage data and output voltage data, input current data and output current data, pre-operation temperature data and post-operation temperature data associated with the current time series are analyzed separately; if there is a problem with any one of the input voltage data and output voltage data, input current data and output current data, pre-operation temperature data and post-operation temperature data, the corresponding fault diagnosis result is matched.
本实施例中,是针对于预测出下一时间序列的预测结果不满足要求的情况而制定的,如果下一时间序列的预测结果出现问题,则说明可能当前时间序列的相关数据已经出现了潜在的问题,则针对于当前时间序列的相关数据进行分析,当然,不仅仅限于输入电压数据及输出电压数据、输入电流数据及输出电流数据、工作前温度数据及工作后温度数据这些数据,甚至可能还会分析其他相关数据,比如保护技术参数等,如果这些数据出现问题,则会匹配出或者分析出具体的故障诊断结果,比如,预先可能会设置简易的故障诊断表格,如果很简单的故障,则会直接匹配至相应的结果,如果过于复杂的问题,则会根据相关数据进行详细的分析及计算,最终得到具体的故障诊断结果。In the present embodiment, it is formulated for the situation where the prediction result of the next time series does not meet the requirements. If there is a problem with the prediction result of the next time series, it means that there may be a potential problem with the relevant data of the current time series, and the relevant data of the current time series is analyzed. Of course, it is not limited to the input voltage data and the output voltage data, the input current data and the output current data, the pre-operation temperature data and the post-operation temperature data. Other relevant data may even be analyzed, such as protection technical parameters, etc. If there is a problem with these data, specific fault diagnosis results will be matched or analyzed. For example, a simple fault diagnosis table may be set in advance. If the fault is very simple, it will be directly matched to the corresponding result. If the problem is too complicated, detailed analysis and calculation will be performed based on the relevant data to finally obtain specific fault diagnosis results.
实施例2Example 2
一种基于人工智能的充电桩安全性监测与故障诊断系统,如图2所示,包括数据获取模块100、处理构建模块200、识别计算模块300、构建预测模块400及判断分析模块500;所述数据获取模块100,用于基于预设时间序列,获取智能充电桩的每个时间序列的相关数据,以形成历史数据集,相关数据至少包括温度数据、电压数据及电流数据;所述处理构建模块200,用于对所述历史数据集进行预处理,得到处理后数据集,构建温度数据、电压数据及电流数据的工作关联模型,并按照工作状态划分为正常状态工作关联模式及异常状态工作关联模式;所述识别计算模块300,用于基于处理后数据集识别出状态工作关联模式并基于工作关联模型分别计算出相应的关联误差数据,以得到关联误差数据集;所述构建预测模块400,用于构建故障预测预训练模型,通过关联误差数据集对故障预测预训练模型进行训练及验证,得到故障预测模型,基于故障预测模型对智能充电桩的下一时刻的状态工作关联模式的关联误差数据进行预测,得到预测结果;所述判断分析模块500,基于预设故障概率模型计算预测结果发生故障的概率,若超过预设概率阈值,则对智能充电桩的当前时间序列的相关数据进行分析,得到故障诊断结果。A charging pile safety monitoring and fault diagnosis system based on artificial intelligence, as shown in FIG2, includes a data acquisition module 100, a processing construction module 200, an identification calculation module 300, a construction prediction module 400 and a judgment analysis module 500; the data acquisition module 100 is used to obtain relevant data of each time series of the intelligent charging pile based on a preset time series to form a historical data set, and the relevant data at least includes temperature data, voltage data and current data; the processing construction module 200 is used to pre-process the historical data set to obtain a processed data set, construct a working association model of temperature data, voltage data and current data, and divide it into a normal state working association mode and an abnormal state working association mode according to the working state; The identification and calculation module 300 is used to identify the state-work association mode based on the processed data set and calculate the corresponding association error data based on the work association model to obtain the association error data set; the construction and prediction module 400 is used to construct a fault prediction pre-training model, train and verify the fault prediction pre-training model through the association error data set to obtain a fault prediction model, and predict the association error data of the state-work association mode of the smart charging pile at the next moment based on the fault prediction model to obtain a prediction result; the judgment and analysis module 500 calculates the probability of failure of the prediction result based on a preset fault probability model. If it exceeds the preset probability threshold, the relevant data of the current time series of the smart charging pile is analyzed to obtain a fault diagnosis result.
