CN118561989A - Fc-受体结合的修饰的非对称抗体及使用方法 - Google Patents

Fc-受体结合的修饰的非对称抗体及使用方法 Download PDF

Info

Publication number
CN118561989A
CN118561989A CN202410625378.4A CN202410625378A CN118561989A CN 118561989 A CN118561989 A CN 118561989A CN 202410625378 A CN202410625378 A CN 202410625378A CN 118561989 A CN118561989 A CN 118561989A
Authority
CN
China
Prior art keywords
region
region polypeptide
amino acid
antibody
igg class
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202410625378.4A
Other languages
English (en)
Inventor
J·T·雷古拉
W·舍费尔
T·施洛特豪尔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
F Hoffmann La Roche AG
Original Assignee
F Hoffmann La Roche AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by F Hoffmann La Roche AG filed Critical F Hoffmann La Roche AG
Publication of CN118561989A publication Critical patent/CN118561989A/zh
Pending legal-status Critical Current

Links

Abstract

本文中报道了包含第一变体Fc区多肽和第二变体Fc区多肽的IgG类Fc区,其中第一变体Fc区多肽衍生自第一亲本IgG类Fc区多肽并且第二变体Fc区多肽衍生自第二亲本IgG类Fc区多肽,因而第一亲本IgG类Fc区多肽与第二亲本IgG类Fc区多肽相同或不同,并且第一变体Fc区多肽在除其中第一亲本IgG类Fc区多肽与第二亲本IgG类Fc区多肽不同的那些氨基酸残基之外的一个或多个氨基酸残基中与第二变体Fc区多肽不同,并且包含第一变体Fc区多肽和第二变体Fc区多肽的IgG类Fc具有与包含a)的第一亲本IgG类Fc区多肽和a)的第二亲本IgG类Fc区多肽的IgG类Fc区不同的对人Fc‑受体亲和力。

Description

FC-受体结合的修饰的非对称抗体及使用方法
本申请为2014年4月25日提交的、发明名称为“FC-受体结合的修饰的非对称抗体及使用方法”的PCT申请PCT/EP2014/058416的分案申请,所述PCT申请进入中国国家阶段的日期为2015年10月28日,申请号为201480024044.6。
技术领域
本发明涉及在其Fc-受体相互作用、尤其其FcRn相互作用方面被非对称修饰的抗体和Fc区融合多肽及其使用方法。
背景技术
几乎全部Fc-受体均与抗体的对称Fc区非对称结合。
例如,人Fcγ-受体IIIA与两条Fc区多肽链上的不同氨基酸残基相互作用。因此,非对称引入的突变(例如在较低的铰链区中残基233至238处)需要用来增加或减少抗体与人Fcγ受体IIIA的相互作用。
但是,人新生Fc-受体FcRn之间的相互作用是对称的:两个FcRn分子可以与单个IgG以2:1化学计量结合(参见,例如Huber,A.W.等人,J.Mol.Biol.230(1993)1077-1083)。因此,非对称引入的突变减少结合至一种FcRn/由其的结合,但不减少结合至两种FcRn/由它们的结合。
非对称IgG样分子的例子包括但不限于借助以下技术或使用以下样式获得的那些:Triomab/Quadroma、Knobs-into-Holes、CrossMab、静电匹配的抗体、LUZ-Y、链交换工程化结构域体、Biclonic和DuoBody。
在WO 2012/125850中,报道了含有Fc的蛋白质,所述蛋白质在其Fc区中包含非对称置换并且具有增加的与人Fcγ-受体IIIA的结合作用和增强的ADCC活性。
在WO 2012/58768中,报道了包含异二聚体Fc区的分离异源多聚体,其中异二聚体Fc区包含变体CH3结构域,所述变体CH3结构域包含在稳定性增加的情况下促进异二聚体形成的氨基酸突变,其中异二聚体Fc区还包含变体CH2结构域,所述变体CH2结构域包含非对称氨基酸修饰以促进Fcγ受体的选择性结合作用。
在WO 2011/131746中,报道了通过在两个单特异性起始蛋白质的CH3区域中引入非对称突变,可以迫使Fab-臂交换反应变得定向并且因而产生高度稳定的异二聚体蛋白。
Kim等人(Kim,H.等人,Invest.Ophthalmol.Vis.Sci.49(2008)2025-2029)报道,除了视网膜色素上皮和脉络膜组织,眼组织,包括睫状体和虹膜、视网膜、结膜、角膜、晶状体和视神经束,显示存在处于预测大小的FcRn转录物。血-眼屏障显示FcRn受体表达,表明IgG从眼组织向血液系统的运输可能使用这种受体。由于内眼组织如视网膜通过血-眼屏障与血液系统隔离,将预计在玻璃体内注射后仅短时间在血液系统中无法检出全长抗体。然而,来自猴和人的最近药代动力学数据均显示玻璃体内贝伐珠单抗在玻璃体内注射后数小时内出现在血液中。因此,可能的是结膜淋巴管中的FcRn受体功能将会充当外排受体以有效从结膜腔隙消除抗原-抗体IgG复合物。尽管分子量相似,但是在眼房水中检出IgG(150kDa),但无法检出IgA(160kDa)。可以通过对IgG有选择性的FcRn受体的存在,解释IgG和IgA从血清向眼房水中渗入之间的不一致性。
Kim等人进一步报道(Kim,H.等人,Mol.Vis.15(2009)2803-2812)直接玻璃体内注射已经成为向眼后段递送治疗性抗体部用于视网膜病症的常见方案。两种玻璃体内施用的贝伐珠单抗(lgG)和鸡IgY均越过内界膜屏障并扩散入更深的视网膜结构。在扩散穿过视网膜后,贝伐珠单抗跨过血-视网膜屏障并且泄漏入全身循环中。视网膜内鸡IgY仅沿着血-视网膜屏障的近腔侧定位。另外,脉络膜血管对鸡IgY存在为阴性。玻璃体内施用后,发现贝伐珠单抗的生理相关的血清水平占到所注射剂量的至多30%。这提示比先前所认识到更大的全身性副作用风险。血-眼屏障代表一种运输全长IgG并将其清除至全身循环中的特殊机制。Kim的这项研究证实这种机制是新生Fc-受体的假设。
在US2011/054151中,报道了用于抗原的同时双价和单价共结合作用的组合物和方法。
在US2011/236388中,报道了双特异性双价抗VEGF/抗ANG-2抗体。
在WO 2010/121766中报道了FcRn结合位点修饰的抗体融合蛋白。
Kim,J.K.等人报道了在人IgG上结合MHC I类相关受体FcRn的位点的定位(Eur.J.Immunol.29(1999)2819-2825)。
Qiao,S.-W.等人报道了抗体介导的抗原呈递依赖FcRn(Proc.Natl.Acad.Sci.USA105(2008)9337-9342)。
Kuo,T.T.等人报道新生Fc受体:从免疫力到治疗剂(J.Clin.Immunol.30(2010)777-789)。
Firan,M.等人报道MHC I类相关受体FcRn在人类的母体胎儿γ-球蛋白转移过程中发挥必需作用(Int.Immunol.13(2001)993-1002)。
Vidarsson,G.等人报道FcRn是吞噬细胞上在吞噬过程中具有新作用的IgG受体(Blood 108(2006)3573-3579)。
Gillies,S.D.等人报道了通过减少抗体-白介素2融合蛋白与Fc-受体相互作用所致的抗体-白介素2融合蛋白的有效性(Cancer Res.59(1999)2159-2166)。
在WO 2013/060867中报道了产生异二聚体蛋白。
概述
已经发现,抗体或Fc区融合多肽的FcRn结合作用可以通过改变各条Fc区多肽的非相应位置中的氨基酸残基来修饰,原因是这些改变在修饰FcRn结合作用中共同发挥作用。如本文中报道的抗体和Fc区融合多肽是有用的,例如用于治疗其中要求定制全身性保留时间的疾病。
如本文中报道的一个方面是一种包含第一Fc区多肽和第二Fc区多肽的变体(人)IgG类Fc区,
其中
a)第一Fc区多肽和第二Fc区多肽衍生自相同的亲本(人)IgG类Fc区多肽,并且
b)第一Fc区多肽具有至少在根据KabatEU index编号体系的一个相应位置与第二Fc区多肽氨基酸序列不同的氨基酸序列,
因而与在第一Fc区多肽和第二Fc区多肽中根据KabatEU index编号体系的相应位置处具有(与a)的(亲本)人Fc区多肽)相同的氨基酸残基的(人)IgG类Fc区相比,变体(人)IgG类Fc区具有不同的对人Fc-受体的亲和力。
如本文中报道的一个方面是一种包含第一Fc区多肽和第二Fc区多肽的变体(人)IgG类Fc区,
其中
a)第一Fc区多肽具有至少在根据KabatEU index编号体系的一个相应位置与第二Fc区多肽氨基酸序列不同的氨基酸序列,
因而与第一和第二Fc区多肽中相应位置处具有(与相应人Fc区中)相同氨基酸残基的IgG类Fc区相比,变体(人)IgG类Fc区具有不同的对人Fc-受体亲和力。
如本文中报道的一个方面是一种包含第一Fc区多肽和第二Fc区多肽的变体(人)IgG类Fc区,
其中
a)第一Fc区多肽的氨基酸序列与第一亲本IgG类Fc区多肽的氨基酸序列在一个或多个氨基酸残基中不同,
并且
第二Fc区多肽的氨基酸序列与第二亲本IgG类Fc区多肽的氨基酸序列在一个或多个氨基酸残基中不同,并且
b)第一Fc区多肽具有至少在根据KabatEU index编号体系的一个相应位置与第二Fc区多肽氨基酸序列不同的氨基酸序列,
因而与包含a)的第一和第二亲本IgG类Fc区多肽的亲本IgG类Fc区相比,变体(人)IgG类Fc区具有不同的对人Fc-受体的亲和力。
如本文中报道的一个方面是一种包含第一Fc区多肽和第二Fc区多肽的变体(人)IgG类Fc区,
其中
a)第一Fc区多肽的氨基酸序列衍生自第一亲本IgG类Fc区多肽并且第二Fc区多肽的氨基酸序列衍生自第二亲本IgG类Fc区多肽,并且
b)在第一Fc区多肽中和/或在第二Fc区多肽中引入一个或多个突变,从而第一Fc区多肽具有至少在根据KabatEU index编号体系的一个相应位置与第二Fc区多肽氨基酸序列不同的氨基酸序列,
因而与包含a)的第一和第二亲本IgG类Fc区多肽的IgG类Fc区相比,变体(人)IgG类Fc区具有不同的对人Fc-受体的亲和力。
在全部方面的一个实施方案中,变体(人)IgG类Fc区是变体(人)IgG类异二聚Fc区。
在全部方面的一个实施方案中,第一亲本IgG类Fc区多肽和第二亲本IgG类Fc区多肽是非人IgG类Fc区多肽。
在全部方面的一个实施方案中,第一亲本IgG类Fc区多肽和第二亲本IgG类Fc区多肽是相同的IgG类Fc区多肽。
在全部方面的一个实施方案中,第一Fc区多肽和第二Fc区多肽配对以形成二聚(有功能的)Fc区导致异二聚体的形成。
在全部方面的一个实施方案中,第一和第二Fc区多肽在来自各自亲本IgG类Fc区多肽的至少一个氨基酸残基中独立地彼此不同。
在全部方面的一个实施方案中,IgG类选自亚类IgG1、IgG2、IgG3和IgG4。
在全部方面的一个实施方案中,人Fc-受体选自人新生Fc-受体和人Fcγ受体。
在全部方面的一个实施方案中,第一Fc区多肽在根据KabatEU index编号体系的相应位置处的1个或2个或3个或4个或5个或6个或7个或8个或9个或10个或11个或12个氨基酸残基中与第二Fc区多肽不同。
在一个实施方案中,与相应的亲本人IgG类Fc区相比,变体(人)IgG类Fc区具有减弱的葡萄球菌(Staphylococcus)蛋白A结合作用。
在一个实施方案中,变体(人)IgG类Fc区具有与相应的亲本人IgG类Fc区相同的葡萄球菌蛋白A结合作用。
在全部方面的一个实施方案中,变体(人)IgG类Fc区包含人IgG1或人IgG4亚类(衍生自人源)的第一和第二Fc区多肽二者,所述多肽在第一Fc区多肽中包含选自i)组I253A、H310A和H435A、或ii)组H310A、H433A和Y436A、或iii)组L251D、L314D和L432D、或iv)组L251S、L314S和L432S(根据KabatEU index编号体系编号)的一个或两个突变并且在第二Fc区多肽中包含选自突变L251D、L251S、I253A、H310A、L314D、L314S、L432D、L432S、H433A、H435A和Y436A(根据KabatEU index编号体系编号)的一个或两个突变,从而全部突变i)I253A、H310A和H435A、或ii)H310A、H433A和Y436A、或iii)L251D、L314D和L432D、或iv)L251S、L314S和L432S均含于变体(人)IgG类Fc区中。
在全部方面的一个实施方案中,变体(人)IgG类Fc区包含人IgG1或人IgG4亚类(衍生自人源)的第一和第二Fc区多肽,所述多肽在Fc区中包含突变I253A/H310A/H435A或H310A/H433A/Y436A或L251D/L314D/L432D或L251S/L314S/L432S或其组合(根据KabatEUindex编号体系编号),因而i)全部突变均在第一或第二Fc区多肽中,或ii)一个或两个突变在第一Fc区多肽中并且一个或两个突变在第二Fc区多肽中,从而全部突变i)I253A、H310A和H435A、或ii)H310A、H433A和Y436A、或iii)L251D、L314D和L432D、或iv)L251S、L314S和L432S均包含于该Fc区中。
在全部方面的一个实施方案中,变体(人)IgG类Fc区包含人IgG1亚类的第一和第二Fc区多肽,其中
a)第一和第二Fc区多肽二者还包含突变L234A和L235A(根据KabatEU index编号体系编号),或
b)第一和第二Fc区多肽二者还包含突变P329G(根据KabatEU index编号体系编号),或
c)第一和第二Fc区多肽二者还包含突变L234A和L235A和P329G(根据KabatEUindex编号体系编号),或
d)第一和第二Fc区多肽二者还包含突变L234A和L235A(根据KabatEU index编号体系编号),并且第一Fc区多肽还包含突变Y349C或S354C和突变T366W,以及第二Fc区多肽还包含突变Y349C或S354C及突变T366S、L368A和Y407V,或
e)第一和第二Fc区多肽二者还包含突变L234A和L235A和P329G(根据KabatEUindex编号体系编号),并且第一Fc区多肽还包含突变Y349C或S354C和突变T366W,以及第二Fc区多肽还包含突变Y349C或S354C及突变T366S、L368A和Y407V。
在一个实施方案中,变体(人)IgG类Fc区包含人IgG4亚类的第一和第二Fc区多肽,其中
a)第一和第二Fc区多肽二者还包含突变S228P和L235E(根据KabatEU index编号体系编号),或
b)第一和第二Fc区多肽二者还包含突变P329G(根据Kabat EU index编号体系编号),或
c)第一和第二Fc区多肽二者还包含突变S228P和L235E和P329G(根据Kabat EUindex编号体系编号),或
d)第一和第二Fc区多肽二者还包含突变S228P和L235E((根据KabatEU index编号体系编号),并且第一Fc区多肽还包含突变Y349C或S354C和突变T366W,以及第二Fc区多肽还包含突变Y349C或S354C及突变T366S、L368A和Y407V,
e)第一和第二Fc区多肽二者还包含突变S228P和L235E和P329G(根据KabatEUindex编号体系编号),并且第一Fc区多肽还包含突变Y349C或S354C和突变T366W,以及第二Fc区多肽还包含突变Y349C或S354C及突变T366S、L368A和Y407V。
如本文中报道的一个方面是包含如本文中报道的变体(人)IgG类Fc区的抗体或Fc区融合多肽。
在一个实施方案中,抗体是单克隆抗体。
在一个实施方案中,抗体是人抗体、人源化抗体或嵌合抗体。
如本文中报道的一个方面是编码如本文中报道的变体(人)IgG类Fc区的核酸。
如本文中报道的一个方面是编码如本文中报道的抗体的核酸。
如本文中报道的一个方面是编码如本文中报道的Fc区融合多肽的核酸。
如本文中报道的一个方面是包含如本文中报道的核酸的宿主细胞。
如本文中报道的一个方面是一种产生如本文中报道的变体(人)IgG类Fc区的方法,所述方法包括培养如本文中报道的宿主细胞,从而产生变体(人)IgG类Fc区。
如本文中报道的一个方面是一种产生如本文中报道的抗体的方法,所述方法包括培养如本文中报道的宿主细胞,从而产生抗体。
如本文中报道的一个方面是一种产生如本文中报道的Fc区融合多肽的方法,所述方法包括培养如本文中报道的宿主细胞,从而产生Fc区融合多肽。
如本文中报道的一个方面是一种药物制剂,其包含如本文中报道的变体(人)IgG类Fc区或如本文中报道的抗体或如本文中报道的Fc区融合多肽。
如本文中报道的一个方面是用作药物的如本文中报道的变体(人)IgG类Fc区或如本文中报道的抗体或如本文中报道的Fc区融合多肽。
如本文中报道的一个方面是如本文中报道的变体(人)IgG类Fc区或如本文中报道的抗体或如本文中报道的Fc区融合多肽在制造药物中的用途。
如本文中报道的抗体可以用作例如T细胞招募者、用作生物活性(效力)高和从血液循环(血清)快速清除的Fcγ受体结合物、用作具有快速清除作用以减少全身性副作用的抗体-药物缀合物,或用作前靶向抗体。
附图简述
图1具有IHH-AAA突变(=突变I253A、H310A和H435A的组合(根据Kabat的EU index编号))的<VEGF-ANG-2>IgG1或IgG4抗体的概念示意图和优点。
图2基于小规模DLS的粘度测量:在200mM精氨酸/琥珀酸盐,pH5.5中在150mg/mL的外推粘度(<VEGF-ANG-2>抗体VEGFang2-0016(具有IHH-AAA突变)与参考抗体VEGFang2-0015(没有这类IHH-AAA突变)比较)。
图3在20mM组氨酸缓冲液,140mM NaCl,pH 6.0中取决于温度的DLS聚集(包括DLS聚集起始温度)(比较如本文中报道的<VEGF-ANG-2>抗体VEGFang2-0016(具有IHH-AAA突变)与参考抗体VEGFang2-0015(没有这类IHH-AAA突变))。
图4在100mg/mL在40℃储存7日(主峰下降和高分子量(HMW)增加)(比较显示较少聚集的如本文中报道的<VEGF-ANG-2>抗体VEGFang2-0016(具有IHH-AAA突变)与参考抗体VEGFang2-0015(没有这类IHH-AAA突变))。
图5A和B A:VEGFang2-0015(没有IHH-AAA突变)和B:VEGFang2-0016(具有IHH-AAA突变)的FcRn稳态亲和力。
图6没有IHH-AAA突变的VEGFang2-0015和具有IHH-AAA突变的VEGFang2-0016的FcγRIIIa相互作用测量(二者均是具有P329GLALA突变的IgG1亚类;作为对照,使用IgG1亚类的抗异羟基洋地黄毒苷抗体(抗Dig)和基于IgG4的抗体)。
图7A用于测定血清和全眼裂解物中<VEGF-ANG-2>双特异性抗体浓度的示意性药代动力学(PK)-ELISA测定原理。
图7B静脉内(i.v.)施加后的血清浓度:没有IHH-AAA突变的VEGFang2-0015和具有IHH-AAA突变的VEGFang2-0016的比较。
图7C玻璃体内施加后的血清浓度:没有IHH-AAA突变的VEGFang2-0015和具有IHH-AAA突变的VEGFang2-0016的比较。
图7D VEGFang2-0016(具有IHH-AAA突变)在右眼和左眼中的眼裂解物浓度(与静脉内施加相比,玻璃体内仅施加入右眼后):在玻璃体内施加后仅可以于右眼中检测到明显浓度;在静脉内施加后不能在眼裂解物中检出浓度,原因在于VEGFang2-0016(具有IHH-AAA突变)的低血清半寿期。
图7E可以检测到在右眼和左眼中(与静脉内施加相比,玻璃体内仅施加入右眼后)VEGFang2-0015(没有IHH-AAA突变)的眼裂解物浓度:在玻璃体内施加后在右眼中(和一定程度在左眼中)检测到VEGFang2-0015的浓度;这显示从右眼扩散至血清中并从这里扩散至左眼中,这可以由VEGFang2-0015(没有IHH-AAA突变)的长半寿期解释;在静脉内施加后可以在双眼的眼裂解物中检测到明显浓度,原因在于血清稳定的VEGFang2-0015(没有IHH-AAA突变)扩散至眼中。
图8与参考野生型(wt)抗体相比,在其与FcRn结合的能力方面工程化的抗体在SPR分析中显示延长的体内半寿期(YTE突变)或缩短的体内半寿期(IHH-AAA突变)、增强(YTE突变)或减弱的结合作用(IHH-AAA突变)以及在FcRn柱层析中显示增强或缩减的保留时间;a)在单次静脉内推注施加10mg/kg至huFcRn转基因雄性C57BL/6J小鼠+/-276中后的PK数据:野生型IgG以及YTE和IHH-AAA Fc-修饰的IgG的AUC数据;b)BIAcore传感图;c)FcRn亲和柱洗脱;野生型抗IGF-1R抗体(参考),抗IGF-1R抗体的YTE-突变体、抗IGF-1R抗体的IHH-AAA-突变体。
图9取决于引入Fc区的突变的数目,FcRn亲和层析中保留时间的变化。
图10取决于引入Fc区的突变的非对称分布,FcRn结合的变化。
图11来自两次连续蛋白A亲和层析柱的在两条重链中均具有突变H310A、H433A和Y436A的双特异性<VEGF-ANG-2>抗体(VEGF/ANG2-0121)的洗脱层析图。
图12来自蛋白A亲和层析柱的在两条重链中均具有突变H310A、H433A和Y436A的抗IGF-1R抗体(IGF-1R-0045)的洗脱层析图。
图13IgG Fc区修饰的<VEGF-ANG-2>抗体结合CM5芯片上的固定化的蛋白A。
图14FcRn亲和柱上不同<VEGF-ANG-2>抗体的洗脱层析图。
图15不同融合多肽与葡萄球菌蛋白A(SPR)的结合。
图16不同<VEGF-ANG-2>抗体和抗IGF-1R抗体突变体与固定化蛋白A(SPR)的结合。
本发明实施方案的详细描述
I.定义
术语“约”指下文数值的+/-20%范围。在一个实施方案中,术语“约”指下文数值的+/-10%范围。在一个实施方案中,术语“约”指下文数值的+/-5%范围。
出于本文目的,“受体人类构架”是这样的构架,它包含源自人免疫球蛋白构架或人共有序列构架的轻链可变结构域(VL)构架或重链可变结构域(VH)构架的氨基酸序列,如下文定义。“源自”人免疫球蛋白构架或人共有构架的受体人类构架可以包含其相同的氨基酸序列,或它可以含有氨基酸序列改变。在一些实施方案中,氨基酸改变的数目是10或更小、9或更小、8或更小、7或更小、6或更小、5或更小、4或更小、3或更小、或2或更小。在一些实施方案中,VL受体人类构架在序列上与VL人免疫球蛋白构架序列或人类共有构架序列相同。
“亲和力成熟的”抗体指在一个或多个高变区(HVR)中存在一个或多个改变的抗体,与不拥有这些改变的亲本抗体相比,这类改变导致抗体对抗原的亲和力改善。
术语“改变”指亲本抗体或融合多肽(例如至少包含Fc区的FcRn结合部分的融合多肽)中突变(置换)、插入(添加)或缺失一个或多个氨基酸残基以获得修饰的抗体或融合多肽。术语“突变“指所指的氨基酸残基置换为不同的氨基酸残基。例如突变L234A指抗体Fc区(多肽)中第234位置处的氨基酸残基赖氨酸置换为氨基酸残基丙氨酸(用赖氨酸置换丙氨酸)(根据EU index编号)。
术语“氨基酸突变”指至少一个现有的氨基酸残基置换为另一个不同的氨基酸残基(=替换性氨基酸残基)。替换性氨基酸残基可以是“天然存在的氨基酸残基”并且选自丙氨酸(三字母代码:丙氨酸(三字母代码:ala,单字母代码:A)、精氨酸(arg,R)、天冬酰胺(asn,N)、天冬氨酸(asp,D-半胱氨酸(cys,C)、谷氨酰胺(gln,Q)、谷氨酸(glu,E)、甘氨酸(gly,G)、组氨酸(his,H)、异亮氨酸(ile,I)、亮氨酸(leu,L)、赖氨酸(lys,K)、甲硫氨酸(met,M)、苯丙氨酸(phe,F)、脯氨酸(pro,P)、丝氨酸(ser,S)、苏氨酸(thr,T)、色氨酸(trp,W)、酪氨酸(tyr,Y)和缬氨酸(val,V)。替换性氨基酸残基可以是“非天然存在的氨基酸残基”。参见例如US 6,586,207、WO 98/48032、WO 03/073238、US2004/0214988、WO 2005/35727、WO 2005/74524,Chin,J.W.等人,J.Am.Chem.Soc.124(2002)9026-9027;Chin,J.W.和Schultz,P.G.,ChemBioChem 11(2002)1135-1137;Chin,J.W.等人,PICAS UnitedStates of America 99(2002)11020-11024;以及Wang,L.和Schultz,P.G.,Chem.(2002)1-10(全部文献均通过引用的方式完整并入本文)。
术语“氨基酸插入”指在氨基酸序列中预定的位置处(添加)并入至少一个氨基酸残基。在一个实施方案中,插入将是插入一个或两个氨基酸残基。插入的氨基酸残基可以是任何天然存在的或非天然存在的氨基酸残基。
术语“氨基酸缺失”指在氨基酸序列中的预定位置处移除至少一个氨基酸残基。
如本文所用,术语“ANG-2”指人血管生成素-2(ANG-2)(备选地缩写为:ANGPT2或ANG2)(SEQ ID NO:31),其例如在Maisonpierre,P.C.等人,Science 277(1997)55-60和Cheung,A.H.等人,Genomics 48(1998)389-91中描述。发现血管生成素-1(SEQ ID NO:32)和-2作为血管内皮内部选择性表达的酪氨酸激酶家族Tie的配体(Yancopoulos,G.D.等人,Nature407(2000)242-248)。目前存在4种确定的血管生成素家族成员。血管生成素-3和-4(ANG-3和ANG-4)可以广泛地代表小鼠和人类中相同基因座的趋异的对应物(Kim,I.等人,FEBS Let,443(1999)353-356;Kim,I.等人,J.Biol.Chem.274(1999)26523-26528)。ANG-1和ANG-2最初在组织培养实验中分别被鉴定为激动剂和拮抗剂(关于ANG-1,参见:Davis,S.等人,Cell87(1996)1161-1169;并且关于ANG-2,参见:Maisonpierre,P.C.等人,Science277(1997)55-60)。全部已知的血管生成素主要与Tie2(SEQ ID NO:33)结合,并且ANG-1和-2均以3nM(Kd)亲和力与Tie2结合(Maisonpierre,P.C.等人,Science 277(1997)55-60)。
术语“抗体”在本文中以最广意义使用并且涵盖多种抗体结构物,包括但不限于单克隆抗体、多克隆抗体、多特异性抗体(例如,双特异性抗体、三特异性抗体)和抗体片段,只要它们显示出所需的抗原-和/或蛋白A和/或FcRn-结合活性。
“与参考抗体结合相同表位的抗体”指在竞争测定法中阻断参考抗体与其抗原结合达50%或更多的抗体,并且反过来,参考抗体在竞争测定法中阻断该抗体与其抗原结合达50%或更多。本文提供示例性竞争测定法。
术语“非对称Fc区”指在根据KabatEU index编号体系的相应位置处具有不同氨基酸残基的一对Fc区多肽。
术语“关于FcRn结合的非对称Fc区”指由相应位置处具有不同氨基酸残基的两条多肽链组成的Fc区,其中位置根据KabatEU index编号体系确定,因而不同位置影响Fc区与人新生Fc-受体(FcRn)的结合。出于本文目的,在关于FcRn结合的非对称Fc区中Fc区的两条多肽链之间的差异不包括已经引入以促进形成异二聚Fc区(例如用于产生双特异性抗体)的差异。这些区别也可以是非对称的,即两条链在根据KabatEU index编号体系的非相应氨基酸残基处具有差异。这些差异促进异二聚化并且减少同型二聚化。这类差异的例子是所谓的“结入扣”置换(参见,例如,US7 695 936和US2003/0078385)。已经发现IgG1亚类的IgG抗体Fc区的单条多肽链中的以下结和扣置换增加异二聚体形成:1)一条链中的Y407T及另一条链中的T366Y;2)一条链中的Y407A及另一条链中的T366W;3)一条链中的F405A及另一条链中的T394W;4)一条链中的F405W及另一条链中的T394S;5)一条链中的Y407T及另一条链中的T366Y;6)一条链中的T366Y和F405A及另一条链中的T394W和Y407T;7)一条链中的T366W和F405W及另一条链中的T394S和Y407A;8)一条链中的F405W和Y407A及另一条链中的T366W和T394S;和9一条链中的)T366W及另一条链中的T366S、L368A和Y407V,其中最后列出的特别合适。此外,在两条Fc区多肽链之间产生新二硫桥的变化促进异二聚体形成(参见,例如,US 2003/0078385)。已经发现产生适当间隔的半胱氨酸残基用于IgG1亚类的IgG抗体Fc区的单条多肽链中形成新链内二硫键的以下置换以增加异二聚体形成:一条链中的Y349C及另一条链中的S354C;一条链中的Y349C及另一条链中的E356C;一条链中的Y349C及另一条链中的E357C;一条链中的L351C及另一条链中的S354C;一条链中的T394C及另一条链中的E397C;或一条链中的D399C及另一条链中的K392C。促进异二聚化的氨基酸变化的其他例子是所谓的“电荷对置换”(参见,例如,WO 2009/089004)。已经发现IgG1亚类的IgG抗体Fc区的单条多肽链中的以下电荷对置换增加异二聚体形成:1)一条链中的K409D或K409E及另一条链中的D399K或D399R;2)一条链中的K392D或K392E及另一条链中的D399K或D399R;3)一条链中的K439D或K439E及另一条链中的E356K或E356R;4)一条链中的K370D或K370E及另一条链中的E357K或E357R;5)一条链中的K409D和K360D加另一条链中的D399K和E356K;6)一条链中的K409D和K370D加另一条链中D399K和E357K;7)一条链中的K409D和K392D加D399K、E356K及另一条链中的E357K;
8)一条链中的K409D和K392D及另一条链中的D399K;9)一条链中的K409D和K392D及另一条链中的D399K和E356K;10)一条链中的K409D和K392D及另一条链中的D399K和D357K;11)一条链中的K409D和K370D及另一条链中的D399K和D357K;12)一条链中的D399K及另一条链中的K409D和K360D;和13)一条链中的K409D和K439D及另一条链上的D399K和E356K。
术语“(与抗原)结合”指在体外测定法中、在一个实施方案中在其中抗体与表面结合并通过表面等离振子共振(SPR)测量抗原与抗体结合的结合测定法中抗体与其抗原的结合。结合意指结合10-8M或更小、在一些实施方案中10-13至10-8M、在一些实施方案中10-13至10-9M的亲和力(KD)。
可以通过BIAcore测定法(GE Healthcare Biosensor AB,乌普萨拉,瑞典)研究结合。结合的亲和力由术语ka(来自抗体/抗原复合物的抗体的缔合速率常数)、kD(解离常数)和KD(kD/ka)定义。
术语“嵌合”抗体指一种抗体,其中重链和/或轻链的一部分源自特定来源或物种,而重链和/或轻链的剩余部分源自不同来源或物种。
术语“CH2结构域”指抗体重链多肽的从EU位置231延伸至EU位置340的部分(根据Kabat的EU编号体系)。在一个实施方案中,CH2结构域具有SEQ ID NO:09的氨基酸序列:APELLGGPSVFLFPPKP KDTLMISRTP EVTCVWDVS HEDPEVKFNW YVDGVEVHNA KTKPREEQ ESTYRWSVLT VLHQDWLNGK EYKCKVSNKA LPAPIEKTIS KAK。
术语“CH3结构域”指抗体重链多肽的从EU位置341延伸至EU位置446的部分。在一个实施方案中,CH3结构域具有SEQ ID NO:10的氨基酸序列:GQPREPQ VYTLPPSRDELTKNQVSLTC LVKGFYPSDI AVEWESNGQP ENNYKTTPPV LDSDGSFFLY SKLTVDKSRW QQGNVFSCSVMHEALHNHYT QKSLSLSPG。
抗体的“类”指由其重链拥有的恒定结构域或恒定区的类型。存在五个大类的抗体:IgA、IgD、IgE、IgG和IgM,并且这些类别中的几种可以进一步划分成亚类(同种型),例如,IgG1、IgG2、IgG3、IgG4、IgA1和IgA2。对应于不同类别免疫球蛋白的重链恒定域分别称作α、δ、ε、γ和μ。
术语“可比较的长度”指两种多肽包含相同数目的氨基酸残基或可以在长度上因一个或多个和直至最多10个基酸残基而不同。在一个实施方案中,Fc区多肽包含相同数目的氨基酸残基或可以因1至10个氨基酸残基而不同。在一个实施方案中,Fc区多肽包含相同数目的氨基酸残基或可以因1至5个氨基酸残基而不同。在一个实施方案中,Fc区多肽包含相同数目的氨基酸残基或可以因1至3个氨基酸残基而不同。
术语“源自”指氨基酸序列通过在至少一个位置引入改变而衍生自亲本氨基酸序列。因此,衍生的氨基酸序列在至少一个相应位置(根据KabatEU index编号体系对抗体Fc区编号)处与相应的亲本氨基酸序列不同。在一个实施方案中,源自亲本氨基酸序列的氨基酸序列在相应位置相异1至15个氨基酸残基。在一个实施方案中,源自亲本氨基酸序列的氨基酸序列在相应位置相异1至10个氨基酸残基。在一个实施方案中,源自亲本氨基酸序列的氨基酸序列在相应位置相异1至6个氨基酸残基。同样地,衍生的氨基酸序列与其亲本氨基酸序列具有高氨基酸序列同一性。在一个实施方案中,源自亲本氨基酸序列的氨基酸序列具有80%或更大的氨基酸序列同一性。在一个实施方案中,源自亲本氨基酸序列的氨基酸序列具有90%或更大的氨基酸序列同一性。在一个实施方案中,源自亲本氨基酸序列的氨基酸序列具有95%或更大的氨基酸序列同一性。
“效应子功能”指随抗体类别变动的归因于抗体Fc区的那些生物学活性。抗体效应子功能的例子包括:C1q结合和补体依赖的细胞毒性(CDC);Fc受体结合;抗体依赖的细胞介导的细胞毒性(ADCC);吞噬;下调细胞表面受体(例如B细胞受体);和B细胞活化。
活性剂(例如,药物制剂)的“有效量”指在必要的剂量和时间段下,有效实现所需治疗性或预防性结果的量。
术语“Fc-融合多肽”指结合结构域(例如抗原结合结构域如单链抗体,或多肽如受体的配体)与显示所需靶结合和/或蛋白A结合和/或FcRn-结合活性的抗体Fc区的融合物。
术语“人源Fc区”指人源免疫球蛋白重链的C端区域,其至少含有一部分的铰链区、CH2结构域和CH3结构域。在一个实施方案中,人IgG重链Fc区从Cys226或从Pro230延伸至重链的羧基端。在一个实施方案中,Fc区具有SEQ ID NO:60的氨基酸序列。然而,Fc区的C端赖氨酸(Lys447)可以存在或可以不存在。除非本文中另外说明,否则Fc区或恒定区中的氨基酸残基的编号根据如Kabat,E.A.等人,Sequences of Proteins of ImmunologicalInteres,第5版,Public Health Service,National Institutes of Health,Bethesda,MD(1991),NIH Publication 91 3242中所述的EU编号体系,也称作EU index。Fc区由两条重链Fc区多肽组成,所述重链Fc区多肽可以借助形成多肽间二硫键的铰链区半胱氨酸残基彼此共价连接。
术语“FcRn”指人新生Fc-受体。FcRn起到从溶酶体降解途径拯救IgG的作用,导致清除率减少和半寿期增加。FcRn是由两条多肽50kDa主要组织相容性复合体样蛋白I类(α-FcRn)和15kDaβ2-微球蛋白(β2m)组成的异二聚体蛋白。FcRn以高亲和力与IgG的Fc区的CH2-CH3部分结合。在IgG和FcRn之间的相互作用严格依赖pH并且以1:2化学计量发生,即一个IgG通过其两条重链与两个FcRn分子结合(Huber,A.H.等人,J.Mol.Biol.230(1993)1077-1083)。FcRn结合作用在内体中酸性pH(pH<6.5)发生并且IgG在中性细胞表面(pH约7.4)释放。这种相互作用的pH敏感性质促进FcRn介导保护胞饮入细胞的IgG通过在内体酸性环境内部与受体结合而免遭胞内降解。FcRn随后协助IgG再循环到细胞表面并随后在FcRn-IgG复合物暴露于细胞外部中性pH环境时释放入血流。
术语“Fc区的FcRn结合部分”指抗体重链多肽的部分,所述部分从大约EU位置243延伸至EU位置261,并且从大约EU位置275延伸至EU位置293,并且从大约EU位置302延伸至EU位置319,并且从大约EU位置336延伸至EU位置348,并且从大约EU位置367延伸至EU位置393及EU位置408,并且从大约EU位置424延伸至EU位置440。在一个实施方案中,改变根据Kabat EU编号的以下一个或多个氨基酸残基F243、P244、P245 P、K246、P247、K248、D249、T250、L251、M252、I253、S254、R255、T256、P257、E258、V259、T260、C261、F275、N276、W277、Y278、V279、D280、V282、E283、V284、H285、N286、A287、K288、T289、K290、P291、R292、E293、V302、V303、S304、V305、L306、T307、V308、L309、H310、Q311、D312、W313、L314、N315、G316、K317、E318、Y319、I336、S337、K338、A339、K340、G341、Q342、P343、R344、E345、P346、Q347、V348、C367、V369、F372、Y373、P374、S375、D376、I377、A378、V379、E380、W381、E382、S383、N384、G385、Q386、P387、E388、N389、Y391、T393、S408、S424、C425、S426、V427、M428、H429、E430、A431、L432、H433、N434、H435、Y436、T437、Q438、K439和S440(EU编号)。
“构架”或“FR”指除高变区(HVR)残基之外的可变结构域残基。可变结构域的FR通常由以下4个FR结构域组成:FR1、FR2、FR3和FR4。因此,HVR序列和FR序列通常按以下序列出现在VH(或VL)中:FR1-H1(L1)-FR2-H2(L2)-FR3-H3(L3)-FR4。
术语“全长抗体”指这样的抗体,所述抗体具有基本上与天然抗体结构相似的结构或具有含有如本文定义的Fc区的重链。全长抗体可以包含其他结构域,如例如与全长抗体的一条或多条链缀合的scFv或scFab。这些缀合物也由术语全长抗体涵盖。
术语“异二聚体”或“异二聚的”指包含两条多肽链的分子(例如具有可比较的长度),其中这两条多肽链具有这样的氨基酸序列,其在相应位置具有至少一个不同的氨基酸残基,其中相应位置根据Kabat的EU index确定。
术语“同型二聚体”和“同型二聚的”指包含具有可比较长度的两条多肽链的分子,其中这两条多肽链具有在相应位置相同的氨基酸序列,其中相应位置根据Kabat的EUindex确定。
如本文中报道的抗体或Fc区融合多肽可以就其Fc区而言是同型二聚的或异二聚的,这相对于关注的突变或特性而决定。例如,相对于FcRn和/或蛋白A结合(即关注特性),Fc区(抗体)就突变H310A、H433A和Y436A而言是同型二聚的(即两条重链Fc区多肽均包含这些突变)(就Fc区融合多肽或抗体的FcRn和/或蛋白A结合特性而言关注这些突变),但同时分别就突变Y349C、T366S、L368A和Y407V而言(不关注这些突变,因为这些突变涉及重链异二聚化而不涉及FcRn/蛋白A结合特性)以及就突变S354C和T366W而言(第一组仅含于第一Fc区多肽中,而第二组仅含于第二Fc区多肽中)是异二聚的。进一步例如,如本文中报道的Fc区融合多肽或抗体可以就突变I253A、H310A、H433A、H435A和Y436A而言是异二聚的(即这些突变均涉及二聚体多肽的FcRn和/或蛋白A结合特性),即一条Fc区多肽包含突变I253A,H310A和H435A,而另一条Fc区多肽包含突变H310A、H433A和Y436A.
术语“宿主细胞”、“宿主细胞系”和“宿主细胞培养物”互换使用并且指已经向其中引入外源核酸的细胞,包括这类细胞的后代。宿主细胞包括“转化体”和“转化的细胞”,其包括原代转化的细胞和从其衍生的子代,而无论传代次数是多少。子代可以在核酸含量含量方面不与亲本细胞完全相同,反而可以含有突变。本文中包括突变体子代,所述突变体子代具有与初始转化的细胞中所筛选或选择的子代相同的功能或生物活性。
“人抗体”是这样一种抗体,其拥有对应于人或人细胞产生的抗体的氨基酸序列或从利用人抗体库或其他编码人抗体的序列的非人来源衍生。人抗体的这种定义特别排除包含非人抗原结合残基的人源化抗体。
“人类共有构架”是这样的构架,它代表在人免疫球蛋白VL或VH构架序列的选择中最常出现的氨基酸残基。通常,人免疫球蛋白VL或VH构架序列的选择来自可变结构域序列的亚组。通常,序列亚组是如Kabat,E.A.等人,Sequences of Proteins of ImmunologicalInterest,第5版,Bethesda MD(1991),NIH Publication 91-3242,第1-3卷中描述的亚组。在一个实施方案中,对于VL,该亚组是如上文Kabat等人中描述的亚组κI。在一个实施方案中,对于VH,该亚组是如上文Kabat等人中描述的亚组III。
术语“人Fc区多肽”指与“天然”或“野生型”人Fc区多肽相同的氨基酸序列。术语“变体(人)Fc区多肽”指因至少一个“氨基酸改变”而衍生自“天然”或“野生型”人Fc区多肽的氨基酸序列。“人Fc区”由两条人Fc区多肽组成。“变体(人)Fc区”由两条Fc区多肽组成,其中二者可以均是变体(人)Fc区多肽或一个是人Fc区多肽并且另一个是变体(人)Fc区多肽。
在一个实施方案中,人Fc区多肽具有SEQ ID NO:60的人IgG1 Fc区多肽氨基酸序列、或SEQ ID NO:61的人IgG2 Fc区多肽氨基酸序列、或SEQ ID NO:62的人IgG3 Fc区多肽氨基酸序列、或SEQ ID NO:63的人IgG4 Fc区多肽氨基酸序列。在一个实施方案中,变体(人)Fc区多肽衍生自SEQ ID NO:60、或61、或62、或63的Fc区多肽并且与SEQ ID NO:60、或61、或62、或63的人Fc区多肽相比具有至少一个氨基酸突变。在一个实施方案中,变体(人)Fc区多肽包含/具有从约1个至约12个氨基酸突变,并在一个实施方案中具有约1个至约8个氨基酸突变。在一个实施方案中,变体(人)Fc区多肽与SEQ ID NO:60、或61、或62、或63的人Fc区多肽具有至少约80%同源性。在一个实施方案中,变体(人)Fc区多肽与SEQ ID NO:60、或61、或62、或63的人Fc区多肽具有至少约90%同源性。在一个实施方案中,变体(人)Fc区多肽与SEQ ID NO:60、或61、或62、或63的人Fc区多肽具有至少约95%同源性。
从SEQ ID NO:60、或61、或62、或63的人Fc区多肽衍生的变体(人)Fc区多肽由所含的氨基酸改变限定。因此,例如,术语P329G指从相对于SEQ ID NO:60、或61、或62、或63的人Fc区多肽在氨基酸位置329具有脯氨酸至甘氨酸突变的人Fc区多肽衍生的变体(人)Fc区多肽。
如本文所用,重链和轻链的全部恒定区和结构域的氨基酸位置根据Kabat等人,Sequences of Proteins of Immunological Interest,第5版.Public Health Service,National Institutes of Health,Bethesda,MD(1991))中描述的Kabat编号系统编号并且在本文中称作“根据(Kabat)编号”。具体而言,Kabat等人,Sequences of Proteins ofImmunological Interest,第5版.Public Health Service,National Institutes ofHealth,Bethesda,MD(1991)的Kabat编号体系(参见第647-660页)用于κ和λ同种型的轻链恒定结构域CL并且Kabat EU index编号体系(参见第661-723页)用于恒定重链结构域(CH1、铰链、CH2和CH3)。
人IgG1 Fc区多肽具有以下氨基酸序列:
具有突变L234A、L235A的人IgG1 Fc区衍生的Fc区多肽具有以下氨基酸序列:
具有Y349C、T366S、L368A和Y407V突变的人IgG1 Fc区衍生的Fc区多肽具有以下氨基酸序列:
具有S354C、T366W突变的人IgG1 Fc区衍生的Fc区多肽具有以下氨基酸序列:
具有L234A、L235A突变和Y349C、T366S、L368A、Y407V突变的人IgG1 Fc区衍生的Fc区多肽具有以下氨基酸序列:
具有L234A、L235A和S354C、T366W突变的人IgG1 Fc区衍生的Fc区多肽具有以下氨基酸序列:
具有P329G突变的人IgG1 Fc区衍生的Fc区多肽具有以下氨基酸序列:
具有L234A、L235A突变和P329G突变的人IgG1 Fc区衍生的Fc区多肽具有以下氨基酸序列:
具有P239G突变和Y349C、T366S、L368A、Y407V突变的人IgG1 Fc区衍生的Fc区多肽具有以下氨基酸序列:
具有P329G突变和S354C、T366W突变的人IgG1 Fc区衍生的Fc区多肽具有以下氨基酸序列:
具有L234A、L235A、P329G和Y349C、T366S、L368A、Y407V突变的人IgG1 Fc区衍生的Fc区多肽具有以下氨基酸序列:
具有L234A、L235A、P329G突变和S354C、T366W突变的人IgG1 Fc区衍生的Fc区多肽具有以下氨基酸序列:
人IgG4 Fc区多肽具有以下氨基酸序列:
具有S228P和L235E突变的人IgG4 Fc区衍生的Fc区多肽具有以下氨基酸序列:
具有S228P、L235E突变和P329G突变的人IgG4 Fc区衍生的Fc区多肽具有以下氨基酸序列:
具有S354C、T366W突变的人IgG4 Fc区衍生的Fc区多肽具有以下氨基酸序列:
具有Y349C、T366S、L368A、Y407V突变的人IgG4 Fc区衍生的Fc区多肽具有以下氨基酸序列:
具有S228P、L235E和S354C、T366W突变的人IgG4 Fc区衍生的Fc区多肽具有以下氨基酸序列:
具有S228P、L235E和Y349C、T366S、L368A、Y407V突变的人IgG4Fc区衍生的Fc区多肽具有以下氨基酸序列:
具有P329G突变的人IgG4 Fc区衍生的Fc区多肽具有以下氨基酸序列:
具有P239G和Y349C、T366S、L368A、Y407V突变的人IgG4 Fc区衍生的Fc区多肽具有以下氨基酸序列:
具有P329G和S354C、T366W突变的人IgG4 Fc区衍生的Fc区多肽具有以下氨基酸序列:
具有S228P、L235E、P329G和Y349C、T366S、L368A、Y407V突变的人IgG4 Fc区衍生的Fc区多肽具有以下氨基酸序列:
具有S228P、L235E、P329G和S354C、T366W突变的人IgG4 Fc区衍生的Fc区多肽具有以下氨基酸序列:
下文显示不同人Fc区的比对结果(EU编号):
“人源化”抗体指包含来自非人类HVR的氨基酸残基和来自人FR的氨基酸残基的嵌合抗体。在某些实施方案中,人源化抗体将包含至少1个、并且一般2个可变结构域的基本上全部,其中全部或基本上全部的HVR(例如,CDR)与非人抗体的那些HVR对应,并且全部或基本上全部的FR与人抗体的那些FR对应。人源化抗体任选地可以包含从人抗体衍生的抗体恒定区的至少一部分。抗体的“人源化形式”例如,非人抗体,指已经历过人源化的抗体。
如本文所用,术语“高变区”或“HVR”指抗体可变结域的下述每个区域,所述区域在序列上高变(“互补决定区”或“CDR”)并且形成结构上确定的环(“高变环”),和/或含有抗原接触残基(“抗原触点”)。通常,抗体包含六个HVR;VH中三个(H1、H2、H3)和VL中三个(L1、L2、L3)。如本文中提到的HVR包括
(a)出现在第26-32(L1)、50-52(L2)、91-96(L3)、26-32(H1)、53-55(H2)和96-101(H3)氨基酸残基处的高变环(Chothia,C.和Lesk,A.M.,J.Mol.Biol.196(1987)901-917);
(b)出现在第24-34(L1)、50-56(L2)、89-97(L3)、31-35b(H1)、50-65(H2)和95-102(H3)氨基酸残基处的CDR(Kabat,E.A.等人,Sequences of Proteins of ImmunologicalInterest,第5版,Public Health Service,National Institutes of Health,Bethesda,MD(1991),NIH Publication91-3242);
(c)出现在第27c-36(L1)、46-55(L2)、89-96(L3)、30-35b(H1)、47-58(H2)和93-101(H3)氨基酸残基处的抗原触点(MacCallum等人,J.Mol.Biol.262:732-745(1996));和
(d)(a)、(b)和/或(c)的组合,包括HVR氨基酸残基46-56(L2)、47-56(L2)、48-56(L2)、49-56(L2)、26-35(H1)、26-35b(H1)、49-65(H2)、93-102(H3)和94-102(H3)。
在一个实施方案中,HVR残基包括本说明书中其他地方鉴定的那些。
除非另外说明,否则HVR残基和可变结构域中的其他残基(例如,FR残基)在本文中根据KabatEU index编号体系(Kabat等人,上文)编号。
如本文所用,术语“IGF-1R”指来自任何脊椎动物来源的任何天然IGF-1R,其中除非另外说明,否则所述脊椎动物来源包括哺乳动物如灵长类(例如,人类)和啮齿类(例如,小鼠和大鼠)。本术语涵盖“全长”、未加工的IGF-1R以及因细胞中加工而产生的任何形式的IGF-1R。本术语还涵盖天然存在的IGF-1R变体,例如,剪接变体或等位变体。人IGF-1R的氨基酸序列在SEQ ID NO:11显示。
“个体”或“对象”是哺乳动物。哺乳动物包括但不限于驯化动物(例如,奶牛、羊、猫、犬和马)、灵长类(例如,人和非人灵长类如猴)、兔和啮齿类(例如,小鼠和大鼠)。在某些实施方案中,个体或对象是人。
“分离的”抗体是已经与其自然环境的组分分离的一种抗体。在一些实施方案中,将抗体纯化至大于95%或99%纯度,如通过例如电泳(例如,SDS-PAGE、等电聚焦(IEF)、毛细管电泳法)或色谱(例如,大小排阻色谱或离子交换或反相HPLC)所确定。关于评估抗体纯度的方法的综述,参见,例如,Flatman,S.等人,J.Chrom.B 848(2007)79-87。
“分离的”核酸指已经与其自然环境的组分分离的核酸分子。分离的核酸包括含于细胞内的核酸分子,所述细胞通常含有该核酸分子,但是该核酸分子存在于染色体外或与其天然染色体位置不同的染色体位置处。
“编码抗IGF-1R抗体的分离核酸”指编码抗体重链和轻链(或其片段)的一个或多个核酸分子,包括在单一载体或单独的载体中的这类核酸分子和在宿主细胞中一个或多个位置处存在的这类核酸分子。
如本文中所用的术语“单克隆抗体”指从基本上均一的抗体群体获得的抗体,即,构成该群体的单个抗体是相同的和/或结合相同的表位,除了可能的变体抗体之外(例如,含有天然存在的突变或在产生单克隆抗体制备物期间出现),这类变体通常以微小的量存在。与一般包括针对不同决定簇(表位)的不同抗体的多克隆抗体制备物相反,单克隆抗体制备物的每种单克隆抗体针对抗原上的单一决定簇。因此,修饰语“单克隆的”指示该抗体的特征为从基本上均一的抗体群体获得,并且不得解释为要求通过任何特定方法产生该抗体。例如,可以通过多种技术产生待根据本发明使用的单克隆抗体,所述技术包括但不限于杂交瘤方法、重组DNA方法、噬菌体展示方法和利用含有全部或部分的人免疫球蛋白基因座的转基因动物的方法,本文中描述了用于产生单克隆抗体的这类方法和其他示例性方法。
“天然抗体”指具有不同结构的天然存在的免疫球蛋白分子。例如,天然IgG抗体是由二硫键结合的两条相同轻链和两条相同重链组成的约150,000道尔顿的异四聚体糖蛋白。从N端至C端,每条重链具有可变区(VH),也称作可变重结构域或重链可变结构域,随后是三个恒定结构域(CH1,CH2和CH3)。类似地,从N端至C端,每条轻链具有可变区(VL),也称作可变轻结构域或轻链可变结构域,随后为恒定轻链(CL)结构域。抗体的轻链可以基于其恒定结构域的氨基酸序列而划分成两种类型之一,称作κ(κ)和λ(λ)。
术语“包装说明书”用来指治疗产品的商业包装中习惯性包括的说明书,所述说明书含有关于适应症、用法、剂量、施用、联合疗法、禁忌症和/或涉及此类治疗产品用途之警告的信息。
相对于参考多肽序列,将“氨基酸序列同一性百分数(%)”定义为比对序列并根据需要引入空位以实现最大序列同源性百分数并且不考虑任何保守性置换作为序列同一性的部分之后,候选序列中与参考多肽序列中的氨基酸残基相同的氨基酸残基的百分数。为了确定氨基酸序列同一性百分数的比对可以按本领域能力范围内的多种方式实现,例如,使用可公开获得的计算机软件如BLAST、BLAST-2、ALIGN或Megalign(DNASTAR)软件。本领域技术人员可以确定用于比对序列的适宜参数,包括为实现正在比较的全长序列范围内最大比对所需要的任何算法。然而,出于本文目的,使用序列比较计算机程序ALIGN-2产生氨基酸序列同一性%值。ALIGN-2序列比较计算机程序由Genentech,Inc.授权,并且源代码已经随用户文档提交至华盛顿特区20559的美国版权局,在那里它以美国版权登记号TXU510087登记。ALIGN-2程序从Genentech,Inc.,South San Francisco,加利福尼亚州可公开获得或可以从源代码汇编。应当将ALIGN-2程序汇编在UNIX操作系统(包括数字式UNIX V4.0D)上使用。全部序列比较参数由ALIGN-2程序设定并且不变动。
在使用ALIGN-2比较氨基酸序列的情况下,如下计算给定氨基酸序列A与给定氨基酸序列B、同给定氨基酸序列B或针对给定氨基酸序列B(这可以备选地描述为与给定氨基酸序列B、同给定氨基酸序列B或针对给定氨基酸序列B具有或包含某个氨基酸序列同一性%的给定氨基酸序列A)的氨基酸序列同一性%:
100乘以分数X/Y
在X是由序列比对程序ALIGN-2在该程序的A和B比对结果中评定为相同匹配的氨基酸残基的数目,并且其中Y是B中氨基酸残基的总数。将可以理解在氨基酸序列A的长度不等于氨基酸序列B的长度时,A相对于B的氨基酸序列同一性%将不等于B相对于A的氨基酸序列同一性%。除非另外特别声明,否则本文所用的全部氨基酸序列同一性值%如紧接前段中所述那样使用ALIGN-2计算机程序获得。
术语“药物制剂”指一种制备物,所述制备物处于这类形式从而允许其中所含的活性成分的生物活性有效,并且不含有对于该制剂将施用于的对象不可接受地有毒的额外组分。
“可药用载体”指药物制剂中除活性成分之外的对对象无毒的成分。可药用载体包括但不限于缓冲剂、赋形剂、稳定剂或防腐剂。
如本文所用的术语“肽接头”指具有氨基酸序列的肽,所述肽在一个实施方案中是合成来源的。肽接头在一个实施方案中是具有至少30个氨基酸长度的氨基酸序列的肽,在一个实施方案中是具有32至50个氨基酸长度的氨基酸序列的肽。在一个实施方案中,肽接头是具有32至40个氨基酸长度的氨基酸序列的肽。在一个实施方案中,肽接头是(GxS)n,其中G=甘氨酸,S=丝氨酸,(x=3,n=8、9或10)或(x=4并且n=6、7或8),在一个实施方案中,x=4,n=6或7,在一个实施方案中其中:x=4,n=7。在一个实施方案中,肽接头是(G4S)6G2
术语“重组抗体”指通过重组手段制备、表达、产生或分离的全部抗体(嵌合、人源化和人抗体)。这包括从宿主细胞如NS0或CHO细胞或从对于人免疫球蛋白基因为转基因的动物(例如小鼠)中分离的抗体或使用转染至宿主细胞中的重组表达载体所表达的抗体。此类重组抗体具有重排形式的可变区和恒定区。如本文中报道的重组抗体可以经历体内体细胞超变。因此,重组抗体的VH和VL区的氨基酸序列是尽管源自人种系VH和VL序列并且与之相关,但可以不天然存在于体内人抗体种系库内部的序列。
如本文所用,名词“治疗”(和其语法变型如“治疗”或“治疗”)指意欲改变正在接受治疗的个体的天然过程的临床介入,并且可以旨在预防或在临床病理学过程期间实施。想要的治疗效果包括,但不限于,防止疾病出现或复发、减轻症状、减小疾病的任何直接或间接病理学后果、防止转移、降低病情进展速率、改善或缓和疾病状态,以及缓解或预后改善。在一些实施方案中,如本文中报道的抗体或Fc区融合多肽用来延缓疾病的形成或用来减慢疾病的进展。
如本申请中所用,术语“价态”指(抗体)分子中存在指定数目的结合位点。如此,术语“双价”、“四价”和“六价”指(抗体)分子中分别存在2个结合位点、4个结合位点和6个结合位点。在一个优选的实施方案中,如本文中报道的双特异性抗体是“双价的”。
术语“可变区”或“可变结构域”指抗体重链或轻链的参与抗体结合其抗原的结构域。抗体重链和轻链的可变结构域(分别是VH和VL)通常具有相似的结构,每种结构域包含四个构架区(FR)和三个高变区(HVR)(参见,例如Kindt,T.J.等人,Kuby Immunology,第6版,W.H.Freeman and Co.,N.Y.(2007),第91页)。单个VH或VL结构域可能足以赋予抗原结合特异性。另外,结合特定抗原的抗体可以利用来自结合抗原的抗体的VH或VL结构域进行分离以分别筛选互补性VL或VH结构域的文库。参见,例如,Portolano,S.等人,J.Immunol.150(1993)880-887;Clackson,T.等人,Nature 352(1991)624-628)。
术语“眼血管疾病”包括但不限于眼内新生血管性综合征如糖尿病性视网膜病变、糖尿病性黄斑水肿、早产儿视网膜病变、新生血管性青光眼、视网膜静脉闭塞、视网膜中央静脉闭塞、黄斑变性、年龄相关性黄斑变性、色素性视网膜炎、视网膜血管瘤性增殖、黄斑毛细血管扩张症、缺血性视网膜病变、虹膜新血管化、眼内新血管化、角膜血管新生、视网膜血管新生、脉络膜血管新生和视网膜变性(参见例如Garner,A.,Vascular diseases,引自:Pathobiology of ocular disease,A dynamic approach,Garner,A.和Klintworth,G.K.,(编著),第2版,Marcel Dekker,New York(1994),第1625-1710页)。
如本文所用,术语“载体”指能够增殖与其连接的另一种核酸的核酸分子。该术语包括作为自我复制型核酸结构的载体以及并入已经将该载体引入其中的宿主细胞的基因组内的载体。某些载体能够指导与它们有效连接的核酸表达。此类载体在本文中称作“表达载体”。
如本文所用的术语“VEGF”指人血管内皮生长因子(VEGF/VEGF-A),165氨基酸人血管内皮细胞生长因子(人VEGF165的前体序列的氨基酸27-191:SEQ ID NO:30;氨基酸1-26代表信号肽),和相关的121、189和206血管内皮细胞生长因子同种型,如Leung,D.W.等人,Science 246(1989)1306-1309;Houck等人,Mol.Endocrin.5(1991)1806-1814;Keck,P.J.等人,Science 246(1989)1309-1312和Connolly,D.T.等人,J.Biol.Chem.264(1989)20017-20024所描述;连同这些生长因子的天然存在的等位基因和加工形式。VEGF参与调节正常和异常血管生成及与肿瘤和眼内病症相关的新血管化(Ferrara,N.等人,Endocrin.Rev.18(1997)4-25;Berkman,R.A.等人,J.Clin.Invest.91(1993)153-159;Brown,L.F.等人,Human Pathol.26(1995)86-91;Brown,L.F.等人,Cancer Res.53(1993)4727-4735;Mattern,J.等人,Brit.J.Cancer.73(1996)931-934;和Dvorak,H.F.等人,Am.J.Pathol.146(1995)1029-1039)。VEGF是已经从几种来源分离并且包括几种同种型的同型二聚的糖蛋白。VEGF对内皮细胞显示高度特异的促有丝分裂活性。
如本文所用的术语“具有突变IHH-AAA”指IgG1或IgG4亚类的恒定重链区中突变I253A(Ile253Ala)、H310A(His310Ala)和H435A(His435Ala)的组合,并且如本文所用的术语“具有突变HHY-AAA”指IgG1或IgG4亚类的恒定重链区中突变H310A(His310Ala)、H433A(His433Ala)和Y436A(Tyr436Ala)的组合,并且如本文所用的术语“具有突变YTE”指IgG1或IgG4亚类的恒定重链区中突变M252Y(Met252Tyr)、S254T(Ser254Thr)和T256E(Thr256Glu)的组合,其中编号根据Kabat的EU index。
如本文所用的术语“具有突变P329G LALA”指IgG1亚类的恒定重链区中突变L234A(Leu234Ala)、L235A(Leu235Ala)和P329G(Pro329Gly)的组合,其中编号根据Kabat的EUindex。如本文所用的术语“具有突变SPLE”指IgG4亚类的恒定重链区中突变S228P(Ser228Pro)和L235E(Leu235Glu)的组合,其中编号根据Kabat的EU index。如本文所用的术语“具有突变SPLE和P239G”指IgG4亚类的恒定重链区中突变S228P(Ser228Pro)、L235E(Leu235Glu)和P329G(Pro329Gly)的组合,其中编号根据Kabat的EU index。
II.本发明
本发明至少部分地基于以下发现:抗体或Fc区融合多肽的FcRn结合作用可以通过改变各条Fc区多肽的非相应位置中的氨基酸残基来调整,原因是这些改变在调整FcRn结合作用中共同发挥作用。如本文中报道的抗体和Fc区融合多肽是有用的,例如用于治疗其中要求定制全身性保留时间的疾病。
A.新生Fc-受体(FcRn)
新生Fc-受体(FcRn)对IgG类抗体体内的代谢命运重要。FcRn起到补救来自溶酶体降解途径的野生型IgG的作用,导致清除率减少和半衰期增加。它是由两条多肽:50kDa主要组织相容性复合体样蛋白I类(α-FcRn)和15kDaβ2-微球蛋白(β2m)组成的异二聚体蛋白。FcRn以高亲和力与IgG类抗体的Fc区的CH2-CH3部分结合。在IgG类抗体和FcRn之间的相互作用严格依赖pH并且以1:2化学计量发生,即一个IgG抗体分子可以通过其两条重链Fc区多肽与两个FcRn分子相互作用(参见,例如Huber,A.H.等人,J.Mol.Biol.230(1993)1077-1083)。
因此,IgG体外FcRn结合特性/特征指示其在血液循环中的体内药代动力学特性。
重链CH2结构域和CH3结构域的不同氨基酸残基参与FcRn和IgG类抗体Fc区之间的相互作用。与FcRn相互作用的氨基酸残基位于大约EU位置243和EU位置261之间、大约EU位置275和EU位置293之间、大约EU位置302和EU位置319之间、大约EU位置336和EU位置348之间、大约EU位置367和EU位置393、位于EU位置408处以及大约EU位置424和EU位置440之间。更具体地,根据Kabat EU编号的以下氨基酸残基参与Fc区和FcRn之间的相互作用:F243、P244、P245 P、K246、P247、K248、D249、T250、L251、M252、I253、S254、R255、T256、P257、E258、V259、T260、C261、F275、N276、W277、Y278、V279、D280、V282、E283、V284、H285、N286、A287、K288、T289、K290、P291、R292、E293、V302、V303、S304、V305、L306、T307、V308、L309、H310、Q311、D312、W313、L314、N315、G316、K317、E318、Y319、I336、S337、K338、A339、K340、G341、Q342、P343、R344、E345、P346、Q347、V348、C367、V369、F372、Y373、P374、S375、D376、I377、A378、V379、E380、W381、E382、S383、N384、G385、Q386、P387、E388、N389、Y391、T393、S408、S424、C425、S426、V427、M428、H429、E430、A431、L432、H433、N434、H435、Y436、T437、Q438、K439和S440。
位点定向诱变研究已经证明IgG的Fc区中FcRn的关键结合位点是组氨酸310、组氨酸435和异亮氨酸253并且更低程度上是组氨酸433和酪氨酸436(参见例如Kim,J.K.等人,Eur.J.Immunol.29(1999)2819-2825;Raghavan,M.等人,Biochem.34(1995)14649-14657;Medesan,C.等人,J.Immunol.158(1997)2211-2217)。
增加IgG与FcRn结合的方法已经通过在以下多种氨基酸残基处突变IgG来实施:苏氨酸250、甲硫氨酸252、丝氨酸254、苏氨酸256、苏氨酸307、谷氨酸380、甲硫氨酸428、组氨酸433和天冬酰胺434(参见Kuo,T.T.等人,J.Clin.Immunol.30(2010)777-789)。
在一些情况下需要在血液循环中半衰期降低的抗体。例如,玻璃体内用药物应当在眼部中具有长半衰期并且在患者循环中具有短半衰期。这类抗体还具有疾病部位如眼中暴露量增加的优点。
影响FcRn结合并且影响血液循环中半衰期的不同突变是已知的。已经通过位点定向诱变鉴定了对小鼠Fc-小鼠FcRn相互作用至关重要的Fc区残基(参见例如Dall’Acqua,W.F.等人,J.Immunol 169(2002)5171-5180)。残基I253、H310、H433、N434、和H435(根据Kabat的EU编号)参与这种相互作用(Medesan,C.等人,Eur.J.Immunol.26(1996)2533-2536;Firan,M.等人,Int.Immunol.13(2001)993-1002;Kim,J.K.等人,Eur.J.Immunol.24(1994)542-548))。发现残基I253、H310和H435对人Fc与鼠FcRn的相互作用至关重要(Kim,J.K.等人,Eur.J.Immunol.29(1999)2819-2825)。通过蛋白质-蛋白质相互作用研究,Dall’Acqua等人已经描述残基M252Y、S254T、T256E改善FcRn结合(Dall'Acqua,W.F.等人,J.Biol.Chem.281(2006)23514-23524)。人Fc-人FcRn复合物的研究已经显示残基I253、S254、H435和Y436对这种相互作用至关重要(Firan,M.等人,Int.Immunol.13(2001)993-1002;Shields,R.L.等人,J.Biol.Chem.276(2001)6591-6604)。在Yeung,Y.A.等人(J.Immunol.182(2009)7667-7671)中,已经报道并研究了残基248至259和301至317和376至382和424至437的各种突变体。下表中列出示例性突变和它们对FcRn结合作用的影响。
已经发现在一条Fc区多肽中一侧的一个突变足以显著削弱与Fc受体的结合作用。Fc区中引入更多突变,则与FcRn的结合作用变得越弱。但是单侧非对称突变不足以完全抑制FcRn结合作用。在双侧上的突变是完全抑制FcRn结合作用必需的。
因此,变体(人)IgG类Fc区是异二聚体并且第一(重链)Fc区多肽和第二(重链)Fc区多肽配对以形成功能性Fc区导致异二聚体的形成。
下表中显示IgG1 Fc区的对称工程化影响FcRn结合作用的结果(突变和FcRn-亲和层析柱上保留时间的对比)。
低于3分钟的保留时间对应于不结合,因为物质处于通流中(空隙峰)。
单突变H310A是消除任何FcRn结合作用的最沉默对称突变。
对称单突变I253A和H435A导致保留时间相对偏移0.3-0.4分钟。这可以通常视为不可检测的结合作用。
单突变Y436A导致可检测的与FcRn亲和柱的相互作用强度。在不受这个理论约束的情况下,这种突变可能具有FcRn介导的可以与零相互作用如I253A、H310A和H435A突变组合(IHH-AAA突变)不同的半衰期。
下表中展示用对称修饰的抗HER2抗体获得的结果(关于参考,参见WO 2006/031370)。
在Fc区中引入影响FcRn结合作用的非对称突变的作用已经用双特异性抗VEGF/ANG2抗体(见下文)例举,其中所述抗体使用突起-入-孔(knobs-into-holes)技术装配(参见例如US 7,695,936、US2003/0078385;“突起链”突变:S354C/T366W,“孔链”突变:Y349C/T366S/L368A/Y407V)。非对称引入的突变对FcRn结合作用的影响可以使用FcRn亲和层析法容易地确定(参见图9和下表)。从FcRn亲和柱洗脱稍晚,即在FcRn亲和柱上具有较长保留时间的抗体具有较长的体内半衰期,并且反之亦然。
非对称IHH-AAA-和LLL-DDD-突变(LLL-DDD-突变=L251D、L314D和L432D)显示比相应亲本或野生型抗体更弱的结合作用。
对称HHY-AAA突变(=突变组合H310A、H433A和Y436A)产生不再与人FcRn结合,同时蛋白A结合作用维持的Fc区(参见图11、12、13和14)。
在Fc区中引入影响FcRn结合作用的非对称突变的作用已经用双特异性抗VEGF/ANG2抗体(VEGF/ANG2)、单特异性抗-IGF-1R抗体(IGF-1R)和与两条重链的C末端融合的全长抗体(融合物)进一步例举,其中所述抗体使用突起-入-孔技术装配以允许引入非对称突变(参见例如US 7,695,936、US2003/0078385;“突起链”突变:S354C/T366W,“孔链”突变:Y349C/T366S/L368A/Y407V)。非对称引入的突变对FcRn结合作用和蛋白A结合作用的影响可以使用FcRn亲和层析法、蛋白A亲和层析法和基于SPR的方法容易地确定(参见下表)。
突变组合I253A、H310A、H435A、或L251D、L314D、L432D、或L251S、L314S、L432S导致对蛋白A的结合作用丧失,而突变组合I253A、H310A、H435A、或H310A、H433A、Y436A、或L251D、L314D、L432D导致对人新生Fc受体结合作用丧失。
如本文中报道的一个方面是包含如本文中报道的变体人IgG类Fc区的抗体或Fc区融合多肽。
Fc区融合多肽中的Fc区向其融合配偶体赋予上述特征。融合配偶体可以是具有生物活性的任何分子,其中应当减少或增加所述分子的体内半衰期,即应当针对所述分子的预期应用明确限定或定制其体内半衰期。
Fc区融合多肽可以例如包含如本文中报道的变体(人)IgG类Fc区和与靶(包括配体)结合的受体蛋白,如,例如,TNFR-Fc区融合多肽(TNFR=人肿瘤坏死因子受体)、或IL-1R-Fc区融合多肽(IL-1R=人白介素-1受体)、或VEGFR-Fc区融合多肽(VEGFR=人血管内皮生长因子受体)、或ANG2R-Fc区融合多肽(ANG2R=人血管生成素2受体)。
Fc区融合多肽可以包含例如如本文中报道的变体(人)IgG类Fc区和与靶(包括配体)结合的抗体片段,例如,抗体Fab片段,scFv(参见例如Nat.Biotechnol.23(2005)1126-1136),或结构域抗体(dAb)(参见例如WO 2004/058821、WO 2003/002609)。
Fc区融合多肽可以例如包含如本文中报道的变体(人)IgG类Fc区和(天然存在或人工的)受体配体。
B.示例性抗体
在一个方面,本发明提供具有受调节的FcRn结合作用的分离抗体,即与没有影响FcRn结合作用的突变的抗体相比,这些抗体以更高或更低的亲和力与人FcRn结合。
在一个实施方案中,抗体包含Fc区,所述Fc区包含第一Fc区多肽和第二Fc区多肽,
其中
a)第一Fc区多肽和第二Fc区多肽衍生自相同的人Fc区多肽,并且
b)第一Fc区多肽已经修饰,在于其氨基酸序列至少在根据KabatEU index编号体系的一个相应位置与第二Fc区多肽氨基酸序列不同,并且第二Fc区多肽已经修饰,在于其氨基酸序列至少在根据KabatEU index编号体系的一个相应位置与第一Fc区多肽氨基酸序列不同,因而第一Fc区多肽中的修饰位置和第二Fc区多肽中的修饰位置是不同的,并且
c)与包含a)的人Fc区多肽(即在根据KabatEU index编号体系的相应位置处具有与a)的人Fc区多肽相同的氨基酸残基的多肽)作为第一和第二Fc区多肽的Fc区相比,该Fc区具有不同的对人Fc-受体的亲和力。
如本文中报道的一种示例性抗体是以及本发明的一个方面还是FcRn结合作用消除的双特异性双价抗体,所述抗体包含与人VEGF特异性结合的第一抗原结合位点和与人ANG-2特异性结合的第二抗原结合位点,
其中
i)与VEGF特异性结合的第一抗原结合位点在重链可变结构域中包含SEQ ID NO:14的CDR3H区、SEQ ID NO:15的CDR2H区和SEQ ID NO:16的CDR1H区,并且在轻链可变结构域中包含SEQ ID NO:17的CDR3L区、SEQ ID NO:18的CDR2L区和SEQ ID NO:19的CDR1L区,并且
ii)与ANG-2特异性结合的第二抗原结合位点在重链可变结构域中包含SEQ IDNO:22的CDR3H区、SEQ ID NO:23的CDR2H区和SEQ ID NO:24的CDR1H区,并且在轻链可变结构域中包含SEQ ID NO:25的CDR3L区、SEQ ID NO:26的CDR2L区和SEQ ID NO:27的CDR1L区,并且
iii)双特异性抗体包含Fc区,所述Fc区包含第一Fc区多肽和第二Fc区多肽,
其中
a)第一Fc区多肽和第二Fc区多肽衍生自相同的人Fc区多肽,并且
b)第一Fc区多肽已经修饰,在于其氨基酸序列至少在根据KabatEU index编号体系的一个相应位置与第二Fc区多肽氨基酸序列不同,并且第二Fc区多肽已经修饰,在于其氨基酸序列至少在根据KabatEU index编号体系的一个相应位置与第一Fc区多肽氨基酸序列不同,因而第一Fc区多肽中的修饰位置和第二Fc区多肽中的修饰位置是不同的,并且
c)与包含a)的人Fc区多肽(即在根据KabatEU index编号体系的相应位置处具有与a)的人Fc区多肽相同的氨基酸残基的多肽)作为第一和第二Fc区多肽的Fc区相比,该Fc区具有不同的对人Fc-受体的亲和力。
在全部方面的一个实施方案中,Fc区是变体(人)IgG类Fc区。在一个实施方案中,变体(人)IgG类Fc区是IgG类异二聚Fc区。
在全部方面的一个实施方案中,第一Fc区多肽和第二Fc区多肽配对以形成(有功能的)Fc区导致异二聚体的形成。
在一个实施方案中,人Fc区多肽是IgG1亚类的或IgG4亚类的人Fc区多肽。
在一个实施方案中,人Fc区多肽是IgG1亚类的人Fc区多肽,其还包含突变L234A、L235A和P329G。
在一个实施方案中,人Fc区多肽是IgG4亚类的人Fc区多肽,其还包含突变S228P和L235E。
在一个实施方案中,第一Fc区多肽还包含突变S354C和T366W并且第二Fc区多肽还包含突变Y349C、T366S、L368A和Y407V。
在一个实施方案中,双特异性抗体特征在于
i)与VEGF特异性结合的第一抗原结合位点包含SEQ ID NO:20的氨基酸序列作为重链可变结构域VH并且包含SEQ ID NO:21的氨基酸序列作为轻链可变结构域VL,并且
ii)与ANG-2特异性结合的第二抗原结合位点包含SEQ ID NO:28的氨基酸序列作为重链可变结构域VH并且包含SEQ ID NO:29的氨基酸序列作为轻链可变结构域VL。
在一个实施方案中,双特异性抗体的特征在于iii)的Fc区属于人IgG1亚类。在一个实施方案中,双特异性抗体的特征在于人IgG1亚类的Fc区还包含突变L234A、L235A和P329G(根据Kabat的EU index编号)。
在一个实施方案中,双特异性抗体的特征在于iii)的Fc区属于人IgG4亚类。在一个实施方案中,双特异性抗体的特征在于人IgG4亚类的Fc区还包含突变S228P和L235E(根据Kabat的EU index编号)。在一个实施方案中,双特异性抗体的特征在于人IgG4亚类的Fc区还包含突变S228P、L235E和P329G(根据Kabat的EU index编号)。
在一个实施方案中,双特异性抗体包含Fc区,所述Fc区包含人IgG1或人IgG4亚类(即衍生自人源)的第一和第二Fc区多肽,所述多肽在第一Fc区多肽中包含选自i)组I253A、H310A、H435A、或ii)组H310A、H433A、Y436A、或iii)组L251D、L314D、L432D、或iv)组L251S、L314S、L432S(根据KabatEU index编号体系编号)的一个或两个突变并且在第二Fc区多肽中包含选自突变L251D、L251S、I253A、H310A、L314D、L314S、L432D、L432S、H433A、H435A、Y436A(根据KabatEU index编号体系编号)的一个或两个突变,从而全部突变i)I253A、H310A、H435A、或ii)H310A、H433A、Y436A、或iii)L251D、L314D、L432D、或iv)L251S、L314S、L432S均含于该Fc区中。
在一个实施方案中,双特异性抗体包含Fc区,所述Fc区包含人IgG1或人IgG4亚类(衍生自人源)的第一和第二Fc区多肽,所述多肽在Fc区中包含突变I253A/H310A/H435A或H310A/H433A/Y436A或L251D/L314D/L432D或L251S/L314S/L432S或其组合(根据KabatEUindex编号体系编号),因而全部突变均在第一或第二Fc区多肽中,或一个或两个突变在第一Fc区多肽中并且一个或两个突变在第二Fc区多肽中,从而全部突变i)I253A、H310A、H435A、或ii)H310A、H433A、Y436A、或iii)L251D、L314D、L432D、或iv)L251S、L314S和L432S均包含于该Fc区中。
仍然如本文中报道的其他方面是包含双特异性抗体的药物制剂、用于治疗眼血管疾病的药物制剂、双特异性抗体制造用于治疗眼血管疾病的药物的用途、通过施用双特异性抗体至需要这种治疗的患者治疗患有眼血管疾病的患者的方法。在一个实施方案中,通过玻璃体内应用施用双特异性抗体或包含双特异性抗体的药物制剂。
本发明的又一个方面是编码如本文中报道的双特异性抗体的重链和/或轻链的核酸分子。
本发明还提供含有如本文中报道的核酸的表达载体(所述表达载体能够表达在原核或真核宿主细胞中该核酸),和含有这类载体用于重组产生如本文中报道的双特异性抗体的宿主细胞。
本发明还包含原核或真核宿主细胞,所述宿主细胞包含如本文中报道的载体。
本发明还包括一种用于产生如本文中报道的双特异性抗体的方法,所述方法的特征如下:在原核或真核宿主细胞中表达如本文中报道的核酸并且从细胞或细胞培养上清液回收双特异性抗体。一个实施方案是一种用于制备如本文中报道的双特异性抗体的方法,所述方法包括步骤
a)用包含编码抗体的核酸分子的载体转化宿主细胞;
b)在允许合成抗体的条件下培养宿主细胞;并且
c)从培养物回收抗体。
本发明还包括通过这种产生双特异性抗体的方法获得的抗体。
如本文中报道的抗体因其Fc区中的特定修饰而具有高度有价值的特性,所述修饰对患有眼血管疾病的患者有益处。它们在玻璃体内环境中显示高稳定性并从眼缓慢扩散(与无恒定重链区的更小抗体片段相比),其中实际疾病存在及被治疗(因此与非IgG样抗体例如Fab片段和(Fab)2片段相比,治疗方案可以潜在地改进)。在另一方面,如本文中报道的抗体迅速从血清中清(这是迫切需要以减少源自全身暴露的潜在副作用)。令人惊讶地,它们还显示较低粘度(参见图2)(与恒定区中无突变组合I253A,H310A和H435A的形式相比)并且是因此特别地用于治疗眼病期间通过细针头进行玻璃体内施加(对于这类应用,一般使用细针头并且高粘度使得适宜的施加相当困难)。较低粘度还允许更高浓度的制剂。
还令人惊讶地,如本文中报道的抗体显示在储存期间较低的聚集倾向性(参见图4)(与Fc区中无突变组合I253A,H310A和H435A的形式相比),这对眼中玻璃体内施加至关重要(因为在眼中的聚集可能在这类治疗期间导致并发症)。
如本文中报道的双特异性抗体在抑制血管疾病方面显示良好效力。
在某些实施方案中,如本文中报道的双特异性抗体因恒定区中其特定修饰(例如P329GLALA)而显示有价值的特性,如不结合至Fcγ受体/无Fcγ受体结合作用,这降低副作用如血栓形成和/或不希望的细胞死亡(因例如ADCC所致)的风险。
在如本文中报道的一个实施方案中,如本文中报道的双特异性抗体是双价的。
在本发明的一个方面,如本文中报道的双特异性双价抗体的特征在于包含
a)与VEGF特异性结合的第一全长抗体的重链和轻链,和
b)与ANG-2特异性结合的第二全长抗体的修饰重链和修饰轻链,其中恒定结构域CL和CH1相互替换。
这种与人血管内皮生长因子(VEGF)和人血管生成素-2(ANG-2)特异性结合的双特异性抗体的双特异性双价抗体样式在WO 2009/080253中描述(包括突起-入-孔修饰的CH3结构域)。基于这种双特异性双价抗体样式的抗体命名为CrossMab。
在一个实施方案中,这类双特异性双价抗体的特征在于包含
a)SEQ ID NO:38的氨基酸序列作为第一全长抗体的重链和SEQ ID NO:40的氨基酸序列作为第一全长抗体的轻链,并且
b)SEQ ID NO:39的氨基酸序列作为第二全长抗体的修饰重链和SEQ ID NO:41的氨基酸序列作为第二全长抗体的修饰轻链。
在一个实施方案中,这类双特异性双价抗体的特征在于包含
a)SEQ ID NO:34的氨基酸序列作为第一全长抗体的重链和SEQ ID NO:36的氨基酸序列作为第一全长抗体的轻链,并且
b)SEQ ID NO:35的氨基酸序列作为第二全长抗体的修饰重链和SEQ ID NO:37的氨基酸序列作为第二全长抗体的修饰轻链。
在一个实施方案中,这类双特异性双价抗体的特征在于包含
a)SEQ ID NO:42的氨基酸序列作为第一全长抗体的重链和SEQ ID NO:44的氨基酸序列作为第一全长抗体的轻链,并且
b)SEQ ID NO:43的氨基酸序列作为第二全长抗体的修饰重链和SEQ ID NO:45的氨基酸序列作为第二全长抗体的修饰轻链。
在一个实施方案中,这类双特异性双价抗体的特征在于包含
a)SEQ ID NO:90的氨基酸序列作为第一全长抗体的重链和SEQ ID NO:40的氨基酸序列作为第一全长抗体的轻链,并且
b)SEQ ID NO:91的氨基酸序列作为第二全长抗体的修饰重链和SEQ ID NO:41的氨基酸序列作为第二全长抗体的修饰轻链。
在一个实施方案中,这类双特异性双价抗体的特征在于包含
a)SEQ ID NO:88的氨基酸序列作为第一全长抗体的重链和SEQ ID NO:36的氨基酸序列作为第一全长抗体的轻链,并且
b)SEQ ID NO:89的氨基酸序列作为第二全长抗体的修饰重链和SEQ ID NO:37的氨基酸序列作为第二全长抗体的修饰轻链。
在一个实施方案中,这类双特异性双价抗体的特征在于包含
a)SEQ ID NO:92的氨基酸序列作为第一全长抗体的重链和SEQ ID NO:44的氨基酸序列作为第一全长抗体的轻链,并且
b)SEQ ID NO:93的氨基酸序列作为第二全长抗体的修饰重链和SEQ ID NO:45的氨基酸序列作为第二全长抗体的修饰轻链。
因此如本文中报道的一个方面是一种包含与人VEGF特异性结合的第一抗原结合位点和与人ANG-2特异性结合的第二抗原结合位点的双特异性双价抗体,其特征在于包含SEQ ID NO:38、SEQ ID NO:39、SEQ ID NO:40和SEQ ID NO:41的氨基酸序列。
因此如本文中报道的一个方面是一种包含与人VEGF特异性结合的第一抗原结合位点和与人ANG-2特异性结合的第二抗原结合位点的双特异性双价抗体,其特征在于包含SEQ ID NO:34、SEQ ID NO:35、SEQ ID NO:36和SEQ ID NO:37的氨基酸序列。
因此如本文中报道的一个方面是一种包含与人VEGF特异性结合的第一抗原结合位点和与人ANG-2特异性结合的第二抗原结合位点的双特异性双价抗体,其特征在于包含SEQ ID NO:42、SEQ ID NO:43、SEQ ID NO:44和SEQ ID NO:45的氨基酸序列。
因此如本文中报道的一个方面是一种包含与人VEGF特异性结合的第一抗原结合位点和与人ANG-2特异性结合的第二抗原结合位点的双特异性双价抗体,其特征在于包含SEQ ID NO:90、SEQ ID NO:91、SEQ ID NO:40和SEQ ID NO:41的氨基酸序列。
因此如本文中报道的一个方面是一种包含与人VEGF特异性结合的第一抗原结合位点和与人ANG-2特异性结合的第二抗原结合位点的双特异性双价抗体,其特征在于包含SEQ ID NO:88、SEQ ID NO:89、SEQ ID NO:36和SEQ ID NO:37的氨基酸序列。
因此如本文中报道的一个方面是一种包含与人VEGF特异性结合的第一抗原结合位点和与人ANG-2特异性结合的第二抗原结合位点的双特异性双价抗体,其特征在于包含SEQ ID NO:92、SEQ ID NO:93、SEQ ID NO:44和SEQ ID NO:45的氨基酸序列。
在如本文中报道的另一个方面,如本文中报道的双特异性抗体的特征在于包含
a)与VEGF特异性结合的第一全长抗体的重链和轻链,和
b)与ANG-2特异性结合的第二全长抗体的重链和轻链,其中重链的N末端借助肽接头与轻链的C末端连接。
这种与人血管内皮生长因子(VEGF)和人血管生成素-2(ANG-2)特异性结合的双特异性抗体的双特异性双价抗体样式在WO 2011/117330中描述(包括突起-入-孔修饰的CH3结构域)。基于这种双特异性双价抗体样式的抗体命名为单臂单链样式Fab(OAscFab)。
在一个实施方案中,这类双特异性双价抗体的特征在于包含
a)SEQ ID NO:46的氨基酸序列作为第一全长抗体的重链和SEQ ID NO:48的氨基酸序列作为第一全长抗体的轻链,并且
b)SEQ ID NO:47的氨基酸序列作为借助肽接头与第二全长抗体的轻链连接的第二全长抗体的重链。
在一个实施方案中,这类双特异性双价抗体的特征在于包含
a)SEQ ID NO:49的氨基酸序列作为第一全长抗体的重链和SEQ ID NO:51的氨基酸序列作为第一全长抗体的轻链,并且
b)SEQ ID NO:50的氨基酸序列作为借助肽接头与第二全长抗体的轻链连接的第二全长抗体的重链。
在一个实施方案中,这类双特异性双价抗体的特征在于包含
a)SEQ ID NO:94的氨基酸序列作为第一全长抗体的重链和SEQ ID NO:48的氨基酸序列作为第一全长抗体的轻链,并且
b)SEQ ID NO:95的氨基酸序列作为借助肽接头与第二全长抗体的轻链连接的第二全长抗体的重链。
在一个实施方案中,这类双特异性双价抗体的特征在于包含
a)SEQ ID NO:96的氨基酸序列作为第一全长抗体的重链和SEQ ID NO:51的氨基酸序列作为第一全长抗体的轻链,并且
b)SEQ ID NO:97的氨基酸序列作为借助肽接头与第二全长抗体的轻链连接的第二全长抗体的重链。
在一个实施方案中,通过在以下位置之间引入二硫键进一步稳定化第二全长抗体的重链和轻链的抗体重链可变结构域(VH)和抗体轻链可变结构域(VL):重链可变结构域位置44和轻链可变结构域位置100(根据Kabat编号(Kabat,E.A.等人,Sequences ofProteins of Immunological Interest,第5版,Public Health Service,NationalInstitutes of Health,Bethesda,MD(1991))。引入二硫键以起到稳定作用的技术例如在WO 94/029350;Rajagopal,V.等人,Prot.Eng.10(1997)1453-1459;Kobayashi等人,Nuclear Medicine&Biology 25(1998)387-393和Schmidt,M.等人,Oncogene 18(1999)1711-1721中描述。
因此如本文中报道的一个方面是一种包含与人VEGF特异性结合的第一抗原结合位点和与人ANG-2特异性结合的第二抗原结合位点的双特异性双价抗体,其特征在于包含SEQ ID NO:46、SEQ ID NO:47和SEQ ID NO:48的氨基酸序列。
因此如本文中报道的一个方面是一种包含与人VEGF特异性结合的第一抗原结合位点和与人ANG-2特异性结合的第二抗原结合位点的双特异性双价抗体,其特征在于包含SEQ ID NO:49、SEQ ID NO:50和SEQ ID NO:51的氨基酸序列。
因此如本文中报道的一个方面是一种包含与人VEGF特异性结合的第一抗原结合位点和与人ANG-2特异性结合的第二抗原结合位点的双特异性双价抗体,其特征在于包含SEQ ID NO:94、SEQ ID NO:95和SEQ ID NO:48的氨基酸序列。
因此如本文中报道的一个方面是一种包含与人VEGF特异性结合的第一抗原结合位点和与人ANG-2特异性结合的第二抗原结合位点的双特异性双价抗体,其特征在于包含SEQ ID NO:96、SEQ ID NO:97和SEQ ID NO:51的氨基酸序列。
在一个实施方案中,通过“突起-入-孔(knob-into-hole)”技术改变如本文中报道的双特异性双价抗体的CH3结构域,所述技术在例如WO 96/027011、Ridgway J.B.等人,Protein Eng.9(1996)617-621和Merchant,A.M.等人,Nat.Biotechnol.16(1998)677-681中的几个例子详述。在这种方法中,改变两个CH3结构域的相互作用面以增加含有这两个CH3结构域的两条重链的异二聚化。(两条重链的)两个CH3结构域的一者可以是“突起”,而另一者是“孔”。二硫键的引入进一步稳定异二聚体(Merchant,A.M等人,NatureBiotech.16(1998)677-681;Atwell,S.等人,J.Mol.Biol.270(1997)26-35)并增加产率。
在如本文中报道的全部方面的一个优选实施方案中,双特异性抗体的特征在于
一条重链的CH3结构域和另一条重链的CH3结构域各自在包含抗体CH3结构域之间初始界面的界面处会合,
其中改变该界面以促进双特异性抗体的形成,其中所述改变特征在于
a)如此改变一条重链的CH3结构域,
从而在双特异性抗体内部与另一条重链的CH3结构域的初始界面会合的一条重链的CH3结构域的初始界面中,
将氨基酸残基替换为具有更大侧链体积的氨基酸残基,因而在一个重链的CH3结构域的界面内部产生突出部分,所述突出部分可放置在另一个重链的CH3结构域的界面内部的腔中,
并且
b)如此改变另一条重链的CH3结构域,
从而在双特异性抗体内部,与第一CH3结构域的初始界面会合的第二CH3结构域的初始界面中,
将氨基酸残基替换为具有更小侧链体积的氨基酸残基,因而在第二CH3结构域的界面内部产生腔,在所述腔内部可放置第一CH3结构域的界面中的突出部分。
因此,本发明的抗体在一个优选的实施方案中特征在于
a)的全长抗体的重链的CH3结构域和b)的全长抗体的重链的CH3结构域各自在包含抗体的CH3结构域之间初始界面中的改变界面处会合,
其中
i)在一条重链的CH3结构域中
将氨基酸残基替换为具有更大侧链体积的氨基酸残基,因而在一个重链的CH3结构域的界面内部产生突出部分,所述突出部分可放置在另一个重链的CH3结构域的界面内部的腔中,
并且其中
ii)在另一条重链的CH3结构域中
将氨基酸残基替换为具有更小侧链体积的氨基酸残基,因而在第二CH3结构域的界面内部产生腔穴,在第一CH3结构域的界面内部突出部分可放置在所述腔内部。
在一个优选的实施方案中,具有更大侧链体积的氨基酸残基选自精氨酸(R)、苯丙氨酸(F)、酪氨酸(Y)、色氨酸(W)。
在一个优选的实施方案中,具有更小侧链体积的氨基酸残基选自丙氨酸(A)、丝氨酸(S)、苏氨酸(T)、缬氨酸(V)。
在一个实施方案中,通过以下方式进一步改变两个CH3结构域:如此在每个CH3结构域的相应位置中引入半胱氨酸(C)残基,从而两个CH3结构域之间的二硫键可以形成。
在一个实施方案中,双特异性抗体在“突起链”的CH3结构域中包含T366W突变并且在“孔链”的CH3结构域中包含T366S、L368A和Y407V突变。也可以使用CH3结构域之间的额外链间二硫键(Merchant,A.M等人,Nature Biotech 16(1998)677-681),例如通过向“突起链”的CH3结构域引入Y349C或S354C突变并向“孔链”的CH3结构域引入Y439C或E356C或S354C突变。
在一个实施方案中,如本文中报道的双特异性抗体在两个CH3结构域之一中包含突变Y349C或S354C和突变T366W并且在两个CH3结构域的另一个结构域中包含突变S354C或E356C或Y349C和突变T366S、L368A和Y407V。在一个优选的实施方案中,双特异性抗体在两个CH3结构域之一中包含Y349C、T366W突变并且在两个CH3结构域的另一个结构域中包含S354C、T366S、L368A、Y407V突变(在一个CH3域中的额外Y349C突变和另一个CH3域中的额外S354C突变形成链间二硫键)(根据Kabat的EU index编号(Kabat,E.A.等人,Sequences ofProteins of Immunological Interest,第5版,Public Health Service,NationalInstitutes of Health,Bethesda,MD(1991))。在一个优选的实施方案中,双特异性抗体在两个CH3结构域之一中包含S354C、T366W突变并且在两个CH3结构域的另一个结构域中包含Y349C、T366S、L368A、Y407V突变(在一个CH3域中的额外S354C突变和另一个CH3域中的额外Y349C突变形成链间二硫键)(根据Kabat的EU index编号(Kabat,E.A.等人,Sequences ofProteins of Immunological Interest,第5版,Public Health Service,NationalInstitutes of Health,Bethesda,MD(1991))。
还可以备选或额外地使用如EP 1 870 459 A1所描述的其他的突起-入-孔技术。因此,双特异性抗体的另一个例子是在“突起链”的CH3结构域中的R409D和K370E突变和在“孔链”的CH3结构域中D399K和E357K突变)(根据Kabat的EU index编号(Kabat,E.A.等人,Sequences of Proteins of Immunological Interest,第5版,Public Health Service,National Institutes of Health,Bethesda,MD(1991))。
在另一个实施方案中,双特异性抗体在“突起链”的CH3结构域中包含T366W突变并且在“孔链”的CH3结构域中包含T366S、L368A和Y407V突变以及额外地在“突起链”的CH3结构域中包含R409D、K370E突变及在“孔链”的CH3结构域中包含D399K、E357K突变。
在一个实施方案中,双特异性抗体在两个CH3结构域之一中包含Y349C、T366W突变及在两个CH3结构域的另一结构域中包含S354C、T366S、L368A和Y407V突变,或者双特异性抗体在两个CH3结构域之一中包含Y349C、T366W突变及在两个CH3结构域的另一结构域中包含S354C、T366S、L368A和Y407V突变以及额外地在“突起链”的CH3结构域中包含R409D、K370E突变及在“孔链”的CH3结构域中包含D399K、E357K突变。
在一个实施方案中,双特异性抗体在两个CH3结构域之一中包含S354C、T366W突变及在两个CH3结构域的另一结构域中包含Y349C、T366S、L368A、Y407V突变,或者双特异性抗体在两个CH3结构域之一中包含S354C、T366W突变及在两个CH3结构域的另一结构域中包含Y349C、T366S、L368A和Y407V突变以及额外地在“突起链”的CH3结构域中包含R409D、K370E突变及在“孔链”的CH3结构域中包含D399K、E357K突变。
在一个实施方案中,如本文中报道的双特异性抗体特征在于具有以下一个或多个特性:
-与无iii)下所述突变的相应双特异性抗体相比,显示较低血清浓度(在小鼠FcRn缺陷、但对人FcRn为半合子转基因的小鼠中玻璃体内施加后96小时)(在如实施例6中所述的测定法中测定),
-与无iii)下所述突变的相应双特异性抗体相比,在全右眼裂解物中显示相似(倍数0.8至1.2)的浓度(在小鼠FcRn缺陷、但对人FcRn为半合子转基因的小鼠中,右眼中玻璃体内施加后96小时)(在如实施例6中所述的测定法中测定),
-显示不与人新生Fc受体结合。
在一个实施方案中,双特异性双价抗体的特征在于包含第一Fc区多肽和第二Fc区多肽,其中
a)第一和第二Fc区多肽包含突变Y436A,或
b)第一和第二Fc区多肽包含突变I253A、H310A和H435A,或
c)第一和第二Fc区多肽包含突变H310A、H433A和Y436A,或
d)第一和第二Fc区多肽包含突变L251D、L314D和L432D,或
e)第一和第二Fc区多肽包含突变L251S、L314S和L432S,或
f)第一Fc区多肽包含突变Y436A并且第二Fc区多肽包含
-突变I253A、H310A和H435A,或
-突变H310A、H433A和Y436A,或
-突变L251D、L314D和L432D,或
-突变L251S、L314S和L432S,
g)第一Fc区多肽包含突变I253A、H310A和H435A并且第二Fc区多肽包含
-突变H310A、H433A和Y436A,或
-突变L251D、L314D和L432D,或
-突变L251S、L314S和L432S,
h)第一Fc区多肽包含突变H310A、H433A和Y436A并且第二Fc区多肽包含
a)突变L251D、L314D和L432D,或
b)突变L251S、L314S和L432S、
i)第一Fc区多肽包含突变L251D、L314D和L432D并且第二Fc区多肽包含
a)突变L251S、L314S和L432S。
在一个实施方案中,双特异性抗体包含Fc区,所述Fc区包含人IgG1或人IgG4亚类(即衍生自人源)的第一和第二Fc区多肽,所述多肽在第一Fc区多肽中包含选自i)组I253A、H310A、H435A、或ii)组H310A、H433A、Y436A、或iii)组L251D、L314D、L432D、或iv)组L251S、L314S、L432S(根据KabatEU index编号体系编号)的一个或两个突变并且在第二Fc区多肽中包含选自突变L251D、L251S、I253A、H310A、L314D、L314S、L432D、L432S、H433A、H435A、Y436A(根据KabatEU index编号体系编号)的一个或两个突变,从而当一并考虑时第一和第二Fc区多肽中的全部突变导致突变i)I253A、H310A和H435A、或ii)H310A、H433A和Y436A、或iii)L251D、L314D和L432D、或iv)L251S、L314S和L432S包含于该Fc区中。
在一个实施方案中,双特异性抗体包含Fc区,所述Fc区包含人IgG1或人IgG4亚类(衍生自人源)的第一和第二Fc区多肽,所述多肽在Fc区中包含突变I253A/H310A/H435A或H310A/H433A/Y436A或L251D/L314D/L432D或L251S/L314S/L432S或其组合(根据KabatEUindex编号体系编号),因而全部突变均在第一或第二Fc区多肽中,或一个或两个突变在第一Fc区多肽中并且一个或两个突变在第二Fc区多肽中,从而当一并考虑时第一和第二Fc区多肽中的全部突变导致突变i)I253A、H310A和H435A、或ii)H310A、H433A和Y436A、或iii)L251D、L314D和L432D、或iv)L251S、L314S和L432S包含于该Fc区中。
在一个实施方案中,双特异性双价抗体的特征在于包含
与人VEGF特异性结合的第一抗原结合位点和与人ANG-2特异性结合的第二抗原结合位点,特征在于
i)第一抗原结合位点包含SEQ ID NO:20的氨基酸序列作为重链可变结构域(VH)并且包含SEQ ID NO:21的氨基酸序列作为轻链可变结构域(VL),并且
ii)第二抗原结合位点包含SEQ ID NO:28的氨基酸序列作为重链可变结构域(VH)并且包含SEQ ID NO:29的氨基酸序列作为轻链可变结构域(VL),并且
iii)双特异性抗体包含Fc区,所述Fc区包含人IgG1或人IgG4亚类(即衍生自人源)的第一和第二Fc区多肽,所述多肽在第一Fc区多肽中包含选自i)组I253A、H310A、H435A、或ii)组H310A、H433A、Y436A、或iii)组L251D、L314D、L432D、或iv)组L251S、L314S、L432S(根据KabatEU index编号体系编号)的一个或两个突变并且在第二Fc区多肽中包含选自突变L251D、L251S、I253A、H310A、L314D、L314S、L432D、L432S、H433A、H435A、Y436A(根据KabatEUindex编号体系编号)的一个或两个突变,从而当一并考虑时第一和第二Fc区多肽中的全部突变导致突变i)I253A、H310A和H435A、或ii)H310A、H433A和Y436A、或iii)L251D、L314D和L432D、或iv)L251S、L314S和L432S含于该Fc区中,
并且具有以下一个或多个特性
-与无iii)下所述突变的相应双特异性抗体相比,显示较低血清浓度(在小鼠FcRn缺陷、但对人FcRn为半合子转基因的小鼠中玻璃体内施加后96小时)(在如实施例6中所述的测定法中测定),
-与无iii)下所述突变的相应双特异性抗体相比,在全右眼裂解物中显示相似(倍数0.8至1.2)的浓度(在小鼠FcRn缺陷、但对人FcRn为半合子转基因的小鼠中玻璃体内施加后96小时)(在如实施例6中所述的测定法中测定),
-显示不与人新生Fc受体结合。
在一个实施方案中,双特异性双价抗体的特征在于包含
与人VEGF特异性结合的第一抗原结合位点和与人ANG-2特异性结合的第二抗原结合位点,特征在于
i)第一抗原结合位点包含SEQ ID NO:20的氨基酸序列作为重链可变结构域(VH)并且包含SEQ ID NO:21的氨基酸序列作为轻链可变结构域(VL),并且
ii)第二抗原结合位点包含SEQ ID NO:28的氨基酸序列作为重链可变结构域(VH)并且包含SEQ ID NO:29的氨基酸序列作为轻链可变结构域(VL),并且
iii)双特异性抗体包含第一Fc区多肽和第二Fc区多肽,其中
a)第一和第二Fc区多肽包含突变Y436A,或
b)第一和第二Fc区多肽包含突变I253A、H310A和H435A,或
c)第一和第二Fc区多肽包含突变H310A、H433A和Y436A,或
d)第一和第二Fc区多肽包含突变L251D、L314D和L432D,或
e)第一和第二Fc区多肽包含突变L251S、L314S和L432S,或
f)第一Fc区多肽包含突变Y436A并且第二Fc区多肽包含
-突变I253A、H310A和H435A,或
-突变H310A、H433A和Y436A,或
-突变L251D、L314D和L432D,或
-突变L251S、L314S和L432S,
g)第一Fc区多肽包含突变I253A、H310A和H435A并且第二Fc区多肽包含
-突变H310A、H433A和Y436A,或
-突变L251D、L314D和L432D,或
-突变L251S、L314S和L432S,
h)第一Fc区多肽包含突变H310A、H433A和Y436A并且第二Fc区多肽包含
a)突变L251D、L314D和L432D,或
b)突变L251S、L314S和L432S,
i)第一Fc区多肽包含突变L251D、L314D和L432D并且第二Fc区多肽包含
a)突变L251S、L314S和L432S,
并且具有以下一个或多个特性
-与无iii)下所述突变的相应双特异性抗体相比,显示较低血清浓度(在小鼠FcRn缺陷、但对人FcRn为半合子转基因的小鼠中玻璃体内施加后96小时)(在如实施例6中所述的测定法中测定),
-与无iii)下所述突变的相应双特异性抗体相比,在全右眼裂解物中显示相似(倍数0.8至1.2)的浓度(在小鼠FcRn缺陷、但对人FcRn
为半合子转基因的小鼠中右眼玻璃体内施加后96小时)(在如实施例6中所述的测定法中测定),
-显示不与人新生Fc受体结合。
在一个实施方案中,双特异性抗体的特征在于包含与人VEGF特异性结合的第一抗原结合位点和与人ANG-2特异性结合的第二抗原结合位点,特征在于
i)第一抗原结合位点包含有1、2或3个氨基酸置换的SEQ ID NO:20的氨基酸序列作为重链可变结构域(VH)并且包含有1、2或3个氨基酸置换的SEQ ID NO:21的氨基酸序列作为轻链可变结构域(VL),并且
ii)第二抗原结合位点包含有1、2或3个氨基酸置换的SEQ ID NO:28的氨基酸序列作为重链可变结构域(VH)并且包含有1、2或3个氨基酸置换的SEQ ID NO:29的氨基酸序列作为轻链可变结构域(VL),并且
iii)双特异性抗体包含Fc区,所述Fc区包含人IgG1或人IgG4亚类(即衍生自人源)的第一和第二Fc区多肽,所述多肽在第一Fc区多肽中包含选自i)组I253A、H310A、H435A、或ii)组H310A、H433A、Y436A、或iii)组L251D、L314D、L432D、或iv)组L251S、L314S、L432S(根据KabatEU index编号体系编号)的一个或两个突变并且在第二Fc区多肽中包含选自突变L251D、L251S、I253A、H310A、L314D、L314S、L432D、L432S、H433A、H435A、Y436A(根据KabatEUindex编号体系编号)的一个或两个突变,从而当一并考虑时第一和第二Fc区多肽中的全部突变导致突变i)I253A、H310A和H435A、或ii)H310A、H433A和Y436A、或iii)L251D、L314D和L432D、或iv)L251S、L314S和L432S包含于该Fc区中,
并且具有以下一个或多个特性
-与无iii)下所述突变的相应双特异性抗体相比,显示较低血清浓度(在小鼠FcRn缺陷、但对人FcRn为半合子转基因的小鼠中玻璃体内施加后96小时)(在如实施例6中所述的测定法中测定),
-与无iii)下所述突变的相应双特异性抗体相比,在全右眼裂解物中显示相似(倍数0.8至1.2)的浓度(在小鼠FcRn缺陷、但对人FcRn为半合子转基因的小鼠中右眼玻璃体内施加后96小时)(在如实施例6中所述的测定法中测定),
-显示不与人新生Fc受体结合。
在一个实施方案中,双特异性抗体的特征在于包含与人VEGF特异性结合的第一抗原结合位点和与人ANG-2特异性结合的第二抗原结合位点,特征在于
i)第一抗原结合位点包含有1、2或3个氨基酸置换的SEQ ID NO:20的氨基酸序列作为重链可变结构域(VH)并且包含有1、2或3个氨基酸置换的SEQ ID NO:21的氨基酸序列作为轻链可变结构域(VL),并且
ii)第二抗原结合位点包含有1、2或3个氨基酸置换的SEQ ID NO:28的氨基酸序列作为重链可变结构域(VH)并且包含有1、2或3个氨基酸置换的SEQ ID NO:29的氨基酸序列作为轻链可变结构域(VL),并且
iii)双特异性抗体包含第一Fc区多肽和第二Fc区多肽其中
a)第一和第二Fc区多肽包含突变Y436A,或
b)第一和第二Fc区多肽包含突变I253A、H310A和H435A,或
c)第一和第二Fc区多肽包含突变H310A、H433A和Y436A,或
d)第一和第二Fc区多肽包含突变L251D、L314D和L432D,或
e)第一和第二Fc区多肽包含突变L251S、L314S和L432S,或
f)第一Fc区多肽包含突变Y436A并且第二Fc区多肽包含
-突变I253A、H310A和H435A,或
-突变H310A、H433A和Y436A,或
-突变L251D、L314D和L432D,或
-突变L251S、L314S和L432S,
g)第一Fc区多肽包含突变I253A、H310A和H435A并且第二Fc区多肽包含
-突变H310A、H433A和Y436A,或
-突变L251D、L314D和L432D,或
-突变L251S、L314S和L432S,
h)第一Fc区多肽包含突变H310A、H433A和Y436A并且第二Fc区多肽包含
a)突变L251D、L314D和L432D,或
b)突变L251S、L314S和L432S,
i)第一Fc区多肽包含突变L251D、L314D和L432D并且第二Fc区多肽包含
a)突变L251S、L314S和L432S,
并且具有以下一个或多个特性
-与无iii)下所述突变的相应双特异性抗体相比,显示较低血清浓度(在小鼠FcRn缺陷、但对人FcRn为半合子转基因的小鼠中玻璃体内施加后96小时)(在如实施例6中所述的测定法中测定),
-与无iii)下所述突变的相应双特异性抗体相比,在全右眼裂解物中显示相似(倍数0.8至1.2)的浓度(在小鼠FcRn缺陷、但对人FcRn为半合子转基因的小鼠中右眼玻璃体内施加后96小时)(在如实施例6中所述的测定法中测定),
-显示不与人新生Fc受体结合。
如本文中报道的双特异性抗体的抗原结合位点含有不同程度有助于结合位点对其抗原的亲和力的六个互补决定区(CDR)。存在三个重链可变结构域CDR(CDRH1、CDRH2和CDRH3)和三个轻链可变结构域CDR(CDRL1、CDRL2和CDRL3)。通过与汇编的氨基酸序列数据库比较,确定CDR和构架区(FR)的程度,在所述数据库中已经根据序列之间的可变性定义这些区域。
在全部方面的一个实施方案中,抗体不与人FcRn特异性结合。在全部方面的一个实施方案中,抗体额外地与葡萄球菌蛋白A特异性结合。
在全部方面的一个实施方案中,抗体不与人FcRn特异性结合。在全部方面的一个实施方案中,抗体额外地不与葡萄球菌蛋白A特异性结合。
在全部方面的一个实施方案中,第一多肽还包含突变Y349C、T366S、L368A和Y407V(“孔”)并且第二多肽包含突变S354C和T366W(“突起”)。
在全部方面的一个实施方案中,第一多肽还包含突变S354C、T366S、L368A和Y407V(“孔”)并且第二多肽包含突变Y349C和T366W(“突起”)。
在全部方面的一个实施方案中,Fc区多肽属于人IgG1亚类。在一个实施方案中,第一Fc区多肽和第二Fc区多肽还包含突变L234A和L235A。在一个实施方案中,第一Fc区多肽和第二Fc区多肽还包含突变P329G。
在全部方面的一个实施方案中,Fc区多肽属于人IgG4亚类。在一个实施方案中,第一Fc区多肽和第二Fc区多肽还包含突变S228P和L235E。在一个实施方案中,第一Fc区多肽和第二Fc区多肽还包含突变P329G。
如本文中报道的抗体通过重组手段产生。因此,如本文中报道的一个方面是编码如本文中报道的抗体的核酸并且又一个方面是包含核酸的细胞,所述核酸编码如本文中报道的抗体。用于重组产生的方法是本领域广泛已知并且包括在原核细胞和真核细胞中蛋白质表达,连同后续分离抗体并通常纯化至可药用的纯度。为了在宿主细胞中表达如前述的抗体,通过标准方法,将编码各(修饰的)轻链和重链的核酸插入表达载体中。表达在适宜的原核或真核宿主细胞中进行,如CHO细胞、NS0细胞、SP2/0细胞、HEK293细胞、COS细胞、PER.C6细胞、酵母或大肠杆菌细胞、并且抗体从细胞(培养上清液或裂解后的细胞)回收。用于重组产生抗体的一般方法是现有技术中熟知的并且例如在以下综述文章中描述:Makrides,S.C.,Protein Expr.Purif.17(1999)183-202;Geisse,S.等人,ProteinExpr.Purif.8(1996)271-282;Kaufman,R.J.,Mol.Biotechnol.16(2000)151-160和Werner,R.G.,Drug Res.48(1998)870-880。
因此如本文中报道的一个方面是一种用于制备如本文中报道的双特异性抗体的方法,所述方法包括步骤
a)用包含编码抗体的核酸分子的载体转化宿主细胞,
b)在允许合成抗体的条件下培养宿主细胞,并且
c)从培养物回收抗体。
在一个实施方案中,c)下的回收步骤包括使用轻链恒定结构域特异性捕获试剂(其例如对κ或λ恒定轻链特异,取决于κ或λ轻链是否含于双特异性抗体中)。在一个实施方案中,这种轻链特异性捕获试剂以结合-洗脱模式使用。这类轻链恒定结构域特异性捕获试剂的例子例如是KappaSelectTM和LambdaFabSelectTM(从GE Healthcare/BAC可获得),其基于高度刚性的琼脂糖基础基质,所述基质允许大规模时的高流速和低回压。这些材料含有分别与κ轻链或λ轻链恒定区结合的配体(即缺少轻链的恒定区片段将不结合;图1)。因此二者均能够结合含有轻链恒定区的其他靶分子,例如,IgG、IgA和IgM。配体借助亲水性长间隔臂与基质连接以使它们轻易可用于与靶分子结合。它们基于针对人Igκ或λ受到筛选的单链抗体片段。
在一个实施方案中,c)下的回收步骤包括使用Fc区特异性捕获试剂。在一个实施方案中,Fc区特异性捕获试剂以结合-洗脱模式使用。这类Fc区特异性捕获试剂的例子例如是基于葡萄球菌蛋白A的亲和层析材料s。
由常规免疫球蛋白纯化方法如,例如亲和层析(蛋白A-琼脂糖凝胶、或KappaSelectTM、LambdaFabSelectTM)、羟基磷灰石层析、凝胶电泳或透析,将双特异性抗体适当地与培养基分离。
使用常规方法,将编码单克隆抗体的DNA和RNA轻易地分离并测序。B细胞或杂交瘤细胞可以充当这类DNA和RNA的来源。一旦分离,可以将这种DNA插入表达载体,随后将所述表达载体转染至不另外产生免疫球蛋白的宿主细胞(如HEK293细胞、CHO细胞或骨髓瘤细胞)中,以实现重组单克隆抗体在宿主细胞中的合成。
通过包含经历不同修饰的Fc区,如本文中报道的一些分子提供便利分离/纯化作用,其中至少一个修饰导致i)所述分子对(葡萄球菌)蛋白A的差异性亲和力和ii)所述分子对人FcRn的差异性亲和力,并且所述分子基于其对蛋白A的亲和力可从破碎的细胞、培养基或分子混合物分离。
通过标准技术(包括碱/SDS处理、CsCl区带法、柱层析、琼脂糖凝胶电泳)和本领域熟知的其他技术进行抗体纯化,目的在于消除细胞组分或其他污染物(例如,其他细胞性核酸或蛋白质)(参见例如Ausubel,F.等人,编著,Current Protocols in MolecularBiology,Greene Publishing and Wiley Interscience,New York(1987))。充分建立了不同的方法并且它们广泛用于蛋白质纯化,如使用微生物蛋白的亲和层析(例如蛋白A或蛋白G亲和层析)、离子交换层析(例如阳离子交换(羧甲基树脂)、阴离子交换(氨基乙基树脂)和混合模式交换)、亲硫吸附作用(例如采用β-巯基乙醇和其他SH配体)、疏水相互作用或芳族吸附层析(例如采用苯基-琼脂糖凝胶、亲氮杂-芳烃树脂(aza-arenophilic resin)或间-氨基苯基硼酸)、金属螯合物亲和层析(例如采用Ni(II)-和Cu(II)-亲和材料)、大小排阻层析和电泳方法(如凝胶电泳法、毛细管电泳法)(Vijayalakshmi,M.A.,Appl.Biochem.Biotech.75(1998)93-102)。
如本文中报道的针对人VEGF和人ANG-2的双价双特异性抗体可以具备有价值的效力/安全谱(safety profile)并且可以为需要抗VEGF和抗ANG-2治疗的患者提供益处。
如本文中报道的一个方面是包含如本文中报道的抗体的药物制剂。如本文中报道的一个方面是如本文中报道的抗体用于制造药物制剂中的用途。如本文中报道的又一个方面是用于制造包含如本文中报道的抗体的药物制剂的方法。在另一个方面,提供制剂,例如药物制剂,所述制剂含有与药用载体一起配制的如本文中报道的抗体。
可以通过本领域已知的多种方法施用本发明的制剂。熟练技术人员将理解,施用的途径和/或模式将取决于所希望的结果而变。为了通过某些施用途径施用如本文中报道的化合物,可能需要将化合物用防止其失活的材料包衣或随这种材料共施用。例如,该化合物可以在适宜的载体例如脂质体或稀释剂中施用至受试者。可药用的稀释剂包括盐水和缓冲水溶液。药用载体包括无菌水溶液或分散体和用于现场制备无菌可注射溶液剂或分散剂的无菌粉末。用于药学活性物质的此类介质和物质的用途是本领域已知的。
可以使用许多可能的递送模式,包括但不限于眼内施加或局部施加。在一个实施方案中,施加是眼内施加并且包括,但不限于,结膜下注射、intracanieral注射、通过termporai缘注射入前房、基质内注射,角膜内注射、视网膜下注射、眼房水注射、筋膜下注射或持久递送装置、玻璃体内注射(例如,玻璃体前部、中部或后部注射)。在一个实施方案中,施加是局部的并且包括,但不限于滴至角膜上。
在一个实施方案中,通过玻璃体内施加,例如通过玻璃体内注射,施用如本文中报道的双特异性抗体或药物制剂。这可以根据本领域已知的标准方法进行(参见,例如,Ritter等人,J.Clin.Invest.116(2006)3266-3276;Russelakis-Carneiro等人,Neuropathol.Appl.Neurobiol.25(1999)196-206和Wray等人,Arch.Neurol.33(1976)183-185)。
在一些实施方案中,如本文中报道的治疗性试剂盒可以含有一个或多个剂量在本文所述的药物制剂中存在的双特异性抗体、用于玻璃体内注射该药物制剂的合适装置和详述适用对象及用于实施注射的方案的说明。在这些实施方案中,一般将制剂通过玻璃体内注射施用至需要治疗的受试者。这可以根据本领域已知的标准方法进行(参见,例如,Ritter等人,J.Clin.Invest.116(2006)3266-3276;Russelakis-Carneiro等人,Neuropathol.Appl.Neurobiol.25(1999)196-206和Wray等人,Arch.Neurol.33(1976)183-185)。
这些制剂也可以含有佐剂如防腐剂、润湿剂、乳化剂和分散剂。可以通过上文的消毒方法和通过纳入多种抗菌剂和抗真菌剂例如,对羟基本甲酸酯、氯丁醇、苯酚、山梨酸等确保防止存在微生物。还可能想要将等渗剂如糖、氯化钠等纳入制剂中。此外,可以通过纳入延迟吸收的物质如单硬脂酸铝和明胶引起可注射药物形式的延长吸收。
无论选择何种施用途径,均将如本文中报道的化合物(其可以按适宜水合形式使用)和/或如本文中报道的药物制剂,通过本领域技术人员已知的常规方法配制成可药用的剂型。
可以改变如本文报道的药物制剂中活性成分的实际剂量水平,以获得活性成分的下述量,所述量就具体患者、制剂和施用方式而言可以有效实现想要的治疗反应,并同时对患者无毒性。选择的剂量水平将取决于多种药代动力学因素,包括所用特定制剂的活性、施用途径、施用时间、正在使用的特定化合物的排泄速率、治疗的持续期、与所用制剂联合使用的其他药物、化合物和/或材料、正在治疗的患者的年龄、性别、重量、病况、总体健康和既往医疗史等医学领域熟知的因素。
制剂必须是无菌并如此程度地流动,从而通过注射器输送制剂。除水之外,载体优选地是等渗缓冲盐水溶液。
可以例如通过使用包衣如卵磷脂、在分散体情况下通过维持要求的粒度和通过使用表面活性剂,维持适宜的流动性。在许多情况下,优选在制剂中包含等渗剂,例如糖、多元醇如甘露醇或山梨醇和氯化钠。
制剂可以包括用于结膜下给药的包含活性物质的眼科用贮库制剂(ophthalmicdepot formulation)。眼科用贮库制剂包含基本上纯的活性物质(例如,如本文中报道的双特异性抗体)的微粒子。包含如本文中报道的双特异性抗体的微粒子可以嵌入生物相容性可药用聚合物或脂质包封剂中。贮库制剂可以适应于历经延长的时间段释放全部或基本上全部的活性物质。如果存在,聚合物或脂质基质可以适应于充分地降解,以便在释放全部或基本上全部活性物质后从施用部位转运出来。贮库制剂可以是液态制剂,包含可药用聚合物和溶解或分散的活性物质。一旦注射,则聚合物在注射部位形成储库,例如通过胶化或沉淀过程形成。
如本文中报道的另一个方面是用于治疗眼血管疾病的如本文中报道的双特异性抗体。
如本文中报道的另一个方面是用于治疗眼血管疾病的如本文中报道的药物制剂。
如本文中报道的一个方面是如本文中报道的抗体制造用于治疗眼血管疾病的药物的用途。
如本文中报道的另一个方面是通过以下方式治疗患有眼血管疾病的患者的方法:向需要这种治疗的患者施用如本文中报道的抗体。
这里明确地说明,如如本文所用的术语“包含”包括术语“由……组成”。因此,含有术语“包含”的全部方面和实施方案同样地用术语“由……组成”公开。
修饰
在又一个方面,根据任一个以上实施方案的抗体可以单独或以组合方式合并如下文1-6部分中所述的任一特征:
1.抗体亲和力
在某些实施方案中,本文提供的抗体具有≤100nM、≤10nM(例如10-7M或更小,例如从10-7M至10-13M,例如,从10-8M至10-13M)的解离常数(Kd)。
根据另一个实施方案,使用表面等离振子共振测定法测量Kd。例如,使用(GE Healthcare Inc.,Piscataway,NJ)的测定法在25℃采用固定化抗原CM5芯片以约10个应答单位(RU)进行。在一个实施方案中,根据供应商说明书,以盐酸N-乙基-N'-(3-二甲氨基丙基)-碳二亚胺(EDC)和N-羟基琥珀酰亚胺(NHS)活化羧甲基化葡聚糖生物传感器芯片(CM5,GEHealthcare,Inc.)。抗原用10mM乙酸钠,pH 4.8稀释至5μg/mL(~0.2μM),随后以5μL/分钟的流速上样以实现偶联蛋白的大约10个应答单位(RU)。注射抗原后,注入1M乙醇胺以封闭未反应的基团。对于动力学测量,将Fab的两倍连续稀释物(0.78nM至500nM)在25℃以大约25μL/分钟的流速注射于具有0.05%聚山梨醇酯20(Tween-20TM)表面活性剂的PBS中(PBST)。使用简单的一对一朗格缪尔结合模型(评价软件3.2版)通过同时拟合缔合和解离传感图(sensorgram),计算缔合速率(kon)和解离速率(koff)。将平衡解离常数(Kd)计算为比率koff/kon(参见例如Chen,Y.et al.,J.Mol.Biol.293(1999)865-881)。如果通过以上表面等离子体共振测定法显示缔合速率超过106M-1s-1,则缔合速率可以使用荧光猝灭技术测定,其中所述的荧光猝灭技术在如光谱仪(如配备止流法(stop-flow)的分光光度计(Aviv Instruments)或具有搅拌型比色皿的8000-系列SLM-AMINCOTM分光光度计(ThermoSpectronic))中所测量的增加浓度的抗原存在下,在25℃测量在PBS,pH 7.2中的20nM抗抗原抗体(Fab形式)的荧光发射强度(激发=295nm;发射=340nm,16nm带通)增加或减少。
2.嵌合和人源化抗体
在某些实施方案中,本文提供的抗体是嵌合抗体。某些嵌合抗体例如在US 4,816,567;和Morrison,S.L.,等人,Proc.Natl.Acad.Sci.USA 81(1984)6851-6855)中描述。在一个例子中,嵌合抗体包含非人类可变区(例如,源自小鼠、大鼠、仓鼠、兔或非人灵长类如猴的可变区)和人类恒定区。在又一个例子中,嵌合抗体是“类转换”抗体,其中类或亚类已经相对亲本抗体发生改变。嵌合抗体包括其抗原结合其片段。
在某些实施方案中,嵌合抗体是人源化抗体。一般地,将非人抗体人源化以降低对人的免疫原性,同时保留亲本非人抗体的特异性和亲和力。通常,人源化抗体包含其中HVR例如CDR(或其部分)源自非人抗体并且FR(或其部分)源自人抗体序列的一个或多个可变结构域。人源化抗体任选地也将包含人恒定区的至少一部分。在一些实施方案中,将人源化抗体中的一些FR残基置换为来自非人类抗体(例如,从中衍生HVR残基的抗体)的相应残基,例如,以恢复或改善抗体特异性或亲和力。
人源化抗体和制造它们的方法例如在Almagro,JAlmagro,J.C.和Fransson,J.,Front.Biosci.13(2008)1619-1633中综述,并且例如在Riechmann,I.等人,Nature 332(1988)323-329;Queen,C.等人,Proc.Natl.Acad.Sci.USA 86(1989)10029-10033;US 5,821,337、US 7,527,791、US 6,982,321和US 7,087,409;Kashmiri,S.V.等人,Methods 36(2005)25-34(描述特异性决定区(SDR)移植);Padlan,E.A.,Mol.Immunol.28(1991)489-498(描述“表面重塑(resurfacing)”);Dall'Acqua,W.F.等人,Methods 36(2005)43-60(描述“FR改组”);Osbourn,J.等人,Methods 36(2005)61-68;以及Klimka,A.等人,Br.J.Cancer 83(2000)252-260(描述针对FR改组的“导向选择”方案)中进一步描述。
可以用于人源化的人构架区包括但不限于:使用“最佳配合”方法选择的构架区(例如,见Sims,M.J.等人,J.Immunol.151(1993)2296-2308);从特定亚组的人抗体的轻链可变区或重链可变区的共有序列衍生的构架区(例如,见Carter,P.等人,Proc.Natl.Acad.Sci.USA 89(1992)4285-4289;和Presta,L.G.等人,J.Immunol.151(1993)2623-2632);人成熟(体细胞突变)构架区或人种系构架区(例如,见Almagro,J.C.和Fransson,J.,Front.Biosci.13(2008)1619-1633);和从筛选FR文库衍生的构架区(例如,见Baca,M.等人,J.Biol.Chem.272(1997)10678-10684和Rosok,M.J.等人,J.Biol.Chem.271(1996)22611-22618)。
3.人抗体
在某些实施方案中,本文提供的抗体是人抗体。可以使用本领域已知的多种技术产生人抗体。人抗体总体上在van Dijk,M.A.和van de Winkel,J.G.,Curr.Opin.Pharmacol.5(2001)368-374以及Lonberg,N.,Curr.Opin.Immunol.20(2008)450-459中描述。
可以通过施用免疫原至转基因动物制备人抗体,其中所述转基因动物已经被修饰成应答于抗原攻击而产生完整人抗体或具有人可变区的完整抗体。这类动物一般含有替换内源免疫球蛋白基因座或在染色体外存在或随机整合入动物染色体的全部或部分人免疫球蛋白基因座。在这类转基因小鼠中,内源免疫球蛋白基因座通常已经失活。关于从转基因动物获得人抗体的方法的综述,见Lonberg,N.,Nat.Biotech.23(2005)1117-1125。还见,例如,描述XENOMOUSETM技术的US6,075,181和US6,150,584;描述技术的US 5,770,429;描述K-M技术的US7,041,870,和描述Veloci技术的US2007/0061900)。可以进一步修饰来自这类动物产生的完整抗体的人可变区,例如,通过与不同的人类恒定区组合。
也可以通过基于杂交瘤的方法产生人抗体。已经描述了用于产生人单克隆抗体的人骨髓瘤和小鼠-人杂合骨髓瘤细胞系(例如,见Kozbor,D.,J.Immunol.133(1984)3001-3005;Brodeur,B.R.等人,Monoclonal Antibody Production Techniques andApplications,Marcel Dekker,Inc.,New York(1987),第51-63页;和Boerner,P.等人,J.Immunol.147(1991)86-95)。在Li,J.等人,Proc.Natl.Acad.Sci.USA 103(2006)3557-3562中也描述了借助人B-细胞杂交瘤技术产生的人抗体。额外的方法包括例如在US7,189,826(其描述从杂交瘤细胞系产生单克隆人IgM抗体)和Ni,J.,Xiandai Mianyixue 26(2006)265-268(其描述人-人杂交瘤)中描述的那些方法。在Vollmers,H.P.和Brandlein,S.,Histology和Histopathology 20(2005)927-937和Vollmers,H.P.和Brandlein,S.,Methods and Findings in Experimental and Clinical Pharmacology 27(2005)185-191中也描述了人杂交瘤技术(Trioma技术)。
也可以通过分离从人衍生的噬菌体展示文库中选择的Fv克隆可变结构域序列产生人抗体。这类可变结构域序列随后可以与所需的人恒定结构域组合。下文描述用于从抗体文库选出人抗体的技术。
4.文库衍生的抗体
可以通过对组合文库筛选具有所需一种或多种活性的抗体,分离如本文中报道的抗体。例如,本领域已知用于产生噬菌体展示文库并对这类文库筛选拥有所需结合特征的抗体的多种方法。这类方法例如在Hoogenboom,H.R.等人,Methods in Molecular Biology178(2001)1-37中综述并且例如在McCafferty,J.等人,Nature 348(1990)552-554;Clackson,T.等人,Nature 352(1991)624-628;Marks,J.D.等人,J.Mol.Biol.222(1992)581-597;Marks,J.D.和Bradbury,A.,Methods in Molecular Biology248(2003)161-175;Sidhu,S.S.等人,J.Mol.Biol.338(2004)299-310;Lee,C.V.等人,J.Mol.Biol.340(2004)1073-1093;Fellouse,F.A.,Proc.Natl.Acad.Sci.USA 101(2004)12467-12472和Lee,C.V.等人,J.Immunol.Methods 284(2004)119-132中进一步描述。
在某些噬菌体展示法中,VH基因和VL基因库分别由聚合酶链反应(PCR)克隆并且在噬菌体文库中随机重组,其中随后可以对所述噬菌体文库筛选结合抗原的噬菌体,如Winter,G.,等人,Ann.Rev.Immunol.,12(1994)433-455中所述。噬菌体一般将抗体片段展示为单链Fv(scFv)片段或展示为Fab片段。来自已免疫来源的文库提供针对免疫原的高亲和力抗体,无需构建杂交瘤。备选地,可以(例如,从人)克隆天然库以在不进行任何免疫的情况下,提供针对广泛类型非自身抗原的抗体和还针对自身抗原的抗体的单一来源,如Griffiths,A.D.,等人,EMBO J.12(1993)725-734所述。最后,也可以通过从干细胞克隆未重排的V-基因区段并使用含有随机序列以编码高度可变的CDR3区并实现体外重排的PCR引物,合成地产生天然文库,如Hoogenboom,H.R.和Winter,G.,J.Mol.Biol.227(1992)381-388所述。描述人抗体噬菌体文库的专利公布例如包括:US5,750,373和US2005/0079574、US2005/0119455、US2005/0266000、US2007/0117126、US2007/0160598、US2007/0237764、US2007/0292936和US2009/0002360。
认为从人抗体文库分离的抗体或抗体片段是本文中的人抗体或人抗体片段。
5.多特异性抗体
在某些实施方案中,本文提供的抗体是多特异性抗体,例如双特异性抗体。多特异性抗体是对至少两个不同位点具有结合特异性的单克隆抗体。双特异性抗体也可以用来使细胞毒性剂局限至表达一种或多种靶抗原的细胞。双特异性抗体可以被制备为全长抗体或抗体片段。
用于产生多特异性抗体的技术包括但不限于重组共表达具有不同特异性的两个免疫球蛋白重链-轻链对(见Milstein,C.和Cuello,A.C.,Nature305(1983)537-540,WO93/08829和Traunecker,A.等人,EMBO J.10(1991)3655-3659)和“突起-入-孔”工程化(例如,见US5,731,168)。也可以通过以下方式产生多特异性抗体:工程化静电操纵效应用于产生抗体Fc-异二聚体分子(WO 2009/089004);交联两个或更多个抗体或片段(例如,见US 4,676,980和Brennan,M.等人,Science 229(1985)81-83);使用亮氨酸拉链以产生双特异性抗体(例如,见Kostelny,S.A.等人,J.Immunol.148(1992)1547-1553);使用“双体抗体(diabody)”技术以产生双特异性抗体片段(例如,见Holliger,P.等人,Proc.Natl.Acad.Sci.USA 90(1993)6444-6448);和使用单链Fv(sFv)二聚体(例如,见Gruber,M.等人,J.Immunol.152(1994)5368-5374);以及制备三特异性抗体,如在例如Tutt,A.等人,J.Immunol.147(1991)60-69)中所述那样。
本文中还包括具有三个或更多个功能性抗原结合位点的工程化抗体,包括“八抗体(Octopus antibody)”(见,例如US2006/0025576)。
本文的抗体或片段还包括“双重功能Fab”或“DAF”,其包含与第一抗原以及另一种不同抗原结合的抗原结合位点(例如参见,US2008/0069820)。
本文中的抗体或片段也包括在WO 2009/080251、WO 2009/080252、WO 2009/080253、WO 2009/080254、WO 2010/112193、WO 2010/115589、WO 2010/136172、WO 2010/145792和WO 2010/145793中描述的多特异性抗体。
6.抗体变体
在某些实施方案中,构思了本文提供的抗体的氨基酸序列变体。例如,可能想要改善抗体的结合亲和力和/或其他生物学特性。可以通过向编码抗体的核苷酸序列引入适宜修饰或通过肽合成制备抗体的氨基酸序列变体。此类修饰包括例如,从抗体的氨基酸序列内部缺失残基和/或将残基插入所述氨基酸序列中和/或置换所述氨基酸序列中的残基。可以产生缺失、插入和置换的任意组合以获得最终构建体,只要所述最终构建体拥有想要的特征,例如抗原结合作用。
a)置换变体、插入变体和缺失变体
在某些实施方案中,提供具有一个或多个氨基酸置换的抗体变体。用于置换诱变的目的位点包括HVR和FR。下表中在“优选置换”标题下显示保守性置换。下表中在“示例性置换”标题下显示并且参考氨基酸侧链类别如下文进一步描述更明显的变化。可以将氨基酸置换引入目的抗体中并且对产物筛选所需的活性,例如,保留/改善的抗原结合作用或降低的免疫原性,或改善的ADCC或CDC。
原始残基 示例性置换 优选的置换
Ala(A) Val;Leu;Ile Val
Arg(R) Lys;Gln;Asn Lys
Asn(N) Gln;His;Asp、Lys;Arg Gln
Asp(D) Glu;Asn Glu
Cys(C) Ser;Ala Ser
Gln(Q) Asn;Glu Asn
Glu(E) Asp;Gln Asp
Gly(G) Ala Ala
His(H) Asn;Gln;Lys;Arg Arg
Ile(I) Leu,Val;Met;Ala;Phe;正亮氨酸 Leu
Leu(L) 正亮氨酸;Ile;Val;Met;Ala;Phe Ile
Lys(K) Arg;Gln;Asn Arg
Met(M) Leu;Phe;Ile Leu
Phe(F) Trp;Leu;Val;Ile;Ala;Tyr Tyr
Pro(P) Ala Ala
Ser(S) Thr Thr
Thr(T) Val;Ser Ser
Trp(W) Tyr;Phe Tyr
Tyr(Y) Trp;Phe;Thr;Ser Phe
Val(V) Ile;Leu;Met;Phe;Ala;正亮氨酸 Leu
氨基酸可以根据常见的侧链特性分组:
(1)疏水性:正亮氨酸、Met、Ala、Val、Leu;Ile;
(2)中性亲水:Cys、Ser、Thr、Asn;Gln;
(3)酸性:Asp、Glu;
(4)碱性:His、Lys、Arg;
((5)影响链方向的残基:Gly、Pro;
(6)芳族:Trp、Tyr、Phe。
非保守性置换将使这些分类之一的成员交换为另一个分类的成员。
一个置换变体类型涉及置换亲本抗体(例如,人源化或人抗体)的一个或多个高变区残基。通常,经选择用于进一步研究的所得变体相对于亲本抗体在某些生物学特性方面(例如,增加的亲和力、降低的免疫原性)具有修饰(例如,改善)和/或将具有亲本抗体的基本上保留的某些生物学特性。示例性置换变体是亲和力成熟抗体,所述抗体可以例如,使用基于噬菌体展示的亲和力成熟技术如本文所述的那些技术便利地产生。简而言之,将一个或多个HVR残基突变并且将变体抗体在噬菌体上展示并筛选特定生物活性(例如结合亲和力)。
可以在HVR中做出改变(例如,置换),例如以改善抗体亲和力。这类改变可以在HVR“热点”(即,在体细胞成熟过程期间以高频率经历突变的密码子所编码的残基(见,例如,Chowdhury,P.S.,Methods Mol.Biol.207(2008)179-196)和/或接触抗原的残基中做出,同时对所产生的变体VH或VL测试结合亲和力。已经例如在Hoogenboom,H.R.等人,引自Methods in Molecular Biology 178(2002)1-37)中描述了通过构建次级文库并从中重新选择实现亲和力成熟。在亲和力成熟的一些实施方案中,通过多种方法(例如,易错PCR、链改组或寡核苷酸定向诱变)的任一种,将多样性引入所选择用于成熟的可变基因中。随后产生次级文库。随后筛选该文库以鉴定具有所需亲和力的任何抗体变体。另一种引入多样性的方法涉及HVR指导的方案,其中将几种HVR残基(例如,一次4-6个残基)随机分组。可以特别地鉴定参与抗原结合的HVR残基,例如,使用丙氨酸扫描法诱变或建模。特别地经常靶向CDR-H3和CDR-L3。
在某些实施方案中,置换、插入或缺失可以在一个或多个HVR内部出现,只要这类改变不实质降低抗体结合抗原的能力。例如,可以在HVR中做出不实质降低结合亲和力的保守性改变(例如,如本文中提供的保守性置换)。这类改变,例如,可以在HVR“抗原接触残基的外部。在上文提供的变体VH和VL序列的某些实施方案中,每个HVR不予改变或含有不多于一个、两个或三个氨基酸置换。
一种用于鉴定可以被靶向以便诱变的抗体残基或区域的有用方法称作“丙氨酸扫描法诱变法”,如Cunningham,B.C.和Wells,J.A.,Science,244(1989)1081-1085所述。在这种方法中,鉴定一个残基或靶残基组(例如,带电荷残基如arg、asp、his、lys和glu)并且用中性或带负电荷的氨基酸(例如,丙氨酸或聚丙氨酸)替换以确定该抗体与抗原的相互作用是否受影响。可以在对于初始置换显示功能敏感的氨基酸位置处引入其他置换。备选地或额外地,可以使用抗原-抗体复合物的晶体结构以鉴定抗体和抗原之间的接触点。可以将这类接触残基和邻近残基作为置换候选物打靶或消除。可以筛选变体以确定它们是否含有所需的特性。
氨基酸序列插入包括长度从1个残基至含有成百个或更多个残基的多肽间变动的氨基端和/或羧基端融合,以及单个或多个氨基酸残基的序列内插入。末端插入的例子包括具有N末端甲硫氨酰基残基的抗体。抗体分子的其他插入性变体包括抗体的N末端或C末端与酶(例如针对ADEPT的酶)或增加该抗体血清半寿期的多肽融合。
b)糖基化变体
在某些实施方案中,改变本文提供的抗体以增加或减少抗体发生糖基化的程度。可以通过改变氨基酸序列从而创造或移除一个或多个糖基化位点,便利地实现对抗体添加或删除糖基化位点。
在抗体包含Fc区的情况下,可以改变与之连接的糖。哺乳动物细胞产生的天然抗体一般包含分枝的双触角低聚糖,所述低聚糖通常借助N联连接至Fc区的CH2结构域的Asn297。参见,例如,Wright,A.和Morrison,S.L.,TIBTECH 15(1997)26-32。低聚糖可以包括各种糖,例如,甘露糖、N-乙酰氨基葡萄糖(GlcNAc)、半乳糖和唾液酸,以及与双触角低聚糖结构的“茎部”中GlcNAc连接的岩藻糖。在一些实施方案中,可以修饰如本文报道的抗体中的低聚糖以产生改善某些特性的抗体变体。
在一个实施方案中,提供具有糖结构的抗体变体,所述糖结构缺少与Fc区(直接或间接)连接的岩藻糖。例如,这类抗体中岩藻糖的量可以是1%至80%、1%至65%、5%至65%或20%至40%。通过以下方式确定岩藻糖的量:相对于如通过MALDI-TOF质谱法所测量的与Asn297连接的全部糖结构(例如复杂结构、杂合结构和高甘露糖结构)的总和,计算糖链内部Asn297处岩藻糖的平均量,例如,如WO 2008/077546中所述。Asn297指位于Fc区内约第297位置处的天冬酰胺残基(Fc区残基的EU编号);然而,Asn297也可以位于第297位置的上游或下游±3个氨基酸附近,即,第294和300位置之间,原因在于抗体中的微小序列变异。这类岩藻糖基化变体可以具有改善的ADCC功能。参见,例如,US2003/0157108;US 2004/0093621。与“去岩藻糖化”或“缺乏岩藻糖的”抗体变体相关的出版物的例子包括:US2003/0157108;WO 2000/61739;WO 2001/29246;US 2003/0115614;US2002/0164328;US2004/0093621;US2004/0132140;US2004/0110704;US2004/0110282;US2004/0109865;WO 2003/085119;WO 2003/084570;WO 2005/035586;WO 2005/035778;WO 2005/053742;WO 2002/031140;Okazaki,A.等人,J.Mol.Biol.336(2004)1239-1249;Yamane-Ohnuki,N.等人,Biotech.Bioeng.87(2004)614-622。能够产生去岩藻糖化抗体的细胞系的例子包括在蛋白质岩藻糖化方面缺陷的Lec13CHO细胞(Ripka,J.等人,Arch.Biochem.Biophys.249(1986)533-545;US 2003/0157108;和WO 2004/056312,特别在实施例11处)和敲除细胞系,如α-1,6-岩藻糖基转移酶基因FUT8敲除CHO细胞(例如,参见Yamane-Ohnuki,N.等人,Biotech.Bioeng.87(2004)614-622;Kanda,Y.等人,Biotechnol.Bioeng.94(2006)680-688;和WO 2003/085107)。
还可以为抗体变体提供双分低聚糖,例如,其中与抗体Fc区连接的双触角低聚糖由GlcNAc对分。这类抗体变体可以具有减少的岩藻糖化和/或改善的ADCC功能。这类抗体变体的例子例如在WO 2003/011878;US6,602,684;和US2005/0123546中描述。也提供低聚糖中至少一个半乳糖残基与Fc区连接的抗体变体。这类抗体变体可以具有改善的CDC功能。这类抗体变体例如在WO 1997/30087;WO 1998/58964和WO1999/22764中描述。
c)Fc区变体
在某些实施方案中,可以将一个或多个其他氨基酸修饰引入本文提供的抗体的Fc区中,因而产生Fc区变体。该Fc区变体可以包含人Fc区序列(例如,人IgG1、IgG2、IgG3或IgG4 Fc区),所述人Fc区序列在一个或多个氨基酸位置处包含氨基酸修饰(例如,置换/突变)。
在某些实施方案中,本发明构思了拥有一些但非全部效应子功能的抗体变体,这使所述抗体变体成为下述应用的有利候选物,其中抗体的体内半衰期重要,而某些效应子功能(如CDC和ADCC)是不必要或有害的。可以实施体外和/或体内细胞毒性测定法以证实CDC和/或ADCC活性降低/耗尽。例如,可以实施Fc受体(FcR)结合测定法以确保抗体缺少FcγR结合作用(因此可能缺少ADCC活性),但是保留FcRn结合能力。介导ADCC的原代细胞-NK细胞仅表达FcγRIII,而单核细胞表达FcγRI、FcγRII和FcγRIII。Ravetch,J.V.和Kinet,J.P.,Annu.Rev.Immunol.9(1991)457-492的第464页上的表3中总结了造血细胞上的FcR表达。评估目的分子的ADCC活性的体外测定法的非限制性例子在US 5,500,362(参见,例如,Hellstrom,I.等人,Proc.Natl.Acad.Sci.USA 83(1986)7059-7063;和Hellstrom,I.等人,Proc.Natl.Acad.Sci.USA 82(1985)1499-1502);US 5,821,337(参见Bruggemann,M.等人,J.Exp.Med.166(1987)1351-1361))中描述。备选地,可以使用非放射性分析方法(参见,例如,用于流式细胞术的ACTITM非放射性细胞毒性测定法(CellTechnology,Inc.MountainView,CA;和CytoTox 非放射性细胞毒性测定法(Promega,Madison,WI)。用于此类测定法的效应细胞括外周血单核细胞(PBMC)和天然杀伤(NK)细胞。备选或额外地,可以在体内,例如,在动物模型中,如在Clynes,R.等人,Proc.Natl.Acad.Sci.USA 95(1998)652-656公开中的那种动物模型中评估目的分子的ADCC活性。也可以实施C1q结合测定法以证实抗体不能结合C1q并因此缺少CDC活性。参见,例如,WO 2006/029879和WO 2005/100402中的C1q和C3c结合ELISA。为了评估补体激活,可以进行CDC测定法(参见,例如,Gazzano-Santoro,H.等人,J.Immunol.Methods 202(1996)163-171;Cragg,M.S.等人,Blood 101(2003)1045-1052;以及Cragg,M.S.和M.J.Glennie,Blood 103(2004)2738-2743)。也可以使用本领域已知的方法确定FcRn结合作用和体内清除率/半衰期(参见,例如,Petkova,S.B.等人,Int.Immunol.18(2006)1759-1769)。
效应子功能减少的抗体包括置换一个或多个Fc区残基238、265、269、270、297、327和329(US 6,737,056)的那些。这类Fc区变体包含在氨基酸位置265、269、270、297和327的两个或更多个位置处具有置换的Fc区,包括残基265和297置换成丙氨酸的所谓“DANA”Fc区突变体(US 7,332,581)。
描述了具有FcR结合作用改善或削弱的某些抗体变体(参见,例如,US 6,737,056;WO 2004/056312,和Shields,R.L.等人,J.Biol.Chem.276(2001)6591-6604)。
在某些实施方案中,抗体变体包含具有改善ADCC的一个或多个氨基酸置换(例如,在Fc区的第298、333和/或334位置处的置换)(残基的EU编号)的Fc区。
在一些实施方案中,在Fc区内做出改变,所述改变导致变更(即改善或削弱)的C1q结合作用和/或补体依赖细胞毒性(CDC),例如,如US 6,194,551、WO 99/51642和Idusogie,E.E.等人,J.Immunol.164(2000)4178-4184中所述。
在US2005/0014934中描述了半衰期增加和新生Fc受体(FcRn)结合作用改善的抗体,所述新生Fc受体负责转移母源IgG至胎儿(Guyer,R.L.等人,J.Immunol.117(1976)587-593和Kim,J.K.等人,J.Immunol.24(1994)2429-2434)。这些抗体包含其中具有一个或多个置换的Fc区,其中所述置换改善Fc区与FcRn的结合。这类Fc区变体包括在一个或多个Fc区残基:238、256、265、272、286、303、305、307、311、312、317、340、356、360、362、376、378、380、382、413、424或434处具有置换(例如,Fc区残基434的置换)的那些(US 7,371,826)。
关于Fc区变体的其他例子,还参见Duncan,A.R.和Winter,G.,Nature322(1988)738-740;US 5,648,260;US 5,624,821和WO 94/29351。
d)半胱氨酸工程化抗体变体
在某些实施方案中,可能想要产生半胱氨酸工程化的抗体,例如,“硫代MAb”,其中抗体的一个或多个残基用半胱氨酸残基置换。在具体的实施方案中,置换的残基出现在抗体的可及位点处。通过用半胱氨酸置换这些残基,因而将反应性巯基安置在抗体的可及位点处并且可以用来使抗体缀合至其他部分,如药物部分或接头-药物部分以产生免疫缀合物,如本文中进一步所述。在某些实施方案中,可以用半胱氨酸置换以下残基的任何一个或多个:轻链的V205(Kabat编号)和重链的A118(EU编号);以及重链Fc区的S400(EU编号)。可以如US7,521,541中所述那样产生半胱氨酸工程化的抗体。
e)抗体衍生物
在某些实施方案中,可以进一步修饰本文提供的抗体以含有本领域已知并轻易可获得的额外的非蛋白质部分。适于衍生抗体的部分包括但不限于水溶性聚合物。水溶性聚合物的非限制性例子包括但不限于聚乙二醇(PEG)、乙二醇/丙二醇的共聚物、羧甲基纤维素、葡聚糖、聚乙烯醇、聚乙烯吡咯烷酮、聚1,3-二氧戊环、聚1,3,6-三烷、亚乙基/马来酐共聚物、聚氨基酸(均聚物或无规共聚物)和葡聚糖或聚(n-乙烯基吡咯烷酮)聚乙二醇、丙二醇均聚物、聚环氧丙烷/环氧乙烷共聚物、聚氧乙基化多元醇(例如,丙三醇)、聚乙烯醇和它们的混合物。聚乙二醇丙醛可以具有制造方面的优点,原因在于其在水中的稳定性。这种聚合物可以具有任何分子量,并可以是分枝或不分枝的。与抗体连接的聚合物的数目可以变动,并且如果连接多于一个聚合物,它们可以是相同或不同的分子。通常,用于衍生化的聚合物的数目和/或类型可以基于以下考虑事项确定,包括但不限于待改善的抗体特定特性或功能、抗体衍生物是否将用于限定情况下的疗法中等等。
在另一个实施方案中,提供了抗体和可以通过暴露于辐射而选择性加热的非蛋白质部分的缀合物。在一个实施方案中,非蛋白质部分是碳纳米管(Kam,N.W.等人,Proc.Natl.Acad.Sci.USA 102(2005)11600-11605)。辐射可以具有任何波长,并包括,但不限于这样的波长,所述波长不伤害普通细胞,但是使非蛋白质部加热至杀伤临近于抗体-非蛋白质部分的细胞的温度。
f)异二聚化
存在几种修饰CH3以增强异二聚化的方案,这些方案例如在WO 96/27011、WO 98/050431、EP 1870459、WO 2007/110205、WO 2007/147901、WO 2009/089004、WO 2010/129304、WO 2011/90754、WO 2011/143545、WO 2012058768、WO 2013157954、WO 2013096291中充分描述。一般,在全部这类方案中,第一CH3结构域和第二CH3结构域均以互补方式工程化,从而每个CH3结构域(或包含它的重链)不能较长久地与自身同型二聚化,而是被迫与互补工程化的另一CH3结构域异二聚化(从而第一和第二CH3结构域异二聚化并且在两个第一CH3结构域之间或两个第二CH3结构域之间不形成同型二聚体)。构思用于改善重链异二聚化的这些不同方案作为本发明的多特异性抗体中与重链-轻链修饰组合的不同替代方案(在一个结合臂中VH和VL交换/替换并且在CH1/CL界面中引入带相反电荷的带电荷氨基酸置换),这减少轻链错误配对的Bence-Jones型副产物。
在本发明的一个优选实施方案中(这种情况下,多特异性抗体在重链中包含CH3结构域),可以通过“突起-入-孔”技术改变本发明的所述多特异性抗体的CH3结构域,所述技术详述以例如WO 96/027011;Ridgway,J.B.等人,Protein Eng.9(1996)617-621;和Merchant,A.M.等人,Nat.Biotechnol.16(1998)677-681;WO 98/050431中的几个例子详述。在这种方法中,改变两个CH3结构域的相互作用面以增加含有这两个CH3结构域的两条重链的异二聚化。(两条重链的)两个CH3结构域的一者可以是“突起”,而另一者是“孔”。二硫键的引入进一步稳定异二聚体(Merchant,A.M等人,Nature Biotech.16(1998)677-681;Atwell,S.等人,J.Mol.Biol.270(1997)26-35)并增加产率。
因此在本发明的一个实施方案中,所述多特异性抗体(在每条重链中包含CH3结构域以及)进一步特征在于
在a)下的抗体的第一重链的第一CH3结构域和在b)下的抗体的第二重链的第二CH3结构域各自在包含抗体CH3结构域之间初始界面的界面处会合。
其中改变所述界面以促进多特异性抗体的形成,其中所述改变特征在于
i)如此改变一条重链的CH3结构域,
从而在多特异性抗体内部与另一条重链的CH3结构域的初始界面会合的一条重链的CH3结构域的初始界面中,
将氨基酸残基替换为具有更大侧链体积的氨基酸残基,因而在一个重链的CH3结构域的界面内部产生突出部分,所述突出部分可放置在另一个重链的CH3结构域的界面内部的腔中。
并且
ii)如此改变另一条重链的CH3结构域,
从而在多特异性抗体内部,与第一CH3结构域的初始界面会合的第二CH3结构域的初始界面中,
将氨基酸残基替换为具有更小侧链体积的氨基酸残基,因而在第二CH3结构域的界面内部产生腔,在所述腔内部可放置第一CH3结构域的界面内部的突出部分可布置在。
优选地,所述具有更大侧链体积的氨基酸残基选自精氨酸(R)、苯丙氨酸(F)、酪氨酸(Y)、色氨酸(W)。
优选地,所述具有更小侧链体积的氨基酸残基选自丙氨酸(A)、丝氨酸(S)、苏氨酸(T)、缬氨酸(V)。
在本发明的一个方面,通过以下方式进一步改变两个CH3结构域:如此引入半胱氨酸(C)作为每个CH3结构域的相应位置中的氨基酸,从而两个CH3结构域之间的二硫键可以形成。
在一个实施方案中,所述多特异性抗体在“突起链”的第一CH3结构域中包含氨基酸T366W突变并且在“孔链”的第二CH3结构域中包含氨基酸T366S、L368A、Y407V突变。也可以使用CH3结构域之间的额外链间二硫键(Merchant,A.M等人,Nature Biotech 16(1998)677-681),例如通过向“孔链”的CH3结构域引入氨基酸Y349C突变并向“突起链”的CH3结构域引入氨基酸E356C突变或氨基酸S354C突变。
在一个优选的实施方案中,所述多特异性抗体(其在每条重链中包含CH3结构域)在两个CH3结构域之一中包含氨基酸S354C、T366W突变并且在两个CH3结构域的另一个结构域中包含氨基酸Y349C、T366S、L368A、Y407V突变(在一个CH3域中的额外氨基酸S354C突变和另一个CH3域中的额外氨基酸Y349C突变形成链间二硫键)(根据Kabat编号)。
构思用于修饰CH3以增强异二聚化的其他技术作为本发明的替代并且它们例如在WO 96/27011、WO 98/050431,EP1870459、WO 2007/110205、WO 2007/147901、WO 2009/089004、WO 2010/129304、WO 2011/90754、WO 2011/143545、WO 2012/058768、WO 2013/157954、WO 2013/096291中描述。
在一个实施方案中,可以备选地使用EP 1 870 459A1中描述的异二聚化方案。这种方法基于在两条重链之间的CH3/CH3结构域界面中特定氨基酸位置处引入带相反电荷的带电荷氨基酸置换/突变。所述多特异性抗体的一个优选实施方案是在(多特异性抗体的)第一CH3结构域中的氨基酸R409D、K370E突变和在多特异性抗体的第二CH3结构域中的氨基酸D399K、E357K突变(根据Kabat编号)。
在另一个实施方案中,所述多特异性抗体在“突起链”的CH3结构域中包含氨基酸T366W突变并且在“孔链”的CH3结构域中包含氨基酸T366S、L368A、Y407V突变以及额外地在“突起链”的CH3结构域中包含氨基酸R409D、K370E突变及在“孔链”的CH3结构域中包含氨基酸D399K、E357K突变。
在另一个实施方案中,所述多特异性抗体在两个CH3结构域之一中包含氨基酸S354C、T366W突变及在两个CH3结构域的另一结构域中包含氨基酸Y349C、T366S、L368A、Y407V突变,或者所述多特异性抗体在两个CH3结构域之一中包含氨基酸Y349C、T366W突变及在两个CH3结构域的另一结构域中包含氨基酸S354C、T366S、L368A、Y407V突变以及额外地在“突起链”的CH3结构域中包含氨基酸R409D、K370E突变及在“孔链”的CH3结构域中包含氨基酸D399K、E357K突变。
在一个实施方案中,可以备选地使用WO 2013/157953中描述的异二聚化方案。在一个实施方案中,第一CH3结构域包含氨基酸T366K突变并且第二CH3结构域多肽包含氨基酸L351D突变。在又一个实施方案中,第一CH3结构域包含其他氨基酸L351K突变。在又一个实施方案中,第二CH3结构域包含选自Y349E、Y349D和L368E(优选地L368E)的其他氨基酸突变。
在一个实施方案中,可以备选地使用WO 2012/058768中描述的异二聚化方案。在一个实施方案中,第一CH3结构域包含氨基酸L351Y、Y407A突变并且第二CH3结构域包含氨基酸T366A、K409F突变。在又一个实施方案中,第二CH3结构域在第T411、D399、S400、F405、N390或K392位包含其他氨基酸突变,所述氨基酸突变例如选自a)T411N、T411R、T411Q、T411K、T411D、T411E或T411W,b)D399R、D399W、D399Y或D399K,c)S400E、S400D、S400R或S400K、F405I、F405 M、F405T、F405S、F405V或F405W、N390R、N390K或N390D、K392V、K392M、K392R、K392L、K392F或K392E。在又一个实施方案中,第一CH3结构域包含氨基酸L351Y、Y407A突变并且第二CH3结构域包含氨基酸T366V、K409F突变。在又一个实施方案中,第一CH3结构域包含氨基酸Y407A突变并且第二CH3结构域包含氨基酸T366A、K409F突变。在又一个实施方案中,第二CH3结构域包含其他氨基酸突变K392E、T411E、D399R和S400R。
在一个实施方案中,可以备选地使用WO 2011/143545中描述的异二聚化方案,例如在选自368和409的位置具有氨基酸修饰。
在一个实施方案中,可以备选地使用WO 2011/090762中描述的异二聚化方案,所述方案也使用上文所述的突起-入-孔技术。在一个实施方案中,第一CH3结构域包含氨基酸T366W突变并且第二CH3结构域包含氨基酸Y407A突变。在一个实施方案中,第一CH3结构域包含氨基酸T366Y突变并且第二CH3结构域包含氨基酸Y407T突变。
在一个实施方案中,多特异性抗体属于IgG2同种型并且可以备选地使用WO 2010/129304中描述的异二聚化方案。
在一个实施方案中,可以备选地使用WO 2009/089004中描述的异二聚化方案。在一个实施方案中,第一CH3结构域包含带负电荷氨基酸(例如谷氨酸(E)或天冬氨酸(D),优选地K392D或N392D)对K392或N392的氨基酸置换并且第二CH3结构域包含带正电荷氨基酸(例如赖氨酸(K)或精氨酸(R),优选地D399K、E356K、D356K或E357K和更优选地D399K和E356K)对D399、E356、D356或E357的氨基酸置换。在又一个实施方案中,第一CH3结构域还包含带负电荷氨基酸(例如谷氨酸(E)、或天冬氨酸(D),优选地K409D或R409D)对K409或R409的氨基酸置换。在又一个实施方案中,第一CH3结构域进一步或另外地包含带负电荷氨基酸(例如谷氨酸(E),或天冬氨酸(D))对K439和/或K370的氨基酸置换。
在一个实施方案中,可以备选地使用WO 2007/147901中描述的异二聚化方案。在一个实施方案中,第一CH3结构域包含氨基酸K253E、D282K和K322D突变并且第二CH3结构域包含氨基酸D239K、E240K和K292D突变。
在一个实施方案中,可以备选地使用WO 2007/110205中描述的异二聚化方案。
重组方法和制剂
可以使用重组方法和制剂产生抗体,例如如US 4,816,567中所述。在一个实施方案中,提供了编码如本文所述的抗体的分离核酸。这种核酸可以编码包含抗体VL的氨基酸序列和/或包含抗体VH的氨基酸序列(例如,抗体的轻链和/或重链)。在又一个实施方案中,提供一种或多种包含这种核酸的载体(例如,表达载体)。在又一个实施方案中,提供包含这种核酸的宿主细胞。在这样一个实施方案中,宿主细胞包含(例如,已经用其转化):(1)包含核酸的载体,所述核酸编码包含抗体的VL的氨基酸序列和包含抗体的VH的氨基酸序列,或(2)包含编码包含抗体的VL的氨基酸序列的核酸的第一载体和包含编码包含抗体的VH的氨基酸序列的核酸的第二载体。在一个实施方案中,宿主细胞是真核的,例如中国仓鼠卵巢(CHO)细胞或淋巴样细胞(例如,Y0、NS0、Sp20细胞)。在一个实施方案中,提供一种产生如本文中报道的抗体的方法,其中所述方法包括在适于表达抗体的条件下培养如上文提供的包含编码抗体的核酸的宿主细胞,并且任选地从宿主细胞(或宿主细胞培养基)回收该抗体。
为了重组产生变体Fc区,将编码该变体Fc区的核酸(例如,如上文所述)分离并插入一种或多种载体中用于宿主细胞中进一步克隆和/或表达。可以使用常规方法(例如,通过使用能够与编码变体Fc区多肽或抗体重链和轻链的基因特异性结合的寡核苷酸探针),轻易地分离这种核酸并将其测序。
适合用于克隆或表达编码抗体的载体的宿主细胞包括本文所述的原核或真核细胞。例如,尤其是在不需要糖基化和Fc效应子功能时,可以在细菌中产生抗体。对于抗体片段和多肽在细菌中的表达见例如US 5,648,237、US 5,789,199和US 5,840,523(还见Charlton,K.A.,In:Methods in Molecular Biology,248卷,Lo,B.K.C.(编辑),HumanaPress,Totowa,NJ(2003),245-254页,其描述抗体片段在大肠杆菌中的表达)。表达后,可以从可溶性级分中的细菌细胞糊分离抗体,并可以进一步纯化。
除原核生物外,诸如丝状真菌或酵母的真核微生物也是编码抗体的载体的适宜的克隆或表达宿主,包括糖基化途径已“人源化”,导致产生具有部分或完全人糖基化模式的抗体的真菌和酵母菌株(见Gerngross,T.U.,Nat.Biotech.22(2004)1409-1414;和Li,H.等,Nat.Biotech.24(2006)210-215)。
适合用于表达糖基化抗体的宿主细胞也衍生自多细胞生物(无脊椎动物和脊椎动物)。无脊椎动物细胞的实例包括植物和昆虫细胞。已鉴定了许多可以与昆虫细胞结合使用,尤其是用于转染草地贪夜蛾(Spodoptera frugiperda)细胞的杆状病毒毒株。
植物细胞培养物也可以用作宿主(见例如US5,959,177、US6,040,498、US6,420,548、US7,125,978和US6,417,429(描述用于在转基因植物中产生抗体的PLANTIBODIESTM技术)。
脊椎动物细胞也可以用作宿主。例如,可以使用适应悬浮生长的哺乳动物细胞系。有用的哺乳动物宿主细胞系的其他实例是SV40转化的猴肾CV1细胞系(COS-7);人胚肾细胞系(描述于例如Graham,F.L.等,J.Gen Virol.36(1977)59-74中的HEK293或293细胞);幼仓鼠肾细胞(BHK);小鼠支持细胞(描述于例如Mather,J.P.,Biol.Reprod.23(1980)243-252中的TM4细胞);猴肾细胞(CV1);非洲绿猴肾细胞(VERO-76);人宫颈癌细胞(HELA);犬肾细胞(MDCK);buffalo大鼠肝细胞(BRL 3A);人肺细胞(W138);人肝细胞(Hep G2);小鼠乳腺肿瘤(MMT 060562);描述于例如Mather,J.P.等,Annals N.Y.Acad.Sci.383(1982)44-68中的TRI细胞;MRC 5细胞;及FS4细胞。其他有用的哺乳动物细胞系包括中国仓鼠卵巢(CHO)细胞,包括DHFR-CHO细胞(Urlaub,G.等,Proc.Natl.Acad.Sci.USA 77(1980)4216-4220);及骨髓瘤细胞系,如Y0、NS0和Sp2/0。适合用于抗体产生的某些哺乳动物宿主细胞系的综述见例如Yazaki,P.和Wu,A.M.,Methods in Molecular Biology,248卷,Lo,B.K.C.(编辑),Humana Press,Totowa,NJ(2004),255-268页。
测定法
可以通过本领域已知的多种测定法,鉴定、筛选或表征本文提供的抗体的物理/化学特性和/或生物学活性。
在一个方面,例如,通过已知的方法如ELISA、蛋白质印迹法等,对如本文报道的抗体测试其抗原结合活性。
免疫缀合物
本发明也提供了包含与一种或多种细胞毒性剂如化疗剂或药物、生长抑制剂、毒素(例如,细菌源、真菌源、植物源或动物源的蛋白质毒素、酶活性毒素)或放射性同位素缀合的如本文报道的抗体的免疫缀合物。
在一个实施方案中,免疫缀合物是抗体-药物缀合物(ADC),其中抗体与一种或多种药物缀合,所述药物包括但不限于类美登素(maytansinoid)(见US5,208,020,US5,416,064和EP0 425 235B1);澳瑞司他汀如单甲基澳瑞司他汀药物部分DE和DF(MMAE和MMAF)(见US5,635,483和US5,780,588和US7,498,298);海兔毒素(dolastatin);刺孢霉素或其衍生物(见US 5,712,374,US 5,714,586,US 5,739,116,US 5,767,285,US 5,770,701,US 5,770,710,US 5,773,001,和US 5,877,296;Hinman,L.M.等人,Cancer Res.53(1993)3336-3342;and Lode,H.N.et al.,Cancer Res.58(1998)2925-2928);蒽环类如柔红霉素或多柔比星(Kratz,F.等人,Curr.Med.Chem.13(2006)477-523;Jeffrey,S.C.等人,Bioorg.Med.Chem.Lett.16(2006)358-362;Torgov,M.Y.等人,Bioconjug.Chem.16(2005)717-721;Nagy,A.et al.,Proc.Natl.Acad.Sci.USA 97(2000)829-834;Dubowchik,G.M.等人,Bioorg.&Med.Chem.Letters 12(2002)1529-1532;King,H.D.等人,J.Med.Chem.45(2002)4336-4343;和US 6,630,579));甲氨蝶呤;长春地辛;紫杉烷如多西紫杉醇、紫杉醇、larotaxel、tesetaxel和ortataxel;单端孢霉烯族化合物;和CC1065。
在另一个实施方案中,免疫缀合物包含与酶活性毒素或其片段缀合的如本文所述的抗体,所述酶活性毒素或其片段包括但不限于白喉毒素A链、白喉毒素的无结合活性片段、外毒素A链(来自铜绿假单胞菌(Pseudomonas aeruginosa))、蓖麻毒蛋白A链、相思豆毒蛋白A链、蒴莲根毒蛋白A链、α-帚曲菌素、油桐(Aleurites fordii)蛋白、香石竹毒蛋白、垂序商陆(Phytolaca americana)蛋白(PAPI、PAPII和PAP-5)、苦瓜(momordica charantia)抑制蛋白、麻疯树毒蛋白、巴豆毒蛋白、肥皂草(sapaonaria officinalis)抑制蛋白、多花白树毒蛋白、丝林霉素(mitogellin)、局限曲菌素、酚霉素、伊诺霉素和单端孢霉烯族类化合物。
在另一个实施方案中,免疫缀合物包含与放射性原子缀合以形成放射缀合物的如本文所述的抗体。多种放射性同位素可用于产生放射缀合物。例子包括At211、I131、I125、Y90、Re186、Re188、Sm153、Bi212、P32、Pb212和Lu的放射性同位素。当放射缀合物用于检测时,它可以包含用于闪烁法研究的放射性原子,例如TC99m或I123,或核磁共振(NMR)成像的自旋标记物(也称作磁共振成像,MRI),如碘-123、碘-131、铟-111、氟-19、碳-13、氮-15、氧-17、钆、锰或铁。
可以使用多种双官能蛋白质偶联剂产生抗体和细胞毒性剂的缀合物,所述双官能蛋白质偶联剂如N-琥珀酰亚胺基-3-(2-吡啶基二硫代)丙酸酯(SPDP)、4-(N-马来酰亚胺甲基)环己烷-1-羧酸琥珀酰亚胺酯(SMCC)、亚氨基硫烷(IT)、亚氨酯的双官能衍生物(如己二亚氨盐酸二甲酯)、活性酯(如辛二酸二琥珀酰亚胺酯)、醛(如戊二醛)、双-叠氮化合物(如双(对-重氮盐苯甲酰基)己二胺)、双-重氮盐衍生物(如双-(对-重氮盐苯甲酰基)-乙二胺)、二异氰酸酯(如2,6-二异氰酸甲苯酯)和双活性氟化合物(如1,5-二氟-2,4-二硝基苯)。例如,可以如Vitetta,E.S.等人,Science 238(1987)1098-1104中所述那样制备蓖麻毒蛋白免疫毒素。碳-14-标记的1-异硫氰酸根合苄基-3-甲基二乙三胺五乙酸(MX-DTPA)是用于放射性核素与抗体缀合的示例性螯合剂。见WO94/11026。接头可以是促进细胞毒性剂在细胞中释放的“可切割接头”。例如,可以使用酸不稳定接头、肽酶敏感的接头、光不稳定接头、二甲基接头或含有二硫键的接头(Chari,R.V.等人,Cancer Res.52(1992)127-131;US 5,208,020)。
免疫缀合物或ADC在本文中明确地构思,但不限于采用交联剂试剂制备的这类缀合物,所述交联剂试剂包括但不限于BMPS、EMCS、GMBS、HBVS、LC-SMCC、MBS、MPBH、SBAP、SIA、SIAB、SMCC、SMPB、SMPH、磺基-EMCS、磺基-GMBS、磺基-KMUS、磺基-MBS、磺基-SIAB、磺基-SMCC、和磺基-SMPB、和可商业获得的SVSB(琥珀酰亚胺基-(4-乙烯砜)苯甲酸酯)(例如,获自PPierce Biotechnology,Inc.,Rockford,伊利诺伊州,美国)。
用于诊断和检测的方法和制剂
在某些实施方案中,本文提供的任一种抗体可用于检测其一种或多种关联抗原在生物样品中的存在。如本文所用,术语“检测”涵盖定量性或定性检测。在某些实施方案中,生物样品包括细胞或组织。
在一个实施方案中,提供了用于诊断或检测方法中的本文报道的抗体。
在某些实施方案中,提供了本文报道的标记的抗体。标记物包括但不限于,直接检测到的标记物或部分(如荧光、发色、电子致密、化学发光和放射性的标记物),以及间接检测到(例如借助酶促反应或分子相互作用)的部分,如酶或配体。示例性标记物包括但不限于放射性同位素32P、14C、125I、3H和131I、荧光团如稀土元素螯合物或荧光素及其衍生物、罗丹明及其衍生物、丹磺酰、伞形酮、萤光素酶例如萤火虫萤光素酶和细菌萤光素酶(US4,737,456)、萤光素、2,3-二氢二氮杂萘二酮、辣根过氧化物酶(HRP)、碱性磷酸酶、β-半乳糖苷酶、葡糖淀粉酶、溶菌酶、糖氧化酶例如葡萄糖氧化酶、半乳糖氧化酶和葡萄糖-6-磷酸脱氢酶、杂环氧化酶如尿酸酶和黄嘌呤氧化酶,其与利用过氧化氢来氧化染料前体的酶如HRP、乳过氧化物酶或微过氧化物酶偶联,生物素/亲和素、自旋标记物、噬菌体标记物、稳定自由基等。
药物制剂
通过以下方式制备冻干制剂或水溶液剂形式的如本文所述的抗体的药物制剂:将具有所需纯度的这种抗体与一种或多种任选的可药用载体混合(Remington'sPharmaceutical Sciences第16版,Osol,A.编著(1980))。可药用载体总体上在所用的剂量和浓度对接受者无毒,并且包括但不限于:缓冲剂如磷酸盐、柠檬酸和其他有机酸;抗氧化剂(包括抗坏血酸和甲硫氨酸);防腐剂(如十八烷基苄基二甲基氯化铵;六甲氯铵;苯扎氯铵、苯扎溴铵;苯酚、丁醇或苄醇;烷基尼泊金酯如尼泊金甲酯或丙酯;儿茶酚;雷琐辛;环己醇;3-戊醇和间甲酚);低分子量(少于约10个残基)多肽;蛋白质,如血清白蛋白、明胶或免疫球蛋白;亲水聚合物如聚(乙烯吡咯烷酮);氨基酸如甘氨酸、谷氨酰胺、天冬酰胺、组氨酸、精氨酸或赖氨酸;单糖、二糖和其他糖类包括葡萄糖、甘露糖或糊精;螯合剂如EDTA;糖如蔗糖、甘露糖、海藻糖或山梨糖;形成盐的反荷离子如钠;金属复合物(例如Zn-蛋白质复合物)和/或非离子表面活性剂如聚乙二醇(PEG)。本文中的示例性可药用载体还包括间质药物分散剂如可溶性中性活性透明质酸酶糖蛋白(sHASEGP),例如,人可溶性PH-20透明质酸酶糖蛋白,如rhuPH20(Baxter International,Inc.)。在US2005/0260186和US2006/0104968中描述了某些示例性sHASEGP和使用方法,包括rhuPH20。在一个方面,sHASEGP与一种或多种额外的糖胺聚糖酶如软骨素酶组合。
示例性冻干抗体制剂在US6,267,958中描述。水质抗体制剂包括在US6,171,586和WO2006/044908中描述的那些制剂,后一类制剂包含组氨酸-乙酸盐缓冲剂。
本文中的制剂也可以根据正在治疗的特定适应症需要而含有多于一种活性成分,优选地是具有并未相互不利影响的互补活性的那些活性成分。这种活性成分以有效用于预期目的的量适当地存在。
活性成分可以包埋于例如分别通过凝聚技术或界面聚合制备的微胶囊(例如,羟甲基纤维素微胶囊或明胶微胶囊和聚(甲基丙烯酸甲酯)微胶囊)、胶态药物递送系统(例如,脂质体、白蛋白微球体、微乳液、纳米粒子和纳米胶囊)或乳浊液中。此类技术在Remington's Pharmaceutical Sciences第16版,Osol,A.编著(1980)中公开。
可以制备持续释放制品。持续释放制品的合适例子包括含有抗体的固态疏水性聚合物半通透性基质,所述基质处于成型制品(例如薄膜或微胶囊)形式。
待用于体内施用的制剂通常是无菌的。可以例如通过借助无菌滤膜过滤轻易地实现无菌性。
治疗方法和制剂
本文提供的任何抗体可以用于治疗方法中。
在一个方面,提供用作药物的如本文中报道的抗体。
在某些实施方案中,提供用于治疗方法中的抗体。在一个这种实施方案中,该方法还包括向该个体施用有效量的至少一种额外治疗剂,例如,如下文描述的治疗剂。根据任一个以上实施方案的“个体”在一个优选的实施方案中是人。
在又一个方面,本发明提供抗体在制造或制备药物中的用途。根据以上实施方案中任一个实施方案的“个体”可以是人。
在又一个方面,本发明提供了包含本文提供的任何抗体的药物制剂,例如,用于前述任何治疗方法中。在一个实施方案中,药物制剂包含本文提供的任何抗体和可药用载体。在另一个实施方案中,药物制剂包含本文提供的任何抗体和至少一种额外治疗剂,例如,如下文描述。
如本文中报道的抗体可以在疗法中单独或与其他活性剂组合使用。例如,如本文中报道的抗体可以与至少一种额外治疗剂共施用。
如本文报道的抗体(和任何额外的治疗剂)可以通过任何合适的手段施用,所述的合适手段包括肠胃外、肺内和鼻内以及(如果局部治疗需要)病灶内施用。肠胃外输注包括肌内、静脉内、动脉内、腹内或皮下施用。给药可以通过任何合适的途径进行,例如通过注射,如静脉内或皮下注射,这部分地取决于施用是否为短暂或长期。本文中构思了各种给药方案,包括但不限于单次或在各种时间点多次施用、快速浓注施用和脉冲输注。
如本文报道的抗体将以符合良好医学实践的方式配制、定剂量和施用。在这种情况下考虑的因素包括正在治疗的具体病症、正在治疗的具体哺乳动物、个体患者的临床状况、病症原因、送递药物的部位、施用方法、施用计划和医疗执业者已知的其他因素。抗体不需要与目前用来预防或治疗所讨论病症的一种或多种药物一起配制,但是任选地与它们一起配制。这类其他药物的有效量取决于该制剂中存在的抗体的量、疾病类型或疗法和上文讨论的其他因素。这些药物通常以与本文所述相同的剂量并且采用与本文所述相同的施用途径使用,或以约1%至99%的本文所述剂量使用,或以经验地/临床上确定适宜的任何剂量和任何途径使用。
对于预防或治疗疾病,如本文报道的抗体的适宜剂量(当单独或与一种或多种其他额外治疗剂组合使用时)将取决于待治疗疾病的类型、抗体的类型、疾病的严重性和过程,抗体是否出于预防或治疗目的施用,先前疗法、患者的临床史和对抗体的应答以及主治医师的决定。将抗体适当地按一次或经过一系列治疗施用至患者。取决于疾病的类型和严重性,约1μg/kg至15mg/kg(例如0.5mg/kg-10mg/kg)抗体可以是向患者施用的起始候选剂量,无论是否例如通过一个或多个单独施用或通过连续输注来施用。取决于上文提到的因素,一个常见的每日剂量可能是从约1μg/kg至100mg/kg或更多。对于在几日或更长时间范围内重复施用,取决于病状,治疗通常将持续直至对疾病症状的所需抑制作用出现。抗体的一个示例性剂量将处于约0.05mg/kg至约10mg/kg范围内。因此,可以向患者施用约0.5mg/kg、2.0mg/kg、4.0mg/kg或10mg/kg的一种或多种剂量(或其任意组合)。这类剂量可以间歇地施用,例如每周或每3周施用(例如从而该患者接受抗体的约2个至约20个剂量,或例如约6个剂量)。可以施用较高的初始负荷剂量,随后是一个或多个较低剂量。通过常规技术和测定法容易地监测这种疗法的进程。
可以理解,前述任一种制剂或治疗方法可以使用如本文报道的免疫缀合物替代如本文报道的抗体来实施,或者可以除了使用如本文报道的抗体之外还使用如本文报道的免疫缀合物来实施。
制造物
在如本文报道的另一个方面,提供了一种制造物,所述制造物含有上文描述的可用于治疗、预防和/或诊断病症的物质。该制造物包括容器和在该容器上或与之结合的标签或包装插页。合适的容器包括例如瓶、小药瓶、注射器、静脉内输液袋等。容器可以从多种材料如玻璃或塑料形成。该容器容纳了本身或与另一种制剂组合时有效治疗、预防和/或诊断病症的制剂并且可以具有无菌接入口(例如该容器可以是静脉内输液袋或是具有皮下注射针头可穿透的瓶塞的小药瓶)。制剂中的至少一种活性物质是如本文报道的抗体。标签或包装插页说明该制剂用于治疗选择的病状。而且,制造物可以包含(a)其中含有制剂的第一容器,其中所述制剂包含如本文报道的抗体;和(b)其中含有制剂的第二容器,其中所述制剂包含其他细胞毒性剂或治疗剂。在本文报道的这个实施方案中制造物还可以包含指示制剂可以用来治疗特定病状的包装插页。备选地或额外地,该制造物可以还包含第二(或第三)容器,其包含可药用缓冲剂,如抑菌注射用水(BWFI)、磷酸盐缓冲盐水、林格液和葡萄糖溶液。它可以还包括从商业和用户观点看受欢迎的其他材料,包括其他缓冲剂、稀释剂、滤器、针头和注射器。
可以理解,前述任一制造物可以包括替代如本文报道的抗体的如本文报道的免疫缀合物,或可以在如本文报道的抗体之外还包括如本文报道的免疫缀合物。
具体实施方案
1.一种IgG类Fc区,包含第一变体Fc区多肽和第二变体Fc区多肽,其中
a)第一变体Fc区多肽衍生自第一亲本IgG类Fc区多肽并且第二变体Fc区多肽衍生自第二亲本IgG类Fc区多肽,因而第一亲本IgG类Fc区多肽与第二亲本IgG类Fc区多肽相同或不同,并且
b)第一变体Fc区多肽在除其中第一亲本IgG类Fc区多肽与第二亲本IgG类Fc区多肽不同的那些氨基酸残基之外的一个或多个氨基酸残基中与第二变体Fc区多肽不同,并且
c)包含第一变体Fc区多肽和第二变体Fc区多肽的IgG类Fc区具有与包含a)的第一亲本IgG类Fc区多肽和a)的第二亲本IgG类Fc区多肽的IgG类Fc区不同的对人Fc-受体的亲和力。
2.根据实施方案1的IgG类Fc区,其中人Fc-受体是人新生Fc受体(FcRn)或人FcγIII受体(FcγRIII)。
3.根据实施方案1至2中任一个实施方案的IgG类Fc区,其中人Fc-受体是人新生Fc-受体。
4.根据实施方案1至3中任一个实施方案的IgG类Fc区,其中与包含a)的第一亲本IgG类Fc区多肽和a)的第二亲本IgG类Fc区多肽的IgG类Fc区相比,通过表面等离振子共振(SPR)测定,包含第一变体Fc区多肽和第二变体Fc区多肽的IgG类Fc区对人Fc-受体的亲和力增加或减少10%或更多。
5.根据实施方案1至4中任一个实施方案的IgG类Fc区,其中第一亲本IgG类Fc区多肽与第二亲本IgG类Fc区多肽不同的那些氨基酸残基中至少某些氨基酸残基促进异二聚IgG类Fc区的形成。
6.根据实施方案1至5中任一个实施方案的IgG类Fc区,其中
i)第一亲本IgG类Fc区多肽选自
-人IgG1 Fc区多肽,
-人IgG2 Fc区多肽,
-人IgG3 Fc区多肽,
-人IgG4 Fc区多肽,
-具有突变L234A、L235A的人IgG1 Fc区多肽,
-具有突变Y349C、T366S、L368A、Y407V的人IgG1 Fc区多肽,
-具有突变S354C、T366S、L368A、Y407V的人IgG1 Fc区多肽,
-具有突变L234A、L235A、Y349C、T366S、L368A、Y407V的人IgG1Fc区多肽,
-具有突变L234A、L235A、S354C、T366S、L368A、Y407V的人IgG1Fc区多肽,
-具有突变P329G的人IgG1 Fc区多肽,
-具有突变L234A、L235A、P329G的人IgG1 Fc区多肽,
-具有突变P329G、Y349C、T366S、L368A、Y407V的人IgG1 Fc区多肽,
-具有突变P329G、S354C、T366S、L368A、Y407V的人IgG1 Fc区多肽,
-具有突变L234A、L235A、P329G、Y349C、T366S、L368A、Y407V的人IgG1 Fc区多肽,
-具有突变L234A、L235A、P329G、S354C、T366S、L368A、Y407V的人IgG1 Fc区多肽,
-具有突变S228P、L235E的人IgG4 Fc区多肽,
-具有突变S228P、L235E、P329G的人IgG4 Fc区多肽,
-具有突变Y349C、T366S、L368A、Y407V的人IgG4 Fc区多肽,
-具有突变S354C、T366S、L368A、Y407V的人IgG4 Fc区多肽,
-具有突变S228P、L235E、Y349C、T366S、L368A、Y407V的人IgG4Fc区多肽,
-具有突变S228P、L235E、S354C、T366S、L368A、Y407V的人IgG4Fc区多肽,
-具有突变P329G的人IgG4 Fc区多肽,
-具有突变P329G、Y349C、T366S、L368A、Y407V的人IgG4 Fc区多肽,
-具有突变P329G、S354C、T366S、L368A、Y407V的人IgG4 Fc区多肽,
-具有突变S228P、L235E、P329G、Y349C、T366S、L368A、Y407V的人IgG4 Fc区多肽,
-具有突变S228P、L235E、P329G、S354C、T366S、L368A、Y407V的人IgG4 Fc区多肽,
-具有突变K392D的人IgG1、IgG2或IgG4,和
-具有突变N392D的人IgG3,
并且
ii)第二亲本IgG类Fc区多肽选自
-人IgG1 Fc区多肽,
-人IgG2 Fc区多肽,
-人IgG3 Fc区多肽,
-人IgG4 Fc区多肽,
-具有突变L234A、L235A的人IgG1 Fc区多肽,
-具有突变S354C、T366W的人IgG1 Fc区多肽,
-具有突变Y349C、T366W的人IgG1 Fc区多肽,
-具有突变L234A、L235A、S354C、T366W的人IgG1 Fc区多肽,
-具有突变L234A、L235A、Y349C、T366W的人IgG1 Fc区多肽,
-具有突变P329G的人IgG1 Fc区多肽,
-具有突变L234A、L235A、P329G的人IgG1 Fc区多肽,
-具有突变P329G、S354C、T366W的人IgG1 Fc区多肽,
-具有突变P329G、Y349C、T366W的人IgG1 Fc区多肽,
-具有突变L234A、L235A、P329G、S354C、T366W的人IgG1 Fc区多肽,
-具有突变L234A、L235A、P329G、Y349C、T366W的人IgG1 Fc区多肽,
-具有突变S228P、L235E的人IgG4 Fc区多肽,
-具有突变S228P、L235E、P329G的人IgG4 Fc区多肽,
-具有突变S354C、T366W的人IgG4 Fc区多肽,
-具有突变Y349C、T366W的人IgG4 Fc区多肽,
-具有突变S228P、L235E、S354C、T366W的人IgG4 Fc区多肽,
-具有突变S228P、L235E、Y349C、T366W的人IgG4 Fc区多肽,
-具有突变P329G的人IgG4 Fc区多肽,
-具有突变P329G、S354C、T366W的人IgG4 Fc区多肽,
-具有突变P329G、Y349C、T366W的人IgG4 Fc区多肽,
-具有突变S228P、L235E、P329G、S354C、T366W的人IgG4 Fc区多肽,
-具有突变S228P、L235E、P329G、Y349C、T366W的人IgG4 Fc区多肽,
-具有突变D399K、D356K和/或E357K的人IgG1,和
-具有突变D399K、E356K和/或E357K的人IgG2、IgG3、或IgG4。
7.根据实施方案1至6中任一个实施方案的IgG类Fc区,其中
i)第一亲本IgG类Fc区多肽具有选自SEQ ID NO:60、61、62、63、64、65、67、69、70、71、73、75、76、78、80、81、82和84的氨基酸序列,
并且
ii)第二亲本IgG类Fc区多肽具有选自SEQ ID NO:60、61、62、63、64、66、68、69、70、72、74、75、76、77、79、81、83和85的氨基酸序列。
8.根据实施方案1至7中任一个实施方案的IgG类Fc区,其中
i)第一亲本IgG类Fc区多肽是人IgG1 Fc区多肽并且第二亲本IgG类Fc区多肽是人IgG1 Fc区多肽,或
ii)第一亲本IgG类Fc区多肽是具有突变L234A、L235A的人IgG1Fc区多肽并且第二亲本IgG类Fc区多肽是具有突变L234A、L235A的人IgG1 Fc区多肽,或
iii)第一亲本IgG类Fc区多肽是具有突变L234A、L235A、P329G的人IgG1 Fc区多肽并且第二亲本IgG类Fc区多肽是具有突变L234A、L235A、P329G的人IgG1 Fc区多肽,或
iv)第一亲本IgG类Fc区多肽是具有突变L234A、L235A、S354C、T366W的人IgG1 Fc区多肽并且第二亲本IgG类Fc区多肽是具有突变L234A、L235A、Y349C、T366S、L368A、Y407V的人IgG1 Fc区多肽,或
v)第一亲本IgG类Fc区多肽是具有突变L234A、L235A、P329G、S354C、T366W的人IgG1 Fc区多肽和第二亲本IgG类Fc区多肽是具有突变L234A、L235A、P329G、Y349C、T366S、L368A、Y407V的人IgG1Fc区多肽,或
vi)第一亲本IgG类Fc区多肽是人IgG4 Fc区多肽并且第二亲本IgG类Fc区多肽是人IgG4 Fc区多肽,或
vii)第一亲本IgG类Fc区多肽是具有突变S228P、L235E的人IgG4Fc区多肽并且第二亲本IgG类Fc区多肽是具有突变S228P、L235E的人IgG4 Fc区多肽,或
viii)第一亲本IgG类Fc区多肽是具有突变S228P、L235E、P329G的人IgG4 Fc区多肽并且第二亲本IgG类Fc区多肽是具有突变S228P、L235E、P329G的人IgG4 Fc区多肽,或
ix)第一亲本IgG类Fc区多肽是具有突变S228P、L235E、S354C、T366W的人IgG4 Fc区多肽并且第二亲本IgG类Fc区多肽是具有突变S228P、L235E、Y349C、T366S、L368A、Y407V的人IgG4 Fc区多肽,或
x)第一亲本IgG类Fc区多肽是具有突变S228P、L235E、P329G、S354C、T366W的人IgG4 Fc区多肽并且第二亲本IgG类Fc区多肽是具有突变S228P、L235E、P329G、Y349C、T366S、L368A、Y407V的人IgG4Fc区多肽。
9.根据实施方案1至5和7中任一个实施方案的IgG类Fc区,其中
i)第一亲本IgG类Fc区多肽具有SEQ ID NO:60的氨基酸序列并且第二亲本IgG类Fc区多肽具有SEQ ID NO:60的氨基酸序列,或
ii)第一亲本IgG类Fc区多肽具有SEQ ID NO:64的氨基酸序列并且第二亲本IgG类Fc区多肽具有SEQ ID NO:64的氨基酸序列,或
iii)第一亲本IgG类Fc区多肽具有SEQ ID NO:70的氨基酸序列并且第二亲本IgG类Fc区多肽具有SEQ ID NO:70的氨基酸序列,或
iv)第一亲本IgG类Fc区多肽具有SEQ ID NO:68的氨基酸序列并且第二亲本IgG类Fc区多肽具有SEQ ID NO:67的氨基酸序列,或
v)第一亲本IgG类Fc区多肽具有SEQ ID NO:74的氨基酸序列并且第二亲本IgG类Fc区多肽具有SEQ ID NO:73的氨基酸序列,或
vi)第一亲本IgG类Fc区多肽具有SEQ ID NO:63的氨基酸序列并且第二亲本IgG类Fc区多肽具有SEQ ID NO:63的氨基酸序列,或
vii)第一亲本IgG类Fc区多肽具有SEQ ID NO:75的氨基酸序列并且第二亲本IgG类Fc区多肽具有SEQ ID NO:75的氨基酸序列,或
viii)第一亲本IgG类Fc区多肽具有SEQ ID NO:76的氨基酸序列并且第二亲本IgG类Fc区多肽具有SEQ ID NO:76的氨基酸序列,或
ix)第一亲本IgG类Fc区多肽具有SEQ ID NO:79的氨基酸序列并且第二亲本IgG类Fc区多肽具有SEQ ID NO:80的氨基酸序列,或
x)第一亲本IgG类Fc区多肽具有SEQ ID NO:85的氨基酸序列并且第二亲本IgG类Fc区多肽具有SEQ ID NO:84的氨基酸序列。
10.根据实施方案1至9中任一个实施方案的IgG类Fc区,其中第一变体Fc区多肽在除其中第一亲本IgG类Fc区多肽与第二亲本IgG类Fc区多肽不同的那些氨基酸残基之外的1个至8个氨基酸残基中与第二变体Fc区多肽不同。
11.根据实施方案1至10中任一个实施方案的IgG类Fc区,其中第一变体Fc区多肽在除其中第一亲本IgG类Fc区多肽与第二亲本IgG类Fc区多肽不同的那些氨基酸残基之外的1个至6个氨基酸残基中与第二变体Fc区多肽不同。
12.根据实施方案1至11中任一个实施方案的IgG类Fc区,其中第一变体Fc区多肽在除其中第一亲本IgG类Fc区多肽与第二亲本IgG类Fc区多肽不同的那些氨基酸残基之外的1个至3个氨基酸残基中与第二变体Fc区多肽不同。
13.根据实施方案1至12中任一个实施方案的IgG类Fc区,其中第一变体Fc区多肽在第228、234、235、236、237、238、239、248、250、251、252、253、254、255、256、257、265、266、267、268、269、270、272、285、288、290、291、297、298、299、307、308、309、310、311、314、327、328、329、330、331、332、385、387、428、433、434、435和436位(根据KabatEU index编号体系编号)处的一个或多个氨基酸残基中与第二变体Fc区多肽不同。
14.根据实施方案1至2和4至13中任一个实施方案的IgG类Fc区,其中第一变体Fc区多肽在第228、234、235、236、237、238、239、253、254、265、266、267、268、269、270、288、297、298、299、307、311、327、328、329、330、331、332、434和435位(根据KabatEU index编号体系编号)处的一个或多个氨基酸残基中与第二变体Fc区多肽不同。
15.根据实施方案1至2和4至14中任一个实施方案的IgG类Fc区,其中第一变体Fc区多肽在第233、236、265、297、329和331位处的一个或多个氨基酸残基中与第二变体Fc区多肽不同。
16.根据实施方案15的IgG类Fc区,其中第一变体Fc区多肽因一个或多个氨基酸改变E233P、ΔG236、D265A、N297A、N297D、P329A和P331S与第二变体Fc区多肽不同。
17.根据实施方案1至3和5至13中任一个实施方案的IgG类Fc区,其中第一变体Fc区多肽在第248、250、251、252、253、254、255、256、257、272、285、288、290、291、308、309、310、311、314、385、386、387、428、432、433、434、435和436位处的一个或多个氨基酸残基中与第二变体Fc区多肽不同。
18.根据实施方案1至3和5至17中任一个实施方案的IgG类Fc区,其中第一变体Fc区多肽与在第251、253、310、314、432、433、435和436位处的一个或多个氨基酸残基中与第二变体Fc区多肽不同。
19.根据实施方案1至3和5至18中任一个实施方案的IgG类Fc区,其中第一Fc区多肽因选自i)组I253A、H310A和H435A、或ii)组H310A、H433A和Y436A、或iii)组L251D、L314D和L432D、或iv)组L251S、L314S和L432S(根据KabatEU index编号体系编号)的一个或两个突变与第二Fc区多肽不同,并且第二Fc区多肽因选自突变L251D、L251S、I253A、H310A、L314D、L314S、L432D、L432S、H433A、H435A和Y436A(根据KabatEU index编号体系编号)的一个或两个突变与第一Fc区多肽不同,从而当合并考虑时第一和第二Fc区多肽中的全部突变导致突变i)I253A、H310A和H435A、或ii)H310A、H433A和Y436A、或iii)L251D、L314D和L432D、或iv)L251S、L314S和L432S包含于该Fc区中。
20.根据实施方案1至3和5至18中任一个实施方案的IgG类Fc区,其中第一Fc区多肽因选自i)组I253A、H310A和H435A、或ii)组H310A、H433A和Y436A(根据KabatEU index编号体系编号)的一个或两个突变与第二Fc区多肽不同,并且第二Fc区多肽因选自突变I253A、H310A、H433A、H435A和Y436A(根据KabatEU index编号体系编号)的一个或两个突变与第一Fc区多肽不同,从而当一并考虑时第一和第二Fc区多肽中的全部突变导致突变i)I253A、H310A和H435A、或ii)H310A、H433A和Y436A包含于该Fc区中。
21.根据实施方案1至3和5至18中任一个实施方案的IgG类Fc区,其在Fc区中包含突变I253A/H310A/H435A或H310A/H433A/Y436A或L251D/L314D/L432D或L251S/L314S/L432S或其组合(根据KabatEU index编号体系编号),因而i)全部突变均在第一或第二Fc区多肽中,或ii)一个或两个突变在第一Fc区多肽中并且一个或两个突变在第二Fc区多肽中,从而当一并考虑时第一和第二Fc区多肽中的全部突变导致突变i)I253A、H310A和H435A、或ii)H310A、H433A和Y436A、或iii)L251D、L314D和L432D、或iv)L251S、L314S和L432S包含于该Fc区中。
22.根据实施方案1至3和5至18中任一个实施方案的IgG类Fc区,其在Fc区中包含突变I253A/H310A/H435A或H310A/H433A/Y436A或其组合(根据KabatEU index编号体系编号),因而i)全部突变均在第一或第二Fc区多肽中,或ii)一个或两个突变在第一Fc区多肽中并且一个或两个突变在第二Fc区多肽中,从而当一并考虑时第一和第二Fc区多肽中的全部突变导致突变i)I253A、H310A和H435A、或ii)H310A、H433A和Y436A包含于该Fc区中。
23.根据实施方案1至3和5至22中任一个实施方案的IgG类Fc区,其中与包含a)的第一亲本IgG类Fc区多肽和a)的第二亲本IgG类Fc区多肽的IgG类Fc区相比,所述IG类Fc区具有降低的对葡萄球菌蛋白A的结合作用。
24.根据实施方案1至3和5至17中任一个实施方案的IgG类Fc区,其在Fc区中包含突变M252Y/S254T/T256E(根据KabatEU index编号体系编号),因而i)全部突变均在第一或第二Fc区多肽中,或ii)一个或两个突变在第一Fc区多肽中并且一个或两个突变在第二Fc区多肽中,从而当一并考虑时第一和第二Fc区多肽中的全部突变导致突变M252Y/S254T/T256E包含于该IgG类Fc区中。
25.抗体,其包含根据实施方案1至24中任一个实施方案的IgG类Fc区。
26.根据实施方案25的抗体,其中抗体是单克隆抗体。
27.根据实施方案25至26中任一个实施方案的抗体,其中抗体是人抗体、人源化抗体或嵌合抗体。
28.根据实施方案25至27中任一个实施方案的抗体,其中抗体是双特异性抗体。
29.根据实施方案25至28中任一个实施方案的抗体,其中抗体是双价抗体。
30.根据实施方案25至29中任一个实施方案的抗体,其中抗体是FcRn结合作用消除的双特异性双价抗体,其包含与人VEGF特异性结合的第一抗原结合位点和与人ANG-2特异性结合的第二抗原结合位点。
31.FcRn结合作用消除的双特异性双价抗体,其包含与人VEGF特异性结合的第一抗原结合位点和与人ANG-2特异性结合的第二抗原结合位点,
其中
α)与VEGF特异性结合的第一抗原结合位点在重链可变结构域中包含SEQ ID NO:14的CDR3H区、SEQ ID NO:15的CDR2H区和SEQ ID NO:16的CDR1H区,并且在轻链可变结构域中包含SEQ ID NO:17的CDR3L区、SEQ ID NO:18的CDR2L区和SEQ ID NO:19的CDR1L区,并且
β)与ANG-2特异性结合的第二抗原结合位点在重链可变结构域中包含SEQ ID NO:22的CDR3H区、SEQ ID NO:23的CDR2H区和SEQ ID NO:24的CDR1H区,并且在轻链可变结构域中包含SEQ ID NO:25的CDR3L区、SEQ ID NO:26的CDR2L区和SEQ ID NO:27的CDR1L区,并且
γ)双特异性抗体包含根据实施方案1至24中任一个实施方案的IgG类Fc区。
32.根据实施方案31的双特异性抗体,其中
α)与VEGF特异性结合的第一抗原结合位点包含SEQ ID NO:20的氨基酸序列作为重链可变结构域VH并且包含SEQ ID NO:21的氨基酸序列作为轻链可变结构域VL,并且
β)与ANG-2特异性结合的第二抗原结合位点包含SEQ ID NO:28的氨基酸序列作为重链可变结构域VH并且包含SEQ ID NO:29的氨基酸序列作为轻链可变结构域VL,并且
γ)双特异性抗体包含根据实施方案1至24中任一个实施方案的IgG类Fc区。
33.FcRn结合作用消除的双特异性双价抗体,其包含与VEGF特异性结合的第一全长抗体的重链和轻链以及与ANG-2特异性结合的第二全长抗体的修饰重链和修饰轻链,其中恒定结构域CL和CH1相互替换,所述双特异性双价抗体包含
α)SEQ ID NO:38的氨基酸序列作为第一全长抗体的重链和SEQ ID NO:40的氨基酸序列作为第一全长抗体的轻链,并且
β)SEQ ID NO:39的氨基酸序列作为第二全长抗体的修饰重链和SEQ ID NO:41的氨基酸序列作为第二全长抗体的修饰轻链。
34.FcRn结合作用消除的双特异性双价抗体,其包含与VEGF特异性结合的第一全长抗体的重链和轻链以及与ANG-2特异性结合的第二全长抗体的修饰重链和修饰轻链,其中恒定结构域CL和CH1相互替换,所述双特异性双价抗体包含
α)SEQ ID NO:34的氨基酸序列作为第一全长抗体的重链和SEQ ID NO:36的氨基酸序列作为第一全长抗体的轻链,并且
β)SEQ ID NO:35的氨基酸序列作为第二全长抗体的修饰重链和SEQ ID NO:37的氨基酸序列作为第二全长抗体的修饰轻链。
35.FcRn结合作用消除的双特异性双价抗体,其包含与VEGF特异性结合的第一全长抗体的重链和轻链以及与ANG-2特异性结合的第二全长抗体的修饰重链和修饰轻链,其中恒定结构域CL和CH1相互替换,所述双特异性双价抗体包含
α)SEQ ID NO:42的氨基酸序列作为第一全长抗体的重链和SEQ ID NO:44的氨基酸序列作为第一全长抗体的轻链,并且
β)SEQ ID NO:43的氨基酸序列作为第二全长抗体的修饰重链和SEQ ID NO:45的氨基酸序列作为第二全长抗体的修饰轻链。
36.FcRn结合作用消除的双特异性双价抗体,其包含与VEGF特异性结合的第一全长抗体的重链和轻链以及与ANG-2特异性结合的第二全长抗体的修饰重链和修饰轻链,其中恒定结构域CL和CH1相互替换,所述双特异性双价抗体包含
α)SEQ ID NO:90的氨基酸序列作为第一全长抗体的重链和SEQ ID NO:40的氨基酸序列作为第一全长抗体的轻链,并且
β)SEQ ID NO:91的氨基酸序列作为第二全长抗体的修饰重链和SEQ ID NO:41的氨基酸序列作为第二全长抗体的修饰轻链。
37.FcRn结合作用消除的双特异性双价抗体,其包含与VEGF特异性结合的第一全长抗体的重链和轻链以及与ANG-2特异性结合的第二全长抗体的修饰重链和修饰轻链,其中恒定结构域CL和CH1相互替换,所述双特异性双价抗体包含
α)SEQ ID NO:88的氨基酸序列作为第一全长抗体的重链和SEQ ID NO:36的氨基酸序列作为第一全长抗体的轻链,并且
β)SEQ ID NO:89的氨基酸序列作为第二全长抗体的修饰重链和SEQ ID NO:37的氨基酸序列作为第二全长抗体的修饰轻链。
38.FcRn结合作用消除的双特异性双价抗体,其包含与VEGF特异性结合的第一全长抗体的重链和轻链以及与ANG-2特异性结合的第二全长抗体的修饰重链和修饰轻链,其中恒定结构域CL和CH1相互替换,所述双特异性双价抗体包含
α)SEQ ID NO:92的氨基酸序列作为第一全长抗体的重链和SEQ ID NO:44的氨基酸序列作为第一全长抗体的轻链,并且
β)SEQ ID NO:93的氨基酸序列作为第二全长抗体的修饰重链和SEQ ID NO:45的氨基酸序列作为第二全长抗体的修饰轻链。
39.FcRn结合作用消除的双特异性抗体,其包含与VEGF特异性结合的第一全长抗体的重链和轻链以及与ANG-2特异性结合的第二全长抗体的重链和轻链,其中重链的N末端借助肽接头(peptidic linker)与轻链的C末端连接,所述双特异性抗体包含
α)SEQ ID NO:46的氨基酸序列作为第一全长抗体的重链和SEQ ID NO:48的氨基酸序列作为第一全长抗体的轻链,并且
β)SEQ ID NO:47的氨基酸序列作为借助肽接头与第二全长抗体的轻链连接的第二全长抗体的重链。
40.FcRn结合作用消除的双特异性抗体,其包含与VEGF特异性结合的第一全长抗体的重链和轻链以及与ANG-2特异性结合的第二全长抗体的重链和轻链,其中重链的N末端借助肽接头与轻链的C末端连接,所述双特异性抗体包含
α)SEQ ID NO:49的氨基酸序列作为第一全长抗体的重链和SEQ ID NO:51的氨基酸序列作为第一全长抗体的轻链,并且
β)SEQ ID NO:50的氨基酸序列作为借助肽接头与第二全长抗体的轻链连接的第二全长抗体的重链。
41.FcRn结合作用消除的双特异性抗体,其包含与VEGF特异性结合的第一全长抗体的重链和轻链以及与ANG-2特异性结合的第二全长抗体的重链和轻链,其中重链的N末端借助肽接头与轻链的C末端连接,所述双特异性抗体包含
α)SEQ ID NO:94的氨基酸序列作为第一全长抗体的重链和SEQ ID NO:48的氨基酸序列作为第一全长抗体的轻链,并且
β)SEQ ID NO:95的氨基酸序列作为借助肽接头与第二全长抗体的轻链连接的第二全长抗体的重链。
42.FcRn结合作用消除的双特异性抗体,其包含与VEGF特异性结合的第一全长抗体的重链和轻链以及与ANG-2特异性结合的第二全长抗体的重链和轻链,其中重链的N末端借助肽接头与轻链的C末端连接,所述双特异性抗体包含
α)SEQ ID NO:96的氨基酸序列作为第一全长抗体的重链和SEQ ID NO:51的氨基酸序列作为第一全长抗体的轻链,并且
β)SEQ ID NO:97的氨基酸序列作为借助肽接头与第二全长抗体的轻链连接的第二全长抗体的重链。
43.根据实施方案39至42中任一个实施方案的双特异性抗体,其中通过在重链可变结构域位置44和轻链可变结构域位置100之间引入二硫键,将第二全长抗体的重链和轻链的抗体重链可变结构域(VH)和抗体轻链可变结构域(VL)进行二硫键稳定化(根据Kabat编号)。
44.根据实施方案33至43中任一个实施方案的双特异性抗体,其中双特异性抗体在两个CH3结构域之一中包含突变S354C、T366W及在两个CH3结构域的另一结构域中包含突变Y349C、T366S、L368A、Y407V,或其中双特异性抗体在两个CH3结构域之一中包含突变Y349C、T366W及在两个CH3结构域的另一结构域中包含突变S354C、T366S、L368A、Y407V。
45.根据实施方案33至43中任一个实施方案的双特异性抗体,其中双特异性抗体在两个CH3结构域之一中包含突变S354C、T366W及在两个CH3结构域的另一结构域中包含突变Y349C、T366S、L368A、Y407V,并且在CH3结构域中除突变Y349C、T366S、L368A、Y407V之外还包含突变R409D、K370E以及在CH3结构域中除突变S354C、T366W之外还包含突变D399K、E357K,或其中双特异性抗体在两个CH3结构域之一中包含突变Y349C、T366W及在两个CH3结构域的另一结构域中包含突变S354C、T366S、L368A、Y407V,并且在CH3结构域中除突变S354C、T366S、L368A、Y407V之外还包含突变R409D、K370E以及在CH3结构域中除突变Y349C、T366W之外还包含突变D399K、E357K。
46.根据实施方案25至45中任一个实施方案的双特异性抗体,其中抗体具有以下一个或多个特性:
-与无iii)下所述突变的相应双特异性抗体相比,显示较低血清浓度(在为小鼠FcRn缺陷、但为针对人FcRn的半合子转基因的小鼠中玻璃体内施加后96小时),和/或,
-与无iii)下所述突变的相应双特异性抗体相比,在全右眼裂解物中显示相似(倍数0.8至1.2)浓度(在为小鼠FcRn缺陷、但为针对人FcRn的半合子转基因的小鼠中,右眼中玻璃体内施加后96小时),和/或
-显示不与人新生Fc受体结合,和/或
-显示不与葡萄球菌蛋白A结合,和/或
-显示与葡萄球菌蛋白A结合。
47.Fc区融合多肽,其包含根据实施方案1至24中任一个实施方案的IgG类Fc区。
48.药物制剂,其包含根据实施方案25至46中任一个实施方案的抗体或根据实施方案47的Fc区融合多肽。
49.根据实施方案48的药物制剂,其中药物制剂用于治疗眼血管疾病。
50.根据实施方案25至46中任一个实施方案的抗体或根据实施方案47的Fc区融合多肽,其用作药物。
51.根据实施方案50的用途,其中用途是用于治疗眼血管疾病。
52.根据实施方案25至46中任一个实施方案的抗体或根据实施方案47的Fc区融合多肽在制造药物中的用途。
53.根据实施方案52的用途,其中用途是用于制造用于治疗眼血管疾病的药物。
54.根据权利要求25至46中任一个实施方案的抗体或根据实施方案47的Fc区融合多肽,其用于治疗眼血管疾病。
55.通过以下方式治疗患有眼血管疾病的患者的方法:向需要这种治疗的患者施用根据实施方案25至46中任一个实施方案的抗体或根据实施方案47的Fc区融合多肽。
本发明还涉及以下实施方案:
1.一种IgG类Fc区,包含第一变体Fc区多肽和第二变体Fc区多肽,其中
a)第一变体Fc区多肽衍生自第一亲本IgG类Fc区多肽并且第二变体Fc区多肽衍生自第二亲本IgG类Fc区多肽,因而第一亲本IgG类Fc区多肽与第二亲本IgG类Fc区多肽相同或不同,并且
b)第一变体Fc区多肽在除其中第一亲本IgG类Fc区多肽与第二亲本IgG类Fc区多肽不同的那些氨基酸残基之外的一个或多个氨基酸残基中与第二变体Fc区多肽不同,并且
c)包含第一变体Fc区多肽和第二变体Fc区多肽的IgG类Fc区具有与包含a)的第一亲本IgG类Fc区多肽和a)的第二亲本IgG类Fc区多肽的IgG类Fc区不同的对人Fc-受体的亲和力。
2.根据实施方案1的IgG类Fc区,其中人Fc-受体是人新生Fc受体(FcRn)或人FcγIII受体(FcγRIII)。
3.根据实施方案2的IgG类Fc区,其中人Fc-受体是人新生Fc-受体。
4.根据实施方案1至3中任一项所述的IgG类Fc区,其中通过表面等离振子共振(SPR)测定,对人Fc-受体的亲和力增加或减少10%或更多。
5.根据实施方案1至4中任一项的IgG类Fc区,其中第一亲本IgG类Fc区多肽与第二亲本IgG类Fc区多肽不同的那些氨基酸残基促进异二聚IgG类Fc区的形成。
6.根据实施方案1至5中任一项所述的IgG类Fc区,其中
i)第一亲本IgG类Fc区多肽选自人IgG1 Fc区多肽、人IgG2 Fc区多肽、人IgG3 Fc区多肽、人IgG4 Fc区多肽、具有突变L234A、L235A的人IgG1 Fc区多肽、具有突变Y349C、T366S、L368A、Y407V的人IgG1Fc区多肽、具有突变L234A、L235A、Y349C、T366S、L368A、Y407V的人IgG1 Fc区多肽、具有突变P329G的人IgG1 Fc区多肽、具有突变L234A、L235A、P329G的人IgG1 Fc区多肽、具有突变P329G、Y349C、T366S、L368A、Y407V的人IgG1 Fc区多肽、具有突变L234A、L235A、P329G、Y349C、T366S、L368A、Y407V的人IgG1 Fc区多肽、具有突变S228P、L235E的人IgG4 Fc区多肽、具有突变S228P、L235E、P329G的人IgG4 Fc区多肽、具有突变Y349C、T366S、L368A、Y407V的人IgG4Fc区多肽、具有突变S228P、L235E、Y349C、T366S、L368A、Y407V的人IgG4 Fc区多肽、具有突变P329G的人IgG4 Fc区多肽、具有突变P329G、Y349C、T366S、L368A、Y407V的人IgG4 Fc区多肽、具有突变S228P、L235E、P329G、Y349C、T366S、L368A、Y407V的人IgG4 Fc区多肽、具有突变K392D的人IgG1、IgG2或IgG4和具有突变N392D的人IgG3,
并且
ii)第二亲本IgG类Fc区多肽选自人IgG1 Fc区多肽、人IgG2 Fc区多肽、人IgG3 Fc区多肽、人IgG4 Fc区多肽、具有突变L234A、L235A的人IgG1 Fc区多肽、具有突变S354C、T366W的人IgG1 Fc区多肽、具有突变L234A、L235A、S354C、T366W的人IgG1 Fc区多肽、具有突变P329G的人IgG1 Fc区多肽、具有突变L234A、L235A、P329G的人IgG1Fc区多肽、具有突变P329G、S354C、T366W的人IgG1 Fc区多肽、具有突变L234A、L235A、P329G、S354C、T366W的人IgG1 Fc区多肽、具有突变S228P、L235E的人IgG4 Fc区多肽、具有突变S228P、L235E、P329G的人IgG4 Fc区多肽、具有突变S354C、T366W的人IgG4 Fc区多肽、具有突变S228P、L235E、S354C、T366W的人IgG4 Fc区多肽、具有突变P329G的人IgG4 Fc区多肽、具有突变P329G、S354C、T366W的人IgG4 Fc区多肽、具有突变S228P、L235E、P329G、S354C、T366W的人IgG4 Fc区多肽、具有突变D399K、D356K和/或E357K的人IgG1和具有突变D399K、E356K和/或E357K的人IgG2、IgG3或IgG4。
7.根据实施方案1至5中任一项的IgG类Fc区,其中
i)第一亲本IgG类Fc区多肽具有选自SEQ ID NO:60、61、62、63、64、65、67、69、70、71、73、75、76、78、80、81、82和84的氨基酸序列,
并且
ii)第二亲本IgG类Fc区多肽具有选自SEQ ID NO:60、61、62、63、64、66、68、69、70、72、74、75、76、77、79、81、83和85的氨基酸序列。
8.根据实施方案1至6中任一项的IgG类Fc区,其中
i)第一亲本IgG类Fc区多肽是人IgG1 Fc区多肽并且第二亲本IgG类Fc区多肽是人IgG1 Fc区多肽,或
ii)第一亲本IgG类Fc区多肽是具有突变L234A、L235A的人IgG1Fc区多肽并且第二亲本IgG类Fc区多肽是具有突变L234A、L235A的人IgG1 Fc区多肽,或
iii)第一亲本IgG类Fc区多肽是具有突变L234A、L235A、P329G的人IgG1 Fc区多肽并且第二亲本IgG类Fc区多肽是具有突变L234A、L235A、P329G的人IgG1 Fc区多肽,或
iv)第一亲本IgG类Fc区多肽是具有突变L234A、L235A、S354C、T366W的人IgG1 Fc区多肽并且第二亲本IgG类Fc区多肽是具有突变L234A、L235A、Y349C、T366S、L368A、Y407V的人IgG1 Fc区多肽,或
v)第一亲本IgG类Fc区多肽是具有突变L234A、L235A、P329G、S354C、T366W的人IgG1 Fc区多肽和第二亲本IgG类Fc区多肽是具有突变L234A、L235A、P329G、Y349C、T366S、L368A、Y407V的人IgG1Fc区多肽,或
vi)第一亲本IgG类Fc区多肽是人IgG4 Fc区多肽并且第二亲本IgG类Fc区多肽是人IgG4 Fc区多肽,或
vii)第一亲本IgG类Fc区多肽是具有突变S228P、L235E的人IgG4Fc区多肽并且第二亲本IgG类Fc区多肽是具有突变S228P、L235E的人IgG4 Fc区多肽,或
viii)第一亲本IgG类Fc区多肽是具有突变S228P、L235E、P329G的人IgG4 Fc区多肽并且第二亲本IgG类Fc区多肽是具有突变S228P、L235E、P329G的人IgG4 Fc区多肽,或
ix)第一亲本IgG类Fc区多肽是具有突变S228P、L235E、S354C、T366W的人IgG4 Fc区多肽并且第二亲本IgG类Fc区多肽是具有突变S228P、L235E、Y349C、T366S、L368A、Y407V的人IgG4 Fc区多肽,或
x)第一亲本IgG类Fc区多肽是具有突变S228P、L235E、P329G、S354C、T366W的人IgG4 Fc区多肽并且第二亲本IgG类Fc区多肽是具有突变S228P、L235E、P329G、Y349C、T366S、L368A、Y407V的人IgG4Fc区多肽,或
xi)第一亲本IgG类Fc区多肽是具有突变K392D的人IgG1、IgG2或IgG4 Fc区多肽或第一亲本IgG类Fc区多肽是具有突变N392D的人IgG3 Fc区多肽并且第二亲本IgG类Fc区多肽是具有突变D399K、D356K和/或E357K的人IgG1 Fc区多肽或第二亲本IgG类Fc区多肽是具有突变D399K、E356K和/或E357K的人IgG2、IgG3或IgG4 Fc区多肽。
9.根据实施方案1至5和7中任一项的IgG类Fc区,其中
i)第一亲本IgG类Fc区多肽具有SEQ ID NO:60的氨基酸序列并且第二亲本IgG类Fc区多肽具有SEQ ID NO:60的氨基酸序列,或
ii)第一亲本IgG类Fc区多肽具有SEQ ID NO:64的氨基酸序列并且第二亲本IgG类Fc区多肽具有SEQ ID NO:64的氨基酸序列,或
iii)第一亲本IgG类Fc区多肽具有SEQ ID NO:70的氨基酸序列并且第二亲本IgG类Fc区多肽具有SEQ ID NO:70的氨基酸序列,或
iv)第一亲本IgG类Fc区多肽具有SEQ ID NO:68的氨基酸序列并且第二亲本IgG类Fc区多肽具有SEQ ID NO:67的氨基酸序列,或
v)第一亲本IgG类Fc区多肽具有SEQ ID NO:74的氨基酸序列并且第二亲本IgG类Fc区多肽具有SEQ ID NO:73的氨基酸序列,或
vi)第一亲本IgG类Fc区多肽具有SEQ ID NO:63的氨基酸序列并且第二亲本IgG类Fc区多肽具有SEQ ID NO:63的氨基酸序列,或
vii)第一亲本IgG类Fc区多肽具有SEQ ID NO:75的氨基酸序列并且第二亲本IgG类Fc区多肽具有SEQ ID NO:75的氨基酸序列,或
viii)第一亲本IgG类Fc区多肽具有SEQ ID NO:76的氨基酸序列并且第二亲本IgG类Fc区多肽具有SEQ ID NO:76的氨基酸序列,或
ix)第一亲本IgG类Fc区多肽具有SEQ ID NO:79的氨基酸序列并且第二亲本IgG类Fc区多肽具有SEQ ID NO:80的氨基酸序列,或
x)第一亲本IgG类Fc区多肽具有SEQ ID NO:85的氨基酸序列并且第二亲本IgG类Fc区多肽具有SEQ ID NO:84的氨基酸序列。
10.根据实施方案1至9中任一项的IgG类Fc区,其中第一变体Fc区多肽在除其中第一亲本IgG类Fc区多肽与第二亲本IgG类Fc区多肽不同的那些氨基酸残基之外的1个至8个氨基酸残基中与第二变体Fc区多肽不同。
11.根据实施方案10的IgG类Fc区,其中第一变体Fc区多肽在除其中第一亲本IgG类Fc区多肽与第二亲本IgG类Fc区多肽不同的那些氨基酸残基之外的1个至6个氨基酸残基中与第二变体Fc区多肽不同。
12.根据实施方案10的IgG类Fc区,其中第一变体Fc区多肽在除其中第一亲本IgG类Fc区多肽与第二亲本IgG类Fc区多肽不同的那些氨基酸残基之外的1个至3个氨基酸残基中与第二变体Fc区多肽不同。
13.根据实施方案1至12中任一项的IgG类Fc区,其中第一变体Fc区多肽在第228、234、235、236、237、238、239、248、250、251、252、253、254、255、256、257、265、266、267、268、269、270、272、285、288、290、291、297、298、299、307、308、309、310、311、314、327、328、329、330、331、332、385、387、428、433、434、435和436位(根据KabatEU index编号体系编号)处的一个或多个氨基酸残基中与第二变体Fc区多肽不同。
14.根据实施方案1至2和4至13中任一项的IgG类Fc区,其中第一变体Fc区多肽在第228、234、235、236、237、238、239、253、254、265、266、267、268、269、270、288、297、298、299、307、311、327、328、329、330、331、332、434和435位(根据KabatEU index编号体系编号)处的一个或多个氨基酸残基中与第二变体Fc区多肽不同。
15.根据实施方案1至2和4至14中任一项的IgG类Fc区,其中第一变体Fc区多肽在第233、236、265、297、329和331位处的一个或多个氨基酸残基中与第二变体Fc区多肽不同。
16.根据实施方案15的IgG类Fc区,其中第一变体Fc区多肽因一个或多个氨基酸改变E233P、ΔG236、D265A、N297A、N297D、P329A和P331S与第二变体Fc区多肽不同。
17.根据实施方案1至3和5至13中任一项的IgG类Fc区,其中第一变体Fc区多肽在第248、250、251、252、253、254、255、256、257、272、285、288、290、291、308、309、310、311、314、385、386、387、428、432、433、434、435和436位处的一个或多个氨基酸残基中与第二变体Fc区多肽不同。
18.根据实施方案17的IgG类Fc区,其中第一变体Fc区多肽与在第251、253、310、314、432、433、435和436位处的一个或多个氨基酸残基中与第二变体Fc区多肽不同。
19.根据实施方案1至3和5至18中任一项的IgG类Fc区,其中第一Fc区多肽因选自i)组I253A、H310A和H435A、或ii)组H310A、H433A和Y436A、或iii)组L251D、L314D和L432D、或iv)组L251S、L314S和L432S(根据KabatEU index编号体系编号)的一个或两个突变与第二Fc区多肽不同,并且第二Fc区多肽因选自突变L251D、L251S、I253A、H310A、L314D、L314S、L432D、L432S、H433A、H435A和Y436A(根据KabatEU index编号体系编号)的一个或两个突变与第一Fc区多肽不同,从而全部突变i)I253A、H310A和H435A、或ii)H310A、H433A和Y436A、或iii)L251D、L314D和L432D、或iv)L251S、L314S和L432S包含于IgG类Fc区中。
20.根据实施方案1至3和5至18中任一项的IgG类Fc区,其中第一Fc区多肽因选自i)组I253A、H310A和H435A、或ii)组H310A、H433A和Y436A(根据KabatEU index编号体系编号)的一个或两个突变与第二Fc区多肽不同,并且第二Fc区多肽因选自突变I253A、H310A、H433A、H435A和Y436A(根据KabatEU index编号体系编号)的一个或两个突变与第一Fc区多肽不同,从而全部突变i)I253A、H310A和H435A、或ii)H310A、H433A和Y436A包含于IgG类Fc区中。
21.根据实施方案1至3和5至18中任一项的IgG类Fc区,其在Fc区中包含突变I253A/H310A/H435A或H310A/H433A/Y436A或L251D/L314D/L432D或L251S/L314S/L432S或其组合(根据KabatEU index编号体系编号),因而i)全部突变均在第一或第二Fc区多肽中,或ii)一个或两个突变在第一Fc区多肽中并且一个或两个突变在第二Fc区多肽中,从而全部突变i)I253A、H310A和H435A、或ii)H310A、H433A和Y436A、或iii)L251D、L314D和L432D、或iv)L251S、L314S和L432S包含于IgG类Fc区中。
22.根据实施方案1至3和5至18中任一项的IgG类Fc区,其在Fc区中包含突变I253A/H310A/H435A或H310A/H433A/Y436A或其组合(根据KabatEU index编号体系编号),因而i)全部突变均在第一或第二Fc区多肽中,或ii)一个或两个突变在第一Fc区多肽中并且一个或两个突变在第二Fc区多肽中,从而全部突变i)I253A、H310A和H435A、和/或ii)H310A、H433A和Y436A包含于该IgG类Fc区中。
23.根据实施方案1至20中任一项的IgG类Fc区,其中与包含a)的第一亲本IgG类Fc区多肽和a)的第二亲本IgG类Fc区多肽的IgG类Fc区相比,所述IG类Fc区具有降低的对葡萄球菌蛋白A的结合作用。
24.根据实施方案1至17中任一项的IgG类Fc区,其特征在于在Fc区中包含突变M252Y/S254T/T256E(根据KabatEU index编号体系编号),因而i)全部突变均在第一或第二Fc区多肽中,或ii)一个或两个突变在第一Fc区多肽中并且一个或两个突变在第二Fc区多肽中,从而全部突变M252Y/S254T/T256E包含于该IgG类Fc区中。
25.抗体,其包含根据实施方案1至24中任一项的IgG类Fc区。
26.根据实施方案25的抗体,其中抗体是单克隆抗体。
27.根据实施方案25至26中任一项的抗体,其中抗体是人抗体、人源化抗体或嵌合抗体。
28.根据实施方案25至27中任一项的抗体,其中抗体是双特异性抗体。
29.根据实施方案25至28中任一项的抗体,其中抗体是双价抗体。
30.根据实施方案25至29中任一项的抗体,其中抗体是FcRn结合作用消除的双特异性双价抗体,其包含与人VEGF特异性结合的第一抗原结合位点和与人ANG-2特异性结合的第二抗原结合位点。
31.FcRn结合作用消除的双特异性双价抗体,其包含与人VEGF特异性结合的第一抗原结合位点和与人ANG-2特异性结合的第二抗原结合位点,
其中
α)与VEGF特异性结合的第一抗原结合位点在重链可变结构域中包含SEQ ID NO:14的CDR3H区、SEQ ID NO:15的CDR2H区和SEQ ID NO:16的CDR1H区,并且在轻链可变结构域中包含SEQ ID NO:17的CDR3L区、SEQ ID NO:18的CDR2L区和SEQ ID NO:19的CDR1L区,并且
β)与ANG-2特异性结合的第二抗原结合位点在重链可变结构域中包含SEQ ID NO:22的CDR3H区、SEQ ID NO:23的CDR2H区和SEQ ID NO:24的CDR1H区,并且在轻链可变结构域中包含SEQ ID NO:25的CDR3L区、SEQ ID NO:26的CDR2L区和SEQ ID NO:27的CDR1L区,并且
γ)双特异性抗体包含根据实施方案1至24中任一项的IgG类Fc区。
32.根据实施方案31的双特异性抗体,其中
α)与VEGF特异性结合的第一抗原结合位点包含SEQ ID NO:20的氨基酸序列作为重链可变结构域VH并且包含SEQ ID NO:21的氨基酸序列作为轻链可变结构域VL,并且
β)与ANG-2特异性结合的第二抗原结合位点包含SEQ ID NO:28的氨基酸序列作为重链可变结构域VH并且包含SEQ ID NO:29的氨基酸序列作为轻链可变结构域VL,并且
γ)双特异性抗体包含根据实施方案1至24中任一项的IgG类Fc区。
33.Fc区融合多肽,其包含根据实施方案1至24中任一项的IgG类Fc区。
34.药物制剂,其包含根据实施方案25至32中任一项的抗体或根据实施方案33的Fc区融合多肽。
35.根据实施方案34的药物制剂,其中药物制剂用于治疗眼血管疾病。
36.根据实施方案25至32中任一项的抗体或根据实施方案33的Fc区融合多肽,其用作药物。
37.根据实施方案36的用途,其中用途是用于治疗眼血管疾病。
38.根据实施方案25至32中任一项的抗体或根据实施方案33的Fc区融合多肽在制造药物中的用途。
39.根据实施方案38的用途,其中用途是用于制造用于治疗眼血管疾病的药物。
40.根据实施方案25至32中任一项的抗体或根据实施方案33的Fc区融合多肽,其用于治疗眼血管疾病。
41.通过以下方式治疗患有眼血管疾病的患者的方法:向需要这种治疗的患者施用根据实施方案25至32中任一项的抗体或根据实施方案33的Fc区融合多肽。
实施例
以下是如本文中报道的方法和制剂的实施例。应当理解,鉴于上文提供的一般性描述,可以实施多种其他实施方案。
虽然已经出于清晰理解的目的,以说明和举例方式某种程度地详细描述前述发明,但是这些说明和例子不应当解释为限制如本文中报道的范围。本文中援引的全部专利和科学文献的公开内容通过引用方式明确地完整并入。
方法
电喷雾电离质谱法(ESI-MS)
通过添加0.5μL N-聚糖酶plus(Roche)和磷酸钠缓冲液(0.1M,pH 7.1)以获得最终样品体积115μL,使蛋白质等分试样(50μg)去糖基化。将混合物在37℃温育18小时。此后为了还原和变性,添加60μL在4M胍*HCl(Pierce)中的0.5M TCEP(Pierce)和50μL 8M胍*HCl。将混合物在37℃温育30分钟。通过大小排阻层析(Sepharose G-25,等浓度,40%乙腈,含2%甲酸),将样品脱盐。在配备nano ESI源(TriVersa NanoMate,Advion)的Q-TOF仪(maXis,Bruker)上记录ESI质谱(+ve)。MS参数设置如下:转移:漏斗RF,400Vpp;ISCID能量,0eV;多极RF,400Vpp;四极:离子能,4.0eV;低质量,600m/z;源:干燥气体,8L/分钟;干燥气体温度,160℃;碰撞室:碰撞能,10eV;碰撞RF:2000Vpp;离子冷却器:离子冷却器RF,300Vpp;转移时间:120μs;脉冲前储存,10μs;扫描范围m/z 600至2000。为了评价数据,使用自有开发软件(MassAnalyzer)。
FcRn表面等离振子共振(SPR)分析
使用BIAcoreT100仪(BIAcore AB,乌普萨拉,瑞典),通过表面等离振子共振(SPR)技术分析野生型抗体和突变体对FcRn的结合特性。该体系经充分建立用于研究分子相互作用。它允许连续实时监测配体/分析物结合作用,并且因此在多种分析设置下测定动力学参数。SPR-技术基于测量靠近镀金生物传感器芯片表面的折射率。折射率的变化表示该表面上固定化配体与溶液中注射的分析物相互作用所引起的质量变化。如果分子与表面上的固定化配体结合,则质量增加,在解离的情况下,则质量减少。在当前测定法中,借助胺偶联法,将FcRn受体固定在BIAcore CM5-生物传感器芯片(GE HealthcareBioscience,乌普萨拉,瑞典)到400应答单位(RU)水平。该测定法在室温实施,以PBS,0.05% Tween-20TM pH6.0(GE Healthcare Bioscience)作为运行缓冲液和稀释缓冲液。将200nM抗体样品在室温以流速50μL/分钟注射。结合时间是180秒,解离相耗时360秒。通过短暂注射HBS-P,pH 8.0,实现芯片表面的再生。通过比较注射后180秒和注射后300秒的生物学反应信号高度,进行SPR-数据的评价。相应参数是RU最高水平(注射后180秒)和晚期稳定性(注射结束后300秒)。
蛋白A表面等离振子共振(SPR)分析
该测定法基于表面等离振子共振光谱法。蛋白A固定在SPR生物传感器的表面上。一旦将样品注射入SPR谱仪的流动小室中,它与固定化蛋白A形成复合物,导致传感芯片表面上质量增加,并且因此导致更高的应答(如1RU定义为1pg/mm2)。此后,通过溶解样品-蛋白A复合物,再生传感器芯片。随后对获得的应答按应答单位(RU)评价信号高度和解离行为。
通过使用GE Healthcare的胺偶联试剂盒,将约3,500应答单位(RU)的蛋白A(20μg/ml)在pH 4.0偶联到CM5芯片(GE Healthcare)上。
样品和系统缓冲液是HBS-P+(0.01M HEPES,0.15M NaCl,无菌过滤的0.005%表面活性剂P20,pH 7.4)。将流动小室温度设定至25℃并且将样品区室温度设定至12℃。该系统用运行缓冲液引发。随后,将5nM样品构建体溶液以流速30μL/分钟注射120秒,随后是300秒解离相。随后,通过两次30秒以流速30μL/分钟长时间注射甘氨酸-HCl pH 1.5,再生传感器芯片表面。一式三份测量每个样品。
双特异性抗体和它们的各自的序列
如本文所用的术语“具有突变IHH-AAA”指在IgG1或IgG4亚类的恒定重链区(根据Kabat的EU index编号)中突变I253A(Ile253Ala)、H310A(His310Ala)和H435A(His435Ala)的组合,如本文所用的术语“具有突变HHY-AAA”指在IgG1或IgG4亚类的恒定重链区(根据Kabat的EU index编号)中突变H310A(His310Ala)、H433A(His433Ala)和Y436A(Tyr436Ala)的组合,如本文所用的术语“具有突变P329GLALA”指在IgG1亚类的恒定重链区(根据Kabat的EU index编号)中突变L234A(Leu234Ala),L235A(Leu235Ala)和P329G(Pro329Gly)的组合,并且如本文所用的术语“具有突变SPLE”指在IgG4亚类的恒定重链区(根据Kabat的EUindex编号)中突变S228P(Ser228Pro)和L235E(Leu235Glu)的组合。
概述
关于人免疫球蛋白轻链和重链的核苷酸序列的一般信息在Kabat,E.A.等人,Sequences of Proteins of Immunological Interest,第5版,Public Health Service,National Institutes of Health,Bethesda,MD(1991)中给出。根据EU编号编号并提及抗体链的氨基酸残基(Edelman,G.M.等人,Proc.Natl.Acad.Sci.USA 63(1969)78-85;Kabat,E.A.等人,Sequences of Proteins of Immunological Interest,第5版,Public HealthService,National Institutes of Health,Bethesda,MD(1991))。
重组DNA技术
如Sambrook,J.等人,Molecular Cloning:Alaboratory manual;Cold SpringHarbor Laboratory Press,Cold Spring Harbor,New York(1989)中所述的标准方法用来操作DNA。根据制造商的说明书使用分子生物学试剂。
基因合成
根据给出的说明书在Geneart(雷根斯堡,德国)订购目的基因区段。
DNA序列测定
通过在MediGenomix GmbH(Martinsried,德国)或SequiServe GmbH(Vaterstetten,德国)进行的双链测序法测定DNA序列。
DNA和蛋白质序列分析和序列数据管理
GCG(遗传学计算机组(Genetics Computer Group),Madison,Wisconsin)的软件包第10.2版和Infomax的Vector NTI Advance套装8.0版用于序列生成、作图、分析、注释和图示。
表达载体
为了表达所描述的抗体,使用基于采用或不采用CMV-内含子A启动子的cDNA组织化或基于采用CMV启动子的基因组组织化的表达质粒用于瞬时表达(例如在HEK293-F细胞中)。
抗体基因的转录单位由以下元件组成:
-在5'末端的单一限制性位点,
-来自人巨细胞病毒的立即早期增强子和启动子,
-在cDNA组织化的情况下内含子A序列,
-人免疫球蛋白基因的5'非翻译区,
-编码免疫球蛋白重链信号序列的核酸,
-编码人抗体链(野生型或具有结构域交换)的核酸,所述核酸作为cDNA或在基因组组织化中具有免疫球蛋白外显子-内含子组织化,
-具有多聚腺苷化信号序列的3’非翻译区,和
-在3'末端的单一限制性位点。
除了抗体表达盒之外,质粒还含有:
-允许该质粒在大肠杆菌中复制的复制起点,
-在大肠杆菌中赋予氨苄青霉素抗性的β-内酰胺酶基因,和
-作为真核细胞中选择标记的来自小家鼠(Mus musculus)的二氢叶酸还原酶基因。
编码抗体链的核酸通过PCR和/或基因合成法生成并通过连接相应的核酸区段,例如利用各自载体中的单一限制酶位点连接,通过已知的重组方法和技术装配。通过DNA测序验证亚克隆的核酸序列。为了瞬时转染,从转化的大肠杆菌培养物(Nucleobond AX,Macherey-Nagel)制备质粒,制得较大量的质粒。
细胞培养技术
使用如Current Protocols in Cell Biology(2000),Bonifacino,J.S.,Dasso,M.,Harford,J.B.,Lippincott-Schwartz,J.和Yamada,K.M.(编著),John Wiley&Sons,Inc.中所述的标准细胞培养技术。
如下文描述,通过在按照悬浮方式生长的HEK293-F细胞中瞬时共转染各自的表达质粒,表达双特异性抗体。
实施例1
表达和纯化
HEK293-F系统中的瞬时转染
使用HEK293-F系统(Invitrogen),根据制造商的说明书,通过用各自质粒(例如编码重链和修饰的重链以及相应轻链和修饰的轻链的质粒)瞬时转染,产生单特异性和双特异性抗体。简而言之,将摇瓶中或搅拌式发酵罐中无血清FreeStyleTM293表达培养基(Invitrogen)内以悬浮方式生长的HEK293-F细胞(Invitrogen)用各自表达质粒和293fectinTM或fectin(Invitrogen)的混合物转染。对于2L摇瓶(Corning),将HEK293-F细胞以密度1*106个细胞/mL接种在600mL中并且以120转/分钟,8% CO2温育。该日之后,将约1.5*106个细胞/mL细胞密度的细胞用大约42mL以下混合物转染:A)20mL Opti-MEM(Invitrogen)与600μg等摩尔比率的分别编码重链或经修饰重链及相应轻链的总质粒DNA(1μg/mL)的混合物以及B)20ml Opti-MEM与1.2mL 293fectin或fectin(2μL/mL)的混合物。在发酵过程期间根据葡萄糖消耗量,添加葡萄糖溶液。5-10天后收获含有分泌型抗体的上清液并且将抗体直接从上清液纯化或将上清液冷冻并存储。
纯化
通过使用MabSelectSure-SepharoseTM(用于无-IHH-AAA突变体)(GE Healthcare,瑞典)或KappaSelect-Agarose(用于IHH-AAA突变体)(GE Healthcare,瑞典)的亲和层析、使用丁基-Sepharose(GE Healthcare,瑞典)的疏水相互作用层析和Superde x 200大小排阻(GE Healthcare,瑞典)层析,从细胞培养上清液纯化双特异性抗体。
简而言之,在用PBS缓冲液(10mM Na2HPO4,1mM KH2PO4,137mM NaCl和2.7mM KCl,pH 7.4)平衡的MabSelectSuRe树脂(无-IHH-AAA突变和野生型抗体)上捕获无菌过滤的细胞培养上清液,用平衡缓冲液洗涤并且用25mM pH 3.0柠檬酸钠洗脱。在用25mM Tris,50mMNaCl,pH 7.2平衡的KappaSelect树脂上捕获IHH-AAA突变体,用平衡缓冲液洗涤并且用25mM pH 2.9柠檬酸钠洗脱。将洗脱的抗体级分合并并用2M Tris,pH 9.0中和。通过添加1.6M硫酸铵溶液至终浓度0.8M硫酸铵并使用乙酸调节pH至pH 5.0,将抗体合并物准备好用于疏水相互作用层析。用35mM乙酸钠,0.8M硫酸铵,pH 5.0平衡丁基-Sepharose树脂后,将抗体施加至树脂,用平衡缓冲液洗涤并且用线性梯度洗脱至35mM乙酸钠pH 5.0。将含有(单特异性或双特异性)抗体的级分合并并且使用以20mM组氨酸,140mM NaCl,pH 6.0平衡的Superde x 200 26/60GL(GE Healthcare,瑞典)柱,进一步通过大小排阻层析纯化。将含有(单特异性或双特异性)抗体的级分合并,使用Vivaspin超滤装置(Sartorius StedimBiotechS.A.,法国)浓缩至要求的浓度并贮存在-80℃。
表:双特异性<VEGF-ANG-2>抗体的产率
每种纯化步骤后使用微流体Labchip技术(Caliper Life Science,美国)通过CE-SDS分析纯度和抗体完整性。根据制造商的说明书,使用HT蛋白质表达试剂试剂盒,制备5μL用于CE-SDS分析的蛋白质溶液,并使用HT蛋白质表达芯片,在LabChip GXII系统上分析。使用LabChip GX软件分析数据。
表:通过CE-SDS确定借助不同的顺序纯化步骤移除典型副产物
在25℃使用Superde x 200分析性大小排阻柱(GE Healthcare,瑞典)在2x PBS(20mM Na2HPO4,2mM KH2PO4,274mM NaCl和5.4mM KCl,pH 7.4)运行缓冲液中,通过高性能SEC分析抗体样品的聚集物含量。将25μg蛋白质以流速0.75mL/分钟注射到柱上并经50分钟等浓度洗脱。
类似地,制备<VEGF-ANG-2>双特异性抗体VEGFang2-0012和VEGFang2-0201并以如下产率纯化:
另外,可以类似地制备并纯化具有IHH-AAA突变并具有SPLE突变的<VEGF-ANG-2>双特异性抗体<VEGF-ANG-2>CrossMAb IgG4(SEQ ID NO:42、SEQ ID NO:43、SEQ ID NO:44、SEQ ID NO:45)、具有IHH-AAA突变的<VEGF-ANG-2>OAscFab IgG1(SEQ ID NO:46、SEQ IDNO:47、SEQ ID NO:48)、具有IHH-AAA突变并具有SPLE突变的<VEGF-ANG-2>OAscFab IgG4(SEQ ID NO:49、SEQ ID NO:50、SEQ ID NO:51)、具有HHY-AAA突变和P329GLALA突变的<VEGF-ANG-2>CrossMab IgG1(SEQ ID NO:90、SEQ ID NO:91、SEQ ID NO:40、SEQ ID NO:41)、具有HHY-AAA突变和SPLE突变的<VEGF-ANG-2>CrossMab IgG4(SEQ ID NO:92、SEQ IDNO:93、SEQ ID NO:44、SEQ ID NO:45)、具有HHY-AAA突变的<VEGF-ANG-2>OAscFab IgG1(SEQ ID NO:94、SEQ ID NO:95、SEQ ID NO:48)和具有HHY-AAA突变和SPLE突变的<VEGF-ANG-2>OAscFab IgG4(SEQ ID NO:96、SEQ ID NO:97、SEQ ID NO:51)。
实施例2
分析学和可发展性
基于小规模DLS的粘度测量:
粘度测量基本上如(He,F.等人,Analytical Biochemistry 399(2009)141-143)中所述进行。简而言之,将样品在200mM精氨酸琥珀酸盐,pH 5.5中浓缩到多种蛋白质浓度,之后添加聚苯乙烯乳胶珠(300nm直径)和聚山梨醇酯20(0.02%v/v)。将样品通过离心经0.4μm滤板转移入光学384孔平板并用石蜡油覆盖。在25℃通过动态光散射法测定乳胶珠的表观直径。溶液的粘度可以计算为η=η0(rh/rh,0)(η:粘度;η0:水的粘度;rh:乳胶珠的表观流体动力学半径;rh,0:乳胶珠在水中的流体动力学半径)。
为了允许在相同浓度比较各种样品,粘度-浓度数据用Mooney方程(方程1)(Mooney,M.,Colloid.Sci.,6(1951)162-170;Monkos,K.,Biochem.Biophys.Acta 304(1997)1339)拟合并据此内插数据。
(S:蛋白质的流体动力学相互作用参数;K:自集因子;Φ:溶解的蛋白质的体积分数)
图2中显示结果:与Fc区中无IHH-AAA突变的VEGFang2-0015相比,在Fc区中具有IHH-AAA突变的VEGFang2-0016在全部测量温度均显示较低的粘度。
DLS聚集起始温度
将样品以1mg/mL的浓度在20mM组氨酸/组氨酸盐酸盐,140mM NaCl,pH 6.0中制备,通过离心经0.4μm滤板转移入光学384孔平板并用石蜡油覆盖。将样品以0.05℃/分钟的速率从25℃加热至80℃的同时,通过动态光散射法重复测量流体动力学半径。聚集起始温度定义为流体动力学半径开始增加的温度。图3中显示结果。在图3中,显示了相对于Fc区中具有IHH-AAA突变的VEGFang2-0016,无IHH-AAA突变的VEGFang2-0015的聚集。VEGFang2-0016显示了61℃聚集起始温度,而无IHH-AAA突变的VEGFang2-0015显示60℃起始温度。
DLS时程
将样品以1mg/mL的浓度在20mM组氨酸/组氨酸盐酸盐,140mM NaCl,pH 6.0中制备,通过离心经0.4μm滤板转移入光学384孔平板并用石蜡油覆盖。将样品维持在50℃恒定温度直至145小时的同时,通过动态光散射法重复测量流体动力学半径。在这个实验中,天然的解折叠蛋白质在升高温度下的聚集倾向将导致平均粒径随时间推移增加。这种基于DLS的方法对聚集物非常敏感,因为这些聚集物以超比例方式促进散射光强度。甚至在50℃(接近于聚集起始温度的温度,见上文)145小时后,仅观察到VEGFang2-0015和VEGFang2-0016的平均粒径增加小于0.5nm。
在40℃以100mg/mL储存7日
将样品在200mM精氨酸琥珀酸盐pH 5.5中浓缩至终浓度100mg/mL,无菌过滤并在40℃静止储存7日。在储存之前和之后,通过大小排阻层析法测定高分子量种类和低分子量种类(分别是HMW和LMW)的含量。存储样品和制备后立即测量的样品之间HMW含量和LMW含量的差异分别报告为“HMW增长”和“LMW增长”。下表和图4中显示结果,这些结果显示,与VEGFang2-0016(具有IHH-AAA突变)相比,VEGFang2-0015(没有IHH-AAA突变)显示更大的主峰下降并且更高的HMW增长。令人惊讶地,与VEGFang2-0015(没有IHH-AAA突变)相比,VEGFang2-0016(具有IHH-AAA突变)显示较低的聚集倾向性。
表:在40℃时7日后Δ主峰、HMW峰和LMW峰
在25℃使用T100或T200仪(GE Healthcare),通过表面等离振子共振(SPR)评估<VEGF-ANG-2>双特异性抗体的功能性分析。系统经充分建立用于研究分子相互作用。SPR-技术基于测量靠近镀金生物传感器芯片表面的折射率。折射率的变化表示该表面上固定化配体与溶液中注射的分析物相互作用所引起的质量变化。如果分子与表面上的固定化配体结合,则质量增加,反之亦然,在分析物从固定化配体解离(反映复合物解离)的情况下,则质量减少。SPR允许连续实时监测配体/分析物结合作用并且因此确定结合速率常数(ka)、解离速率常数(kd)和平衡常数(KD)。
实施例3
与VEGF、ANG-2、FcγR和FcRn结合
VEGF同工型动力学亲和力,包括评定物种交叉反应性
通过使用GE Healthcare供应的胺偶联试剂盒在pH 5.0,在CM5芯片(GEHealthcare BR-1005-30)上偶联约12,000共振单位(RU)的捕获系统(10μg/mL山羊抗人F(Ab)’2;订单代码:28958325;GE Healthcare Bio-Sciences AB,瑞典)。样品和系统缓冲液是PBS-T(包含0.05% Tween20TM的10mM磷酸缓冲盐水)pH 7.4。将流动小室设定至25℃-并且将样品区组设定至12℃-并用运行缓冲液引发2次。通过以流速5μL/分钟注射50nM溶液30秒,捕获双特异性抗体。通过在溶液中以流速30μL/分钟注射多种浓度(始于1:3稀释的300nM)的人hVEGF121、小鼠mVEGF120或大鼠rVEGF164持续300秒,测量结合作用。监测间离相长达1200秒并通过从样品溶液转换成运行缓冲液启动。通过用甘氨酸pH 2.1溶液以流速30μL/分钟洗涤60秒,使表面再生。通过扣减从山羊抗人F(Ab’)2表面获得的应答值,修正本体折射率差异。还扣减空白注射(=双参考)。为了计算表观KD和其他动力学参数,使用朗格缪尔1:1模型。下文显示结果。
ANG-2溶液亲和力,包括评定物种交叉反应性
通过确定平衡混合物中游离相互作用配偶体的浓度,溶液亲和力度量相互作用的亲和力。溶液亲和力测定法涉及将保持处于恒定浓度的<VEGF-ANG-2>双特异性抗体与不同浓度的配体(=ANG-2)混合。使用GE Healthcare供应的胺偶联试剂盒在pH 5.0测定固定在CM5芯片(GE Healthcare BR-1005-30)表面上的抗体的最大可能共振单位(例如17,000共振单位(RU))。样品和系统缓冲液是HBS-P pH 7.4。将流动小室设定至25℃并且将样品区组设定至12℃并用运行缓冲液引发2次。为了产生校准曲线,将渐增浓度的ANG-2注入含有固定化<VEGF-ANG-2>双特异性抗体的BIAcore流动小室。将结合的ANG-2的量作为共振单位(RU)测定并对浓度作图。将每种配体的溶液(11种浓度,对于<VEGF-ANG-2>双特异性抗体,从0至200nM)与10nM ANG-2温育并且使其在室温达到平衡。从校准曲线测定游离ANG-2浓度,在测量具有已知量的ANG-2的溶液的应答值之前和之后生成所述校准曲线。使用模型201,使用游离ANG-2浓度作为y-轴并使用用于抑制的抗体浓度作为x-轴,用XLfit4(IDBSSoftware)建立一个4参数拟合。通过确定这条曲线的拐点计算亲和力。通过用0.85%H3PO4溶液以流速30μL/分钟洗涤1次30秒,使表面再生。通过扣减从空白偶联的表面获得的应答值,修正本体折射率差异。下文显示结果。
FcRn稳态亲和力
对于FcRn测量,稳态亲和力用来相互比较双特异性抗体。将人FcRn稀释于偶联缓冲液(10μg/mL,乙酸钠pH 5.0)中并通过定向固定法,使用BIAcore wizard,固定在C1芯片(GE Healthcare BR-1005-35)至最终应答值200RU。将流动小室设定至25℃并且将样品区组设定至12℃并用运行缓冲液引发2次。样品和系统缓冲液是PBS-T(包含0.05% Tween20TM的10mM磷酸缓冲盐水)pH 6.0。为了评估每种抗体的不同IgG浓度,制备浓度62.5nM、125nM、250nM和500nM。流速设定至30μL/分钟并在选择180秒结合时间情况下,将不同样品连续注射到芯片表面上。通过以流速30μL/分钟注射PBS-T pH 8 60秒,使表面再生。通过扣减从空白表面获得的应答值,修正本体折射率差异。还扣减缓冲液注射(=双参考)。为了计算稳态亲和力,使用来自BIA-评价软件的方法。简而言之,将RU值对分析的浓度作图,产生剂量-反应曲线。基于一个2参数拟合,计算上渐近线,从而允许确定半数最大RU值并因此测定亲和力。图5和下表中显示结果。类似地,可以确定对食蟹猴、小鼠和兔FcRn的亲和力。
FcγRIIIa测量
对于FcγRIIIa测量,使用直接结合测定法。通过使用GE Healthcare供应的胺偶联试剂盒在pH 5.0,在CM5芯片(GE Healthcare BR-1005-30)上偶联约3,000共振单位(RU)的捕获系统(1μg/ml Penta-His;Qiagen)。样品和系统缓冲液是HBS-P+pH 7.4。将流动小室设定至25℃-并且将样品区组设定至12℃-并用运行缓冲液引发2次。通过以流速5μL/分钟注射100nM溶液60秒,捕获FcγRIIIa-His-受体。通过以流速30μL/分钟注射100nM双特异性抗体或单特异性对照抗体(对于IgG1亚类和IgG4亚类抗体,抗洋地黄毒苷抗体(抗Dig))180秒,测量结合作用。通过用甘氨酸pH 2.5溶液以流速30μL/分钟洗涤120秒,使表面再生。因为FcγRIIIa结合作用与朗格缪尔1:1模型不同,仅用这种测定法确定结合/不结合。以相似方式,可以确定FcγRIa结合作用和FcγRIIa结合作用。图6中显示结果,其中后续是通过引入突变P329G LALA,未能检测到对FcγRIII的更多的结合。
评定<VEGF-ANG-2>双特异性抗体的独立VEGF结合作用和ANG-2结合作用
通过使用GE Healthcare供应的胺偶联试剂盒在pH 5.0,在CM4芯片(GEHealthcare BR-1005-34)上偶联约3,500共振单位(RU)的捕获系统(10μg/mL山羊抗人IgG;GE Healthcare Bio-Sciences AB,瑞典)。样品和系统缓冲液是PBS-T(包含0.05% Tween20TM的10mM磷酸缓冲盐水)pH7.4。将流动小室的温度设定至25℃并且将样品区组的温度设定至12℃。在捕获之前,将流动小室用运行缓冲液引发2次。
通过以流速5μL/分钟注射10nM溶液60秒,捕获双特异性抗体。通过确定依次或同时添加(流速30μL/分钟)的每种配体的有效结合能力,分析每种配体与双特异性抗体的独立结合作用:
1.以浓度200nM注射人VEGF持续180秒(鉴定抗原的单一结合作用)。
2.以浓度100nM注射人ANG-2持续180秒(鉴定抗原的单一结合作用)。
3.以浓度200nM注射人VEGF持续180秒,随后额外以浓度100nM注射人ANG-2持续180秒(鉴定在VEGF存在下的ANG-2的结合作用)。
4.以浓度100nM注射人ANG-2持续180秒,随后额外以浓度200nM注射人VEGF(鉴定在ANG-2存在下的VEGF结合作用)。
5.共同注射浓度200nM的人VEGF和浓度100nM的人ANG-2持续180秒(同时鉴定VEGF的结合作用和ANG-2的结合作用)。
通过用3M MgCl2溶液以流速30μL/分钟洗涤60秒,使表面再生。通过扣减从山羊抗人IgG表面获得的应答值,修正本体折射率差异。
如果方案3、4和5的所得最终信号等于或类似于方案1和2的独立最终信号的总和,则双特异性抗体能够相互独立地结合两种抗原。下表中显示结果,其中两种抗体VEGFang2-0016,VEGFang2-0012均显示能够相互独立地与VEGF和ANG-2结合。
评定与<VEGF-ANG-2>双特异性抗体的同时VEGF结合作用和ANG-2结合作用
首先,通过使用GE Healthcare供应的胺偶联试剂盒在pH 5.0,在CM4芯片(GEHealthcare BR-1005-34)上偶联约1,600共振单位(RU)的VEGF(20μg/mL)。样品和系统缓冲液是PBS-T(包含0.05% Tween 20TM的10mM磷酸缓冲盐水)pH 7.4。将流动小室设定至25℃并且将样品区组设定至12℃并用运行缓冲液引发2次。其次,将50nM的双特异性抗体溶液以流速30μL/分钟注射180秒。第三,将hANG-2以流速30μL/分钟注射180秒。hANG-2的结合应答取决于与VEGF结合的双特异性抗体的量并且显示了同时结合作用。通过用0.85%H3PO4溶液以流速60μL/分钟洗涤60秒,使表面再生。同时结合作用由hANG-2对先前VEGF结合的<VEGF-ANG-2>双特异性抗体的额外特异性结合信号显示。对二种双特异性抗体VEGFang2-0015和VEGFang2-0016而言,可以检测到与<VEGF-ANG-2>双特异性抗体的VEGF及ANG-2同时结合作用(数据未显示)。
表:结果:对来自不同物种的VEGF同工型的动力学亲和力
表:结果:对ANG-2的溶液亲和力
表:结果:对<VEGF-ANG-2>双特异性抗体的FcRn的亲和力
表:与FcγRI-IIIa的结合结果
表:结果:VEGF和ANG-2与<VEGF-ANG-2>双特异性抗体的独立结合作用
实施例4
质谱法
这个章节描述<VEGF-ANG-2>双特异性抗体的表征,重点在于正确装配。通过去糖基化以及完整或IdeS消化(酿脓链球菌(S.pyogenes)的IgG降解酶)的<VEGF-ANG-2>双特异性抗体的电喷雾电离质谱法(ESI-MS),证实预期的一级结构。用100μg纯化抗体进行IdeS-消化,所述抗体与2μgIdeS蛋白酶(Fabricator)在100mmol/L NaH2PO4/Na2HPO4,pH 7.1中在37℃温育5小时。随后,将抗体以蛋白质浓度1mg/mL在100mmol/LNaH2PO4/Na2HPO4,pH 7.1中用N-糖苷酶F、神经氨酸酶和O-糖苷酶(Roche)在37℃去糖基化长达16小时并且随后在Sephade x G25柱(GE Healthcare)上通过HPLC脱盐。在配备TriVersa NanoMate源(Advion)的maXis 4G UHR-QTOF MS系统(Bruker Daltonik)上,通过ESI-MS测定总质量。
对IdeS-消化的去糖基化(下表)或完整的去糖基化(下表)的分子获得的质量对应于预测质量,所述预测质量从由两条不同轻链LCANG-2和LCLucentis和两条不同重链HCANG-2和HCLucentis组成的<VEGF-ANG-2>双特异性抗体的氨基酸序列推断。
表:去糖基化和IdeS-消化的双特异性<VEGF/ANG2>抗体VEGFang2-0201(没有IHH-AAA突变)和VEGFang2-0012(具有IHH-AAA突变)的质量
表:去糖基化的<VEGF/ANG2>抗体VEGFang2-0016(具有IHH-AAA突变)和VEGFang2-0015(没有IHH-AAA突变)的质量
实施例5
FcRn色谱
偶联于链霉亲和素sepharose:
将1克链霉亲和素sepharose(GE Healthcare)添加至生物素化并透析的受体并在摇动下温育两个小时。将受体衍生化的sepharose填充于1mL XK柱(GE Healthcare)中。
使用FcRn亲和柱的色谱:
条件:
柱尺寸:50mm x 5mm
床高度:5cm
载量:50μg样品
平衡缓冲液:20mM MES,含150mM NaCl,调节至pH 5.5
洗脱缓冲液:20mM Tris/HCl,含150mM NaCl,调节至pH 8.8
洗脱:7.5CV平衡缓冲液,在30CV内至100%洗脱缓冲液,10CV洗脱缓冲液
人FcRn亲和柱色谱
在下表中,给出<VEGF-ANG-2>双特异性抗体在包含人FcRn的亲和柱上的保留时间。使用上述条件,获得数据。
表:结果:<VEGF-ANG-2>双特异性抗体的保留时间
实施例6
具有IHH-AAA突变的抗体的药代动力学(PK)特性
人FcRn转基因的FcRn小鼠的PK数据
在生活阶段:
该研究包括雌性C57BL/6J小鼠(背景);FcRn缺陷型,但对人FcRn半合子转基因的小鼠(huFcRn,品系276-/tg)
第1部分:
以2μL适宜溶液/动物(即21μg化合物/动物(VEGFAng2-0015(没有IHH-AAA突变))或23.6μg化合物/动物(VEGFAng2-0016(具有IHH-AAA突变))以玻璃体内方式向右眼中注射全部小鼠一次。
将小鼠分配至2个组,每组6只动物。血液样品在给药后2、24和96小时取自组1并且在给药后7、48和168小时取自组2。
通过利用德国柏林World Precision Instruments,Inc.的用于纳升注射的NanoFil微量注射器系统,向小鼠右眼的玻璃体中注射。将小鼠用2.5%异氟烷麻醉,并且为了观察小鼠眼,使用放大率为40倍和具有Leica KL 2500LCD闪光的环形灯的Leica MZFL3显微镜。随后,使用35号针注射2μL化合物。
通过对侧眼的眼球后静脉丛,从每只动物采集血液以测定血清中的化合物水平。
在室温1小时后,通过在4℃离心(9300x g)3分钟从血液获得至少50μL血清样品。血清样品在离心后直接冷冻并在-80℃冷冻贮藏直至分析。处理后96小时,分离组1的动物的经处理眼,并且处理后168小时,分离组2的动物的经处理眼。样品在-80℃冷冻贮藏直至分析。
第2部分:
以200μL适宜溶液/动物(即21μg化合物/动物(VEGFAng2-0015(没有IHH-AAA突变))或23.6μg化合物/动物(VEGFAng2-0016(具有IHH-AAA突变)),以静脉内经尾静脉注射全部小鼠一次。
将小鼠分配至2个组,每组5只动物。血液样品在给药后1、24和96小时取自组1并且在给药后7、48和168小时取自组2。通过眼球后静脉丛,从每只动物采集血液以测定血清中的化合物水平。
在室温1小时后,通过在4℃离心(9300x g)3分钟从血液获得至少50μL血清样品。血清样品在离心后直接冷冻并在-80℃冷冻贮藏直至分析。
全眼裂解物(小鼠)的制备
通过物理-化学崩解来自实验室动物的全眼,获得眼裂解物。为了机械破裂,将每只眼转移至一个1.5mL圆锥底微量小瓶。在冷冻和解冻后,将眼用1mL细胞洗涤缓冲液洗涤一次(Bio-Rad,Bio-Plex细胞溶解试剂盒,目录号171-304011)。在以下步骤中,添加500μL新鲜制备的细胞溶解缓冲液并且使用1.5mL组织碾磨研杵(Kimble Chase,1.5mL研杵,产品编号749521-1500),研磨该眼。随后将混合物冷冻并解冻5次并再次研磨。为了将裂解物与剩余组织分离,将样品以4,500g离心4分钟。在离心后,将上清液收集并贮存在-20℃直至在定量ELISA中进一步分析。
分析
用酶联免疫吸附测定法(ELISA)测定小鼠血清和眼裂解物中<VEGF-ANG-2>抗体的浓度。
为了定量小鼠血清样品和眼裂解物中的<VEGF-ANG-2>抗体,进行标准固相系列夹心免疫测定,使用生物素化的和洋地黄毒苷化的单克隆抗体作为捕获抗体和检测抗体。为了验证分析物的双特异性的完整性,生物素化的捕获抗体识别VEGF-结合位点,而洋地黄毒苷化的检测抗体将与分析物的ANG-2结合位点结合。随后用与抗洋地黄毒苷抗体偶联的辣根过氧化物酶检测在链霉亲和素包被的微量滴定平板(SA-MTP)的固相上的捕获抗体、分析物和检测抗体的结合的免疫复合体。在从SA-MTP洗去未结合的物质并添加ABTS-底物后,获得的信号与SA-MTP固相上结合的分析物的量成正比。随后通过参考平行分析的校准物将样品的测量信号换算成浓度,进行定量。
在第一步中,将SA-MTP在MTP摇床上以500转/分钟用浓度1μg/mL的100μL/孔生物素化捕获抗体溶液(抗独特型抗体mAb<Id<VEGF>>M-2.45.51-IgG-Bi(DDS))包被1小时。同时,制备校准物、QC样品和样品。将校准物和QC样品稀释至2%血清基质;将样品稀释直至信号处于校准物的线性范围内部。
在用捕获抗体包被SA-MTP后,将平板用洗涤缓冲液和300μL/孔洗涤3次。随后,将100μL/孔校准物、QC样品和样品移液到SA-MTP上并以500转/分钟再次温育1小时。分析物现在借助其抗VEGF结合位点通过捕获抗体与SA-MTP的固相结合。在温育并通过洗涤平板移除未结合的分析物后,将浓度250ng/mL的100μL/孔第一检测抗体(抗独特型抗体mAb<Id-<ANG-2>>M-2.6.81-IgG-Dig(XOSu))添加至SA-MTP。再次,将平板在摇床上以500转/分钟温育1小时。在洗涤后,将浓度50mU/mL的100μL/孔第二检测抗体(pAb<Digoxigenin>S-Fab-POD(poly))添加至SA-MTP的孔并且将平板以500转/分钟再次温育1小时。在移除过量检测抗体的最终洗涤步骤后,添加100μL/孔底物(ABTS)。抗体-酶缀合物催化底物的颜色反应。随后通过ELISA读数仪在405nm波长(参考波长:490nm([405/490]nm))测量信号。
药代动力学评价
使用药代动力学评价程序WinNonlinTM(Pharsight)第5.2.1版,通过非区室分析计算药代动力学参数。
结果:
A)血清浓度
下表和图7B至图7C中显示血清浓度的结果。
表:VEGFAng2-0015(没有IHH-AAA突变):玻璃体内施加和静脉内施加血清浓度 比较
表:VEGFAng2-0016(具有IHH-AAA突变):玻璃体内施加和静脉内施加血清浓度 比较
表:VEGFang2-0015(没有IHH-AAA突变)和VEGFang2-0016(具有IHH-AAA突变): 璃体内施加后各血清浓度的比较)
表:VEGFang2-0015(没有IHH-AAA突变)和VEGFang2-0016(具有IHH-AAA突变): 脉内施加各血清浓度的比较
结果:
B)在左眼和右眼的眼裂解物中的浓度
下表和图7D至图7E中显示了眼裂解物中浓度的结果。
表:玻璃体内施加至右眼后VEGFang2-0015(没有IHH-AAA突变)在眼裂解物中的浓度
表:静脉内施加后VEGFang2-0015(没有IHH-AAA突变)在眼裂解物中的浓度
表:玻璃体内施加至右眼后VEGFang2-0016(具有IHH-AAA突变)在眼裂解物中的浓度
表:静脉内施加后VEGFang2-0016(具有IHH-AAA突变)在眼裂解物中的浓度
结果总结:
在玻璃体内施加后,与没有IHH-AAA突变的双特异性<VEGF-ANG-2>抗体VEGFang2-0015相比,如本文中报道的双特异性<VEGF-ANG-2>抗体VEGFang2-0016(具有IHH-AAA突变)在眼裂解物中显示相似的浓度(96小时和168小时后)。
另外,在玻璃体内施加后,与没有IHH-AAA突变的双特异性<VEGF-ANG-2>抗体VEGFang2-0015相比,如本文中报道的双特异性<VEGF-ANG-2>抗体VEGFang2-0016(具有IHH-AAA突变)额外显示在血清中更快的清除作用和较短的半衰期。
实施例7
小鼠角膜微囊袋血管生成测定法
为了测试具有SEQ ID NO:20和21的各自VEGF结合性VH和VL以及SEQ ID NO:28和29的ANG-2结合性VH和VL的双特异性<VEGF-ANG-2>抗体在体内对VEGF诱导的血管生成过程的抗血管生成作用,实施小鼠角膜微囊袋血管生成测定法。在这个测定法中,将浸透VEGF的Nylaflo圆片以相对于角膜缘血管而言固定的距离植入无血管的角膜囊袋中。血管立即生长至角膜中指向正在形成的VEGF梯度。8至10周龄雌性BALB/c小鼠购自Charles River,Sulzfeld,德国。研究方案根据Rogers,M.S.等人,Nat.Protoc.2(2007)2545-2550描述的方法调整。简而言之,在麻醉小鼠中使用手术刀片和尖头镊,在显微镜下按照从角膜缘至角膜顶部的大约1mm制备宽度约500μm的微囊袋。植入直径0.6mm的圆片(PallCorporation,Michigan)并且平整植入区域的表面。将圆片在相应的生长因子中或在载体中温育至少30分钟。在3、5和7日(或备选地仅在3,5或7日)后,将眼照相并测量血管反应。通过计算新血管面积/角膜总面积的百分数,将该测定法定量。
将圆片用300ngVEGF或PBS加载作为对照并植入7日。随时间推移在第3、5和/或7日监测血管从角膜缘至圆片的生长晕。在圆片植入之前一日,将抗体以10mg/kg剂量静脉内施用(归因于静脉内施加,使用仅因IHH-AAA突变与VEGFang2-0016不同并具有介导效力的相同抗VEGF和抗ANG-2VH和VL的血清稳定的VEGFang2-0015(没有IHH-AAA突变)作为代用品)以在体内测试对VEGF诱导的血管生成的抗血管生成作用。对照组中的动物接受载体。施加体积是10mL/kg。
实施例8
具有HHY-AAA突变的抗体的药代动力学(PK)特性
对人FcRn转基因的FcRn小鼠的PK数据
在生活阶段:
该研究包括雌性C57BL/6J小鼠(背景);FcRn缺陷型,但对人FcRn半合子转基因的小鼠(huFcRn,品系276-/tg)
第1部分:
以2μL/动物的VEGF/ANG2-0016、VEGF/ANG2-0096、VEGF/ANG2-0098、VEGF/ANG2-0121的适宜溶液,以玻璃体内方式向右眼中注射全部小鼠一次。
将小鼠分配至2个组,每组6只动物。血液样品在给药后2、24和96小时取自组1并且在给药后7、48和168小时取自组2。
通过利用德国柏林World Precision Instruments,Inc.的用于纳升注射的NanoFil微量注射器系统,向小鼠右眼的玻璃体中注射。将小鼠用2.5%异氟烷麻醉,并且为了观察小鼠眼,使用放大率为40倍和具有Leica KL 2500LCD闪光的环形灯的Leica MZFL3显微镜。随后,使用35号针注射2μL化合物。
通过对侧眼的眼球后静脉丛,从每只动物采集血液以测定血清中的化合物水平。
在室温1小时后,通过在4℃离心(9,300x g)3分钟从血液获得至少50μL血清样品。血清样品在离心后随即冷冻并在-80℃冷冻贮藏直至分析。处理后96小时,分离组1的动物的经处理眼,并且处理后168小时,分离组2的动物的经处理眼。样品在-80℃冷冻贮藏直至分析。
第2部分:
以200μL/动物的适宜VEGF/ANG2-0096、VEGF/ANG2-0098或VEGF/ANG2-0121,以静脉内方式经尾静脉注射全部小鼠一次。
将小鼠分配至2个组,每组5只动物。血液样品在给药后1、24和96小时取自组1并且在给药后7、48和168小时取自组2。通过眼球后静脉丛,从每只动物采集血液以测定血清中的化合物水平。
在室温1小时后,通过在4℃离心(9,300x g)3分钟从血液获得至少50μL血清样品。血清样品在离心后直接冷冻并在-80℃冷冻贮藏直至分析。
全眼裂解物(小鼠)的制备
通过物理-化学崩解全眼,获得眼裂解物。为了机械破裂,将每只眼转移至一个1.5mL圆锥底微量小瓶。在冷冻和解冻后,将眼用1mL细胞洗涤缓冲液洗涤一次(Bio-Rad,Bio-Plex细胞溶解试剂盒,目录号171-304011)。在以下步骤中,添加500μL新鲜制备的细胞溶解缓冲液并且使用1.5mL组织碾磨研杵(Kimble Chase,1.5mL研杵,产品编号749521-1500),研磨该眼。随后将混合物冷冻并解冻5次并再次研磨。为了将裂解物与剩余组织分离,将样品以4,500g离心4分钟。在离心后,将上清液收集并贮存在-20℃直至在定量ELISA中进一步分析。
分析
用酶联免疫吸附测定法(ELISA)测定小鼠血清和眼裂解物中抗体的浓度。
为了定量小鼠血清样品和眼裂解物中的抗体,进行标准固相系列夹心免疫测定,使用生物素化的和洋地黄毒苷化的单克隆抗体作为捕获抗体和检测抗体。具体而言,为了验证分析物的双特异性的完整性,生物素化的捕获抗体识别VEGF-结合位点,而洋地黄毒苷化的检测抗体与分析物的ANG-2结合位点结合。随后用与抗洋地黄毒苷抗体偶联的辣根过氧化物酶检测在链霉亲和素包被的微量滴定平板(SA-MTP)的固相上的捕获抗体、分析物和检测抗体的结合型免疫复合物。在从SA-MTP洗去未结合的物质并添加ABTS-底物后,获得的信号与SA-MTP固相上结合的分析物的量成正比。随后通过参考平行分析的校准物将样品的测量信号换算成浓度,进行定量。
在第一步中,将SA-MTP在MTP摇床上以500转/分钟用浓度1μg/mL的100μL/孔生物素化捕获抗体溶液(抗独特型抗体,例如mAb<Id<VEGF>>M-2.45.51-IgG-Bi(DDS))包被1小时。同时,制备校准物、QC样品和样品。将校准物和QC样品稀释至2%血清基质;将样品稀释直至信号处于校准物的线性范围内部。
在SA-MTP用捕获抗体包被后,将平板用洗涤缓冲液和300μL/孔洗涤3次。随后,将100μL/孔校准物、QC样品和样品分别移液到SA-MTP上并以500转/分钟再次温育1小时。分析物现在借助其抗VEGF结合位点之一通过捕获抗体与SA-MTP的固相结合。在温育并通过洗涤平板移除未结合的分析物后,将浓度250ng/mL的100μL/孔第一检测抗体(抗独特型抗体,例如mAb<Id-<ANG-2>>M-2.6.81-IgG-Dig(XOSu))添加至SA-MTP。再次,将平板在摇床上以500转/分钟温育1小时。在洗涤后,将浓度50mU/mL的100μL/孔第二检测抗体(例如,pAb<Digoxigenin>S-Fab-POD(poly))添加至SA-MTP的孔并且将平板以500转/分钟再次温育1小时。在移除过量检测抗体的最终洗涤步骤后,添加100μL/孔底物(6)。抗体-酶缀合物催化底物的颜色反应。通过ELISA读数仪在405nm波长(参考波长:490nm([405/490]nm))测量信号。
药代动力学评价
使用药代动力学评价程序WinNonlinTM(Pharsight)第5.2.1版,通过非区室分析计算药代动力学参数。
虽然已经出于清晰理解的目的,以说明和举例方式某种程度地详细描述前述发明,但是这些说明和例子不应当解释为限制本发明的范围。本文中援引的全部专利和科学文献的公开内容通过引用方式明确地完整并入。

Claims (17)

1.一种IgG类Fc区,包含第一变体Fc区多肽和第二变体Fc区多肽,
其中
a)第一变体Fc区多肽衍生自第一亲本IgG类Fc区多肽并且第二变体Fc区多肽衍生自第二亲本IgG类Fc区多肽,其中第一亲本IgG类Fc区多肽与第二亲本IgG类Fc区多肽相同或不同,并且
b)第一变体Fc区多肽在除其中第一亲本IgG类Fc区多肽与第二亲本IgG类Fc区多肽不同的那些氨基酸残基之外的一个或多个氨基酸残基中与第二变体Fc区多肽不同,并且
c)包含第一变体Fc区多肽和第二变体Fc区多肽的IgG类Fc区具有与包含a)的第一亲本IgG类Fc区多肽和a)的第二亲本IgG类Fc区多肽的IgG类Fc区不同的对人Fc-受体的亲和力
其中人Fc-受体是人新生Fc-受体,
其中所述IgG类Fc区在其人新生Fc受体相互作用方面被非对称修饰,并且
其中
i)第一亲本IgG类Fc区多肽是人IgG1 Fc区多肽并且第二亲本IgG类Fc区多肽是人IgG1Fc区多肽,或
ii)第一亲本IgG类Fc区多肽是仅具有突变L234A、L235A的人IgG1 Fc区多肽并且第二亲本IgG类Fc区多肽是仅具有突变L234A、L235A的人IgG1 Fc区多肽,或
iii)第一亲本IgG类Fc区多肽是仅具有突变L234A、L235A、P329G的人IgG1 Fc区多肽并且第二亲本IgG类Fc区多肽是仅具有突变L234A、L235A、P329G的人IgG1 Fc区多肽,或
iv)第一亲本IgG类Fc区多肽是仅具有突变L234A、L235A、S354C、T366W的人IgG1 Fc区多肽并且第二亲本IgG类Fc区多肽是仅具有突变L234A、L235A、Y349C、T366S、L368A、Y407V的人IgG1 Fc区多肽,或
v)第一亲本IgG类Fc区多肽是仅具有突变L234A、L235A、P329G、S354C、T366W的人IgG1Fc区多肽和第二亲本IgG类Fc区多肽是仅具有突变L234A、L235A、P329G、Y349C、T366S、L368A、Y407V的人IgG1 Fc区多肽,或
vi)第一亲本IgG类Fc区多肽是仅具有突变K392D的人IgG1 Fc区多肽并且第二亲本IgG类Fc区多肽是仅具有突变D399K、D356K和/或E357K的人IgG1 Fc区多肽;
其中第一变体Fc区多肽因选自组I253A、H310A和H435A的一个或两个突变与第二变体Fc区多肽不同,并且第二变体Fc区多肽因选自突变I253A、H310A和H435A的一个或两个突变与第一变体Fc区多肽不同,从而全部突变I253A、H310A和H435A包含于IgG类Fc区中;
其中所述突变均根据KabatEU index编号体系编号。
2.根据权利要求1的IgG类Fc区,其中
i)第一亲本IgG类Fc区多肽由选自SEQ ID NO:60、64、68、70和74的氨基酸序列组成,
并且
ii)第二亲本IgG类Fc区多肽由选自SEQ ID NO:60、64、67、70、73的氨基酸序列组成。
3.根据权利要求2的IgG类Fc区,其中
i)第一亲本IgG类Fc区多肽由SEQ ID NO:60的氨基酸序列组成并且第二亲本IgG类Fc区多肽由SEQ ID NO:60的氨基酸序列组成,或
ii)第一亲本IgG类Fc区多肽由SEQ ID NO:64的氨基酸序列组成并且第二亲本IgG类Fc区多肽由SEQ ID NO:64的氨基酸序列组成,或
iii)第一亲本IgG类Fc区多肽由SEQ ID NO:70的氨基酸序列组成并且第二亲本IgG类Fc区多肽由SEQ ID NO:70的氨基酸序列组成,或
iv)第一亲本IgG类Fc区多肽由SEQ ID NO:68的氨基酸序列组成并且第二亲本IgG类Fc区多肽由SEQ ID NO:67的氨基酸序列组成,或
v)第一亲本IgG类Fc区多肽由SEQ ID NO:74的氨基酸序列组成并且第二亲本IgG类Fc区多肽由SEQ ID NO:73的氨基酸序列组成。
4.根据权利要求1至3中任一项的IgG类Fc区,其中与包含a)的第一亲本IgG类Fc区多肽和a)的第二亲本IgG类Fc区多肽的IgG类Fc区相比,所述IG类Fc区具有降低的对葡萄球菌蛋白A的结合作用。
5.根据权利要求1至3中任一项的IgG类Fc区,其特征在于在Fc区中包含突变M252Y/S254T/T256E,因而i)全部突变均在第一或第二Fc区多肽中,或ii)一个或两个突变在第一Fc区多肽中并且一个或两个突变在第二Fc区多肽中,从而全部突变M252Y/S254T/T256E包含于该IgG类Fc区中;
其中所述突变均根据Kabat EU index编号体系编号。
6.抗体,其包含根据权利要求1至5中任一项的IgG类Fc区。
7.根据权利要求6的抗体,其中抗体是单克隆抗体。
8.根据权利要求6至7中任一项的抗体,其中抗体是人抗体、人源化抗体或嵌合抗体。
9.根据权利要求6至7中任一项的抗体,其中抗体是双特异性抗体。
10.根据权利要求6至7中任一项的抗体,其中抗体是双价抗体。
11.根据权利要求6至7中任一项的抗体,其中抗体是FcRn结合作用消除的双特异性双价抗体,其包含与人VEGF特异性结合的第一抗原结合位点和与人ANG-2特异性结合的第二抗原结合位点。
12.FcRn结合作用消除的双特异性双价抗体,其包含与人VEGF特异性结合的第一抗原结合位点和与人ANG-2特异性结合的第二抗原结合位点,
其中
α)与VEGF特异性结合的第一抗原结合位点在重链可变结构域中包含SEQ ID NO:14的CDR3H区、SEQ ID NO:15的CDR2H区和SEQ ID NO:16的CDR1H区,并且在轻链可变结构域中包含SEQ ID NO:17的CDR3L区、SEQ ID NO:18的CDR2L区和SEQ ID NO:19的CDR1L区,并且
β)与ANG-2特异性结合的第二抗原结合位点在重链可变结构域中包含SEQ ID NO:22的CDR3H区、SEQ ID NO:23的CDR2H区和SEQ ID NO:24的CDR1H区,并且在轻链可变结构域中包含SEQ ID NO:25的CDR3L区、SEQ ID NO:26的CDR2L区和SEQ ID NO:27的CDR1L区,并且
γ)双特异性抗体包含根据权利要求1至7中任一项的IgG类Fc区。
13.根据权利要求12的双特异性抗体,其中
α)与VEGF特异性结合的第一抗原结合位点包含SEQ ID NO:20的氨基酸序列作为重链可变结构域VH并且包含SEQ ID NO:21的氨基酸序列作为轻链可变结构域VL,并且
β)与ANG-2特异性结合的第二抗原结合位点包含SEQ ID NO:28的氨基酸序列作为重链可变结构域VH并且包含SEQ ID NO:29的氨基酸序列作为轻链可变结构域VL,并且
γ)双特异性抗体包含根据权利要求1至7中任一项的IgG类Fc区。
14.Fc区融合多肽,其包含根据权利要求1至5中任一项的IgG类Fc区。
15.药物制剂,其包含根据权利要求6至13中任一项的抗体或根据权利要求14的Fc区融合多肽。
16.根据权利要求6至13中任一项的抗体或根据权利要求14的Fc区融合多肽在制备药物制剂中的用途,其中药物制剂用于治疗眼血管疾病。
17.根据权利要求6至13中任一项的抗体或根据权利要求14的Fc区融合多肽在制造药物中的用途,其中药物用于治疗眼血管疾病。
CN202410625378.4A 2013-04-29 2014-04-25 Fc-受体结合的修饰的非对称抗体及使用方法 Pending CN118561989A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP13165725.6 2013-04-29
EP14151314.3 2014-01-15

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
CN201480024044.6A Division CN105164157B (zh) 2013-04-29 2014-04-25 Fc-受体结合的修饰的非对称抗体及使用方法

Publications (1)

Publication Number Publication Date
CN118561989A true CN118561989A (zh) 2024-08-30

Family

ID=

Similar Documents

Publication Publication Date Title
JP7240443B2 (ja) Fc受容体結合が変更された非対称抗体および使用方法
JP7023306B2 (ja) FcRn結合が変更されたFc領域変種および使用方法
CN113248613B (zh) 具有修饰的FCRN结合性质的Fc区变体
CN110903398B (zh) 具有修饰的FCRN和保持的蛋白A结合性质的Fc区变体
CN105916880B (zh) 具有改善的蛋白A结合作用的Fc区变体
CN118561989A (zh) Fc-受体结合的修饰的非对称抗体及使用方法

Legal Events

Date Code Title Description
PB01 Publication