本说明书中的各个实施例均采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似的部分互相参见即可。The various embodiments in this specification are described in a progressive manner, and each embodiment focuses on the differences from other embodiments. The same or similar parts between the various embodiments can be referenced to each other.
本领域内的技术人员应明了,本发明的实施例可提供为方法、装置、或计算机程序产品。因此,本发明可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本发明可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。It will be appreciated by those skilled in the art that embodiments of the present invention may be provided as methods, apparatus, or computer program products. Therefore, the present invention may take the form of a complete hardware embodiment, a complete software embodiment, or an embodiment combining software and hardware aspects. Furthermore, the present invention may take the form of a computer program product implemented on one or more computer-usable storage media (including but not limited to disk storage, CD-ROM, optical storage, etc.) containing computer-usable program code.
本发明是参照根据本发明的方法、终端设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理终端设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理终端设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。The present invention is described with reference to the flowchart and/or block diagram of the method, terminal device (system), and computer program product according to the present invention. It should be understood that each process and/or box in the flowchart and/or block diagram, as well as the combination of the processes and/or boxes in the flowchart and/or block diagram, can be implemented by computer program instructions. These computer program instructions can be provided to a processor of a general-purpose computer, a special-purpose computer, an embedded processor, or other programmable data processing terminal device to generate a machine, so that the instructions executed by the processor of the computer or other programmable data processing terminal device generate a device for implementing the functions specified in one or more processes in the flowchart and/or one or more boxes in the block diagram.
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理终端设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。These computer program instructions may also be stored in a computer-readable memory that can direct a computer or other programmable data processing terminal device to operate in a specific manner, so that the instructions stored in the computer-readable memory produce a manufactured product including an instruction device that implements the functions specified in one or more processes in the flowchart and/or one or more boxes in the block diagram.
这些计算机程序指令也可装载到计算机或其他可编程数据处理终端设备上,使得在计算机或其他可编程终端设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程终端设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。These computer program instructions can also be loaded onto a computer or other programmable data processing terminal device so that a series of operating steps are executed on the computer or other programmable terminal device to produce computer-implemented processing, so that the instructions executed on the computer or other programmable terminal device provide steps for implementing the functions specified in one or more processes in the flowchart and/or one or more boxes in the block diagram.
需要说明的是:说明书中提到的“一个实施例”或“实施例”意指结合实施例描述的特定特征、结构或特性包括在本发明的至少一个实施例中。因此,说明书通篇各个地方出现的短语“一个实施例”或“实施例”并不一定均指同一个实施例。It should be noted that the "one embodiment" or "embodiment" mentioned in the specification means that the specific features, structures or characteristics described in conjunction with the embodiment are included in at least one embodiment of the present invention. Therefore, the phrases "one embodiment" or "embodiment" appearing in various places throughout the specification do not necessarily refer to the same embodiment.
此外,需要说明的是,本说明书中所描述的具体实施例,其零、部件的形状、所取名称等可以不同。凡依本发明专利构思所述的构造、特征及原理所做的等效或简单变化,均包括于本发明专利的保护范围内。本发明所属技术领域的技术人员可以对所描述的具体实施例做各种各样的修改或补充或采用类似的方式替代,只要不偏离本发明的结构或者超越本权利要求书所定义的范围,均应属于本发明的保护范围。In addition, it should be noted that the shapes and names of the parts and components of the specific embodiments described in this specification may be different. Any equivalent or simple changes made based on the structure, features and principles described in the patent concept of the present invention are included in the protection scope of the patent of the present invention. The technicians in the technical field of the present invention can make various modifications or supplements to the specific embodiments described or replace them in a similar manner, as long as they do not deviate from the structure of the present invention or exceed the scope defined by the claims, they should all fall within the protection scope of the present invention.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202411056070.9A CN118585755B (en) | 2024-08-02 | 2024-08-02 | Charging pile safety monitoring and fault diagnosis method and system based on artificial intelligence |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202411056070.9A CN118585755B (en) | 2024-08-02 | 2024-08-02 | Charging pile safety monitoring and fault diagnosis method and system based on artificial intelligence |
Publications (2)
Publication Number | Publication Date |
---|---|
CN118585755A true CN118585755A (en) | 2024-09-03 |
CN118585755B CN118585755B (en) | 2024-11-01 |
Family
ID=92528549
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202411056070.9A Active CN118585755B (en) | 2024-08-02 | 2024-08-02 | Charging pile safety monitoring and fault diagnosis method and system based on artificial intelligence |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN118585755B (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN119291357A (en) * | 2024-12-11 | 2025-01-10 | 广东盈通智联数字技术有限公司 | Fault detection method and device for charging pile and electronic equipment |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115238752A (en) * | 2022-08-15 | 2022-10-25 | 福州亿力卓越管理顾问有限公司 | Fill electric pile fault prediction system based on artificial intelligence |
WO2023130898A1 (en) * | 2022-01-05 | 2023-07-13 | 中车唐山机车车辆有限公司 | System fault monitoring method and apparatus, and electronic device and storage medium |
CN116578873A (en) * | 2023-06-14 | 2023-08-11 | 国网北京市电力公司 | Method, device, equipment and medium for diagnosing faults of charging pile |
CN117435984A (en) * | 2023-10-30 | 2024-01-23 | 深圳市皇驰科技有限公司 | Charging pile fault prediction method and system |
CN117942517A (en) * | 2024-02-01 | 2024-04-30 | 九江中船长安消防设备有限公司 | Intelligent fire control monitored control system of filling electric pile |
-
2024
- 2024-08-02 CN CN202411056070.9A patent/CN118585755B/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2023130898A1 (en) * | 2022-01-05 | 2023-07-13 | 中车唐山机车车辆有限公司 | System fault monitoring method and apparatus, and electronic device and storage medium |
CN115238752A (en) * | 2022-08-15 | 2022-10-25 | 福州亿力卓越管理顾问有限公司 | Fill electric pile fault prediction system based on artificial intelligence |
CN116578873A (en) * | 2023-06-14 | 2023-08-11 | 国网北京市电力公司 | Method, device, equipment and medium for diagnosing faults of charging pile |
CN117435984A (en) * | 2023-10-30 | 2024-01-23 | 深圳市皇驰科技有限公司 | Charging pile fault prediction method and system |
CN117942517A (en) * | 2024-02-01 | 2024-04-30 | 九江中船长安消防设备有限公司 | Intelligent fire control monitored control system of filling electric pile |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN119291357A (en) * | 2024-12-11 | 2025-01-10 | 广东盈通智联数字技术有限公司 | Fault detection method and device for charging pile and electronic equipment |
Also Published As
Publication number | Publication date |
---|---|
CN118585755B (en) | 2024-11-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN111047082B (en) | Early warning method and device of equipment, storage medium and electronic device | |
CN108375715B (en) | A method and system for daily prediction of distribution network line fault risk | |
KR101984730B1 (en) | Automatic predicting system for server failure and automatic predicting method for server failure | |
CN113779496B (en) | Power equipment state evaluation method and system based on equipment panoramic data | |
CN107862052A (en) | A kind of fault case storehouse, fault tree and fault spectrum construction method | |
CN108776855A (en) | A kind of smart machine health status evaluation method and system | |
CN108152612A (en) | A kind of transformer fault Forecasting Methodology, device, terminal and readable storage medium storing program for executing | |
CN118585755B (en) | Charging pile safety monitoring and fault diagnosis method and system based on artificial intelligence | |
CN111931334B (en) | Method and system for evaluating operation reliability of cable equipment | |
CN114551271A (en) | Method and device for monitoring machine operation condition, storage medium and electronic equipment | |
CN116467674B (en) | A distribution network intelligent fault processing fusion update system and method | |
CN118395358B (en) | Intelligent anti-misoperation topology analysis method for transformer substation | |
CN113036913A (en) | Method and device for monitoring state of comprehensive energy equipment | |
CN117783769A (en) | Power distribution network fault positioning method, system, equipment and storage medium based on visual platform | |
CN117331790A (en) | Machine room fault detection method and device for data center | |
CN114743703A (en) | Reliability analysis method, device, equipment and storage medium for nuclear power station unit | |
CN116933010A (en) | Load rate analysis and evaluation method and system based on multi-source data fusion and deep learning | |
CN116258467A (en) | Electric power construction management and control system | |
CN119001298A (en) | DTU remote monitoring method and system | |
CN114138601A (en) | Service alarm method, device, equipment and storage medium | |
CN118153240A (en) | Power grid short-circuit parameter library construction method based on short-circuit capacity measurement technology | |
CN117375231A (en) | Statistical method and data processing system based on power grid data nodes | |
CN116840689A (en) | A battery capacity prediction method, device and computer-readable storage medium | |
CN113327072A (en) | Data sharing method and system for intelligent manufacturing equipment process | |
CN117472898B (en) | A method and system for correcting abnormal data in distribution network based on fusion |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |