CN118435268A - 用于测量电光显示器的电特性的方法 - Google Patents

用于测量电光显示器的电特性的方法 Download PDF

Info

Publication number
CN118435268A
CN118435268A CN202280084612.6A CN202280084612A CN118435268A CN 118435268 A CN118435268 A CN 118435268A CN 202280084612 A CN202280084612 A CN 202280084612A CN 118435268 A CN118435268 A CN 118435268A
Authority
CN
China
Prior art keywords
pixel electrodes
pixel
waveform
electro
display
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202280084612.6A
Other languages
English (en)
Inventor
K·R·阿蒙森
辛德平
M·D·麦克里里
卢毅
K·拉达瓦茨
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
E Ink Corp
Original Assignee
E Ink Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by E Ink Corp filed Critical E Ink Corp
Priority claimed from PCT/US2022/054052 external-priority patent/WO2023129533A1/en
Publication of CN118435268A publication Critical patent/CN118435268A/zh
Pending legal-status Critical Current

Links

Landscapes

  • Electrochromic Elements, Electrophoresis, Or Variable Reflection Or Absorption Elements (AREA)

Abstract

一种用于驱动电光显示器的方法,该电光显示器包括设置在公共电极和背板之间的电光材料。背板包括像素电极阵列,每个像素电极耦接至一个晶体管。显示控制器将波形施加到像素电极。该方法包括将第一测量波形施加到第一部分像素电极。在第一测量波形的每一帧期间,将相同的时间相关电压施加到第一部分像素电极中的每个像素电极。该方法包括基于流过电流测量电路的电流的测量结果和在第一测量波形期间施加到每个像素电极的时间相关电压来确定靠近第一部分像素电极的电光材料的阻抗,以及基于靠近第一部分像素电极的电光材料的阻抗来选择驱动波形。

Description

用于测量电光显示器的电特性的方法
相关申请的交叉引用
本申请要求于2021年12月27日提交的美国临时专利申请第63/293,947号和于2022年1月21日提交的美国临时专利申请第63/301,747号的优先权。上述临时专利申请的全部内容通过引用并入本文。此外,本文引用的任何专利、已公开的申请或其他出版物的全部内容均通过引用整体并入。
技术领域
本发明涉及用于测量电光显示器的电特性的方法。更具体地,本发明涉及用于测量有源矩阵电泳显示模块的电特性的方法。
背景技术
电泳显示介质通常以粒子通过施加的电场的移动为特征,具有高反射性,可以制成双稳态的,可以扩展到大面积,并且消耗非常少的功率。封装的电泳显示器还使得显示器能够被印刷。这些特性使得封装的电泳显示介质可以用于传统电子显示器不适用的许多应用中,例如柔性显示器。
显示屏的一个特定应用是输入设备,例如触摸屏或小键盘或书写板。在许多情况下,需要感知显示器的状态以便将输入数字化。例如,测量和分析显示器的某些特性可以实现输入位置的检测。然后可能会生成响应事件或动作。
此外,封装的电泳显示介质的电特性可能响应于环境因素例如温度和湿度而变化。在某些情况下,为了在显示器中实现可重复的光学状态,可能需要响应于包含封装的电泳显示介质的聚合物材料的电特性的变化来补偿驱动波形。因此,需要测量影响波形补偿方案的显示器参数。然而,使用外部显示传感器可能会增加显示器的成本并使制造过程复杂化。此外,外部传感器可能无法准确地测量显示器内部的参数。
发明内容
因此,需要高效并且准确地测量显示器的电特性,并根据所测量的电特性将波形施加到显示像素。
相应地,在一个方面,本文提出的主题提供了一种用于驱动电光显示器的方法,该电光显示器包括设置在公共电极和背板之间的电光材料层。背板包括像素电极阵列,并且每个像素电极耦接至一个像素晶体管。显示控制器电路通过经由像素晶体管在公共电极和像素电极阵列之间施加一个或多个时间相关电压来将波形施加到像素电极阵列。驱动方法包括将包括一个或多个帧的第一测量波形施加到像素电极阵列的第一部分像素电极。在第一测量波形的每一帧期间,将相同的时间相关电压施加到第一部分像素电极的每个像素电极。该方法还包括测量流过耦接在公共电极和向公共电极施加时间相关电压的显示控制器电路的输出之间的电流测量电路的第一电流,以及基于流过电流测量电路的第一电流和在第一测量波形期间施加到第一部分像素电极的每个像素电极的时间相关电压,确定靠近第一部分像素电极的电光材料的第一阻抗。该方法还包括基于靠近第一部分像素电极的电光材料的第一阻抗,选择要施加到第一部分像素电极的每个像素电极的第一驱动波形,以及将第一驱动波形施加到第一部分像素电极。第一驱动波形包括足以改变靠近第一部分像素电极的电光显示器的光学状态的时间相关电压。
在一些实施例中,电流测量电路包括电阻元件和差分电压放大器,其中差分电压放大器的第一输入端连接到电阻元件的第一端子,并且差分电压放大器的第二输入端连接到电阻元件的第二端子。
在一些实施例中,施加到第一部分像素电极的每个像素电极的时间相关电压包括均匀电压脉冲。在一些实施例中,施加到第一部分像素电极的每个像素电极的时间相关电压包括具有第一极性的第一电压脉冲和具有与第一极性相反的第二极性的第二电压脉冲。
在一些实施例中,第一部分像素电极包括像素电极阵列的所有像素电极。在一些实施例中,第一部分像素电极包括位于像素电极阵列的外周附近的像素电极。
在一些实施例中,该方法还包括:将包括一个或多个帧的第二测量波形施加到像素电极阵列的第二部分像素电极,其中在第二测量波形的每一帧期间,将相同的时间相关电压施加到第二部分像素电极的每个像素电极;测量流过电流测量电路的第二电流;基于流过电流测量电路的第二电流和在第二测量波形期间施加到第一部分像素电极的每个像素电极的时间相关电压,确定靠近第二部分像素电极的电光材料的第二阻抗;基于靠近第二部分像素电极的电光材料的第二阻抗,选择要施加到第二部分像素电极的每个像素电极的第二驱动波形;以及将第二驱动波形施加到第二部分像素电极,其中第二驱动波形包括足以改变靠近第二部分像素电极的电光显示器的光学状态的时间相关电压。
在一些实施例中,第一部分像素电极包括来自像素电极阵列的第一区域的像素电极,以及第二部分像素电极包括来自像素电极阵列的第二区域的像素电极,并且第一区域和第二区域的像素电极不重叠。在一些实施例中,该方法还包括:将零伏波形施加到第二部分像素电极,同时将第一测量波形施加到第一部分像素电极;以及将零伏波形施加到第一部分像素电极,同时将第二测量波形施加到第二部分像素电极。
在另一方面,本文提出的主题提供了一种用于驱动电光显示器的方法,该电光显示器包括设置在公共电极和背板之间的电光材料层。背板包括像素电极阵列,并且每个像素电极耦接至一个像素晶体管。显示控制器电路通过经由像素晶体管在公共电极和像素电极阵列之间施加一个或多个时间相关电压来将波形施加到像素电极阵列。驱动方法包括同时激活与像素电极阵列的第一部分像素电极相关联的像素晶体管,以及将第一电压施加到第一部分像素电极。该驱动方法还包括通过耦接在信号发生电路和公共电极之间的电流测量电路来注入来自信号发生电路的测量波形,以及基于测量波形来测量流过电流测量电路的第一电流。该驱动方法还包括基于流过电流测量电路的第一电流和在第一测量波形期间施加到第一部分像素电极的每个像素电极的时间相关电压,确定靠近第一部分像素电极的电光材料的第一阻抗。该驱动方法还包括:基于靠近第一部分像素电极的电光材料的第一阻抗,选择要施加到第一部分像素电极的每个像素电极的第一驱动波形,以及将第一驱动波形施加到第一部分像素电极,其中第一驱动波形包括足以改变靠近第一部分像素电极的电光显示器的光学状态的时间相关电压。
在一些实施例中,电流测量电路包括电阻元件和差分电压放大器,其中差分电压放大器的第一输入端连接到电阻元件的第一端子,并且差分电压放大器的第二输入端连接到电阻元件的第二端子。
在一些实施例中,测量波形包括周期性方波或正弦电压波形。在一些实施例中,测量波形包括幅值不足以改变电光显示器的光学状态的电压。在一些实施例中,测量波形包括具有多个频率的振荡电压波形。
在另一方面,本文提出的主题提供了一种用于驱动电光显示器的方法,该电光显示器包括设置在第一公共电极和像素电极阵列之间的电泳显示介质,其中每个像素电极耦接至一个存储电容器的第一端子,并且每个存储电容器的第二端子耦接至第二公共电极。显示控制器电路被配置为向彼此独立的第一公共电极和第二公共电极施加时间相关电压。驱动方法包括同时激活与第一部分像素电极相关联的像素晶体管。该驱动方法还包括切换第一开关以将第一公共电极与显示控制器电路断开并且将第一公共电极连接到阻抗测量电路的第一端子,以及切换第二开关以将第二公共电极与显示控制器电路断开并且将第二公共电极连接到阻抗测量电路的第二端子。该驱动方法还包括将来自阻抗测量电路的测量波形电压注入到第一公共电极中,其中测量波形包括时间相关电压。该驱动方法还包括基于测量波形来测量流过阻抗测量电路的第一电流,以及基于流过阻抗测量电路的第一电流和在测量波形期间施加到第一公共电极的时间相关电压,确定靠近第一部分像素电极的电光材料的第一阻抗。该驱动方法还包括基于靠近第一部分像素电极的电光材料的第一阻抗,选择要施加到第一部分像素电极的每个像素电极的第一驱动波形。该驱动方法还包括切换第一开关以将第一公共电极与阻抗测量电路断开并且将第一公共电极连接到显示控制器电路,以及切换第二开关以将第二公共电极与阻抗测量电路断开并且将第二公共电极连接到显示控制器电路。该驱动方法还包括将第一驱动波形施加到第一部分像素电极,其中第一驱动波形包括足以改变靠近第一部分像素电极的电光显示器的光学状态的时间相关电压。
在一些实施例中,测量波形包括周期性方波或正弦电压波形。在一些实施例中,测量波形包括幅值不足以改变靠近第一部分像素电极的电光显示器的光学状态的电压。在一些实施例中,测量波形包括幅值小于1伏的电压。在一些实施例中,测量波形包括具有多个频率的振荡电压波形。
在一些实施例中,第一部分像素电极包括位于像素电极阵列的外周附近的像素电极。
附图说明
图1是表示根据本文所述主题的电泳显示器的电路图。
图2示出了根据本文所述主题的电光成像层的电路模型。
图3是示出根据本文所述主题的示例性前平面层压板或“FPL”的阻抗与温度的曲线图的图表。
图4A示出了根据本文所述主题对三个示例性显示模块执行的示例性阻抗测量的两个曲线图。
图4B是示出根据本文所述主题的在不同的灰度转变期间的重影性能的曲线图。
图5示出了根据本文所述主题的电泳显示器的一个实施例的示意图。
图6示出了根据本文所述主题的电泳显示器的一个实施例的示意图。
图7示出了根据本文所述主题的电泳显示器的一个实施例的示意图。
图8示出了使用本文所述方法的来自示例性有源矩阵显示模块的一组阻抗测量结果。
图9示出了根据本文所述主题的电泳显示器的一个实施例的示意图。
图10示出了用于实现本文所述的阻抗测量的示例性信号序列。
图11示出了根据本文所述主题的电泳显示器的一个实施例的示意图。
具体实施方式
本发明涉及用于驱动电光显示器特别是双稳态电光显示器的方法,以及此类方法中使用的装置。更具体地,本发明涉及在这种显示器中可以减少“重影”和边缘效应以及减少闪烁的驱动方法。本发明特别但非排他地旨在与基于粒子的电泳显示器一起使用,在这些电泳显示器中,一种或多种类型的带电粒子存在于流体中并且在电场的作用下移动通过流体以改变显示器的外观。
术语“电光”在应用于材料或显示器时在此以其在成像领域中的常规含义使用,是指具有在至少一个光学特性上不同的第一和第二显示状态的材料,通过向材料施加电场,该材料从它的第一显示状态改变为第二显示状态。虽然光学特性通常是人眼可感知的颜色,但它也可以是另一种光学特性,例如光透射、反射、发光,或者在旨在用于机器读取的显示器的情况下,在可见光范围之外的电磁波长的反射率的变化意义上的伪色。
术语“灰色状态”在本文中使用其在成像技术中的常规含义,以指介于像素的两个极端光学状态之间的状态,并不一定意味着这两个极端状态之间的黑白转变。例如,下面提到的伊英克公司的几项专利和已公开的申请描述了电泳显示器,其中极端状态是白色和深蓝色,使得中间的“灰色状态”实际上是淡蓝色。实际上,如已经提及的,光学状态的改变可能根本不是颜色改变。在下文中,术语“黑色”和“白色”可以用于指代显示器的两个极端光学状态,并且应该被理解为通常包括非严格黑色和非严格白色的极端光学状态,例如,前述的白色和深蓝色状态。在下文中,术语“单色”可以用来表示驱动方案,该驱动方案仅将像素驱动至其两个极端光学状态,而没有介于其间的灰色状态。
在材料具有固体外表面的意义上,一些电光材料是固态的,但这些材料可能并且通常确实具有内部充满液体或气体的空间。为方便起见,以下将这种使用固体电光材料的显示器称为“固态电光显示器”。因此,术语“固态电光显示器”包括旋转双色构件显示器、封装的电泳显示器、微单元电泳显示器和封装的液晶显示器。
术语“双稳态的”和“双稳态性”在本文中以其在本领域中的常规含义使用,是指包括显示元件的显示器,该显示元件具有在至少一个光学特性上不同的第一和第二显示状态,并且使得在任何给定元件通过有限持续时间的寻址脉冲被驱动以呈现其第一或第二显示状态之后,在寻址脉冲终止后,该状态将持续的时间是改变显示元件的状态所需的寻址脉冲的最小持续时间的至少几倍,例如,至少四倍。美国专利第7,170,670号表明,一些支持灰度的基于粒子的电泳显示器不仅在其极端黑白状态下稳定,而且在中间灰色状态下也稳定,并且一些其它类型的电光显示器也是如此。这种类型的显示器被恰当地称为“多稳态的”而不是双稳态的,但为方便起见术语“双稳态的”可在本文中用于同时涵盖双稳态显示器和多稳态显示器。
术语“冲激”在本文中以其常规含义使用,即电压相对于时间的积分。然而,一些双稳态电光介质充当电荷传感器,并且对于这种介质,可以使用冲激的替代定义,即电流随时间的积分(等于所施加的总电荷)。应当使用适当的冲激定义,这取决于介质是充当电压-时间冲激传感器还是电荷冲激传感器。
以下大部分讨论将集中在通过从初始灰度级到最终灰度级(可能与初始灰度级不同或相同)的转变来驱动电光显示器的一个或多个像素的方法。术语“波形”将用于表示用于实现从一个特定初始灰度级至特定最终灰度级的转变的整体电压对时间的曲线。通常,这种波形将包括多个波形素;其中,这些元素基本上是矩形的(即,其中,给定元件包括在一段时间内施加固定电压);这些元素可以被称为“脉冲”或“驱动脉冲”。术语“驱动方案”表示足以实现特定显示器的灰度级之间所有可能转变的一组波形。显示器可以使用多于一个驱动方案;例如,前述美国专利第7,012,600号教导,可能需要根据例如显示器的温度或显示器在其寿命期间已经工作的时间等参数来修改驱动方案,并且因此可以为显示器提供多个不同的驱动方案,以在不同的温度等下使用。以这种方式使用的一组驱动方案可以被称为“一组相关的驱动方案”。如前述几个MEDEOD申请所述,还可以在同一显示器的不同区域同时使用多于一个驱动方案,并且以这种方式使用的一组驱动方案可以被称为“一组同步的驱动方案”。
已知有几种类型的电光显示器。一种类型的电光显示器是旋转双色构件类型,如在例如美国专利第5,808,783、5,777,782、5,760,761、6,054,071、6,055,091、6,097,531、6,128,124、6,137,467和6,147,791号中所述(尽管该类型的显示器通常被称为“旋转双色球”显示器,但术语“旋转双色构件”优选为更准确,因为在上述提及的某些专利中,旋转构件并非球形的)。这种显示器使用大量的小主体(通常为球形或圆柱形)以及内部偶极子,小主体具有两个或更多个具有不同光学特征的部分。这些主体悬浮在位于基质内的液体填充的液泡内,液泡是以液体填充的,使得主体能自由地旋转。通过以下方式来改变显示器的外观:对显示器施加电场,从而将主体旋转至各种位置,并且改变通过观察表面看到主体的哪部分。这种类型的电光介质通常是双稳态的。
另一种类型的电光显示器使用电致变色介质,例如纳米致变色(nanochromic)膜形式的电致变色介质,该纳米致变色膜包括至少部分由半导体金属氧化物形成的电极和附着在电极上的能够可逆变色的多个染料分子;参见,例如O’Regan,B.等人的Nature 1991,353,737;以及Wood,D.,Information Display,18(3),24(2002年3月)。还请参阅Bach,U.等人的Adv.Mater.,2002,14(11),845。这种类型的纳米致变色膜也在例如美国专利第6,301,038号、第6,870,657号和第6,950,220号中进行了描述。这种类型的介质通常也是双稳态的。
另一类型的电光显示器是电湿润显示器,其由飞利浦开发且在Hayes,R.A.等人的“Video-Speed Electronic Paper Based on Electrowetting”,Nature,425,383-385(2003)中描述。美国专利第7,420,549号表明,这种电湿润显示器可以制成双稳态的。
多年来已经被密集研究及开发的主题的一种类型的电光显示器是基于粒子的电泳显示器,其中,多个带电粒子在电场的作用下移动通过流体。与液晶显示器相比,电泳显示器可以具有下列属性:良好的亮度及对比度、宽视角、状态双稳定性以及低功耗。然而,这些显示器的长期图像质量问题已经阻碍了它们的广泛使用。例如,构成电泳显示器的粒子易于沉降,导致这些显示器的使用寿命不足。
如上所述,电泳介质需要流体的存在。在大多数先前技术的电泳介质中,该流体为液体,但电泳介质可以使用气态流体来制造;参见例如Kitamura,T.等人的“Electricaltoner movement for electronic paper-like display”,IDW Japan,2001,Paper HCS1-1和Yamaguchi,Y.等人的“Toner display using insulative particles chargedtriboelectrically”,IDW Japan,2001,Paper AMD4-4)。也参见美国专利第7,321,459以及7,236,291号。当这种基于气体的电泳介质在允许粒子沉降的方向上使用时,例如用在介质设置于垂直平面内的指示牌中时,这种基于气体的电泳介质易受与基于液体的电泳介质相同类型的因粒子沉降所造成的问题的影响。实际上,在基于气体的电泳介质中的粒子沉降问题比在基于液体的电泳介质中更为严重,因为与液态悬浮流体相比,气态悬浮流体的较低粘度允许电泳粒子更快速的沉降。
被转让给麻省理工学院(MIT)和伊英克公司或在它们名下的许多专利和申请描述了用于封装的电泳介质和其他电光介质的各种技术。这种封装的介质包括很多小囊体,每一个小囊体本身包括内相和围绕内相的囊壁,该内相含有在流体介质中可电泳移动的粒子。通常,囊体本身保持在聚合物粘合剂内,以形成位于两个电极之间的连贯层。在这些专利和申请中描述的技术包括:
(a)电泳粒子、流体和流体添加剂;参见例如美国专利第7,002,728;以及7,679,814号;
(b)囊体、粘合剂和封装工艺;参见例如美国专利第6,922,276;以及7,411,719号;
(c)微单元结构、壁材料和形成微单元的方法;参见例如美国专利第7,072,095及9,279,906号;
(d)用于填充和密封微单元的方法;参见例如美国专利第7,144,942和7,715,088号;
(e)含有电光材料的薄膜和子组件;参见例如美国专利第6,982,178和7,839,564号;
(f)用于显示器中的背板、粘合剂层和其他辅助层以及方法;参见例如美国专利第7,116,318;以及7,535,624号;
(g)颜色形成和颜色调整;参见例如美国专利第7,075,502及7,839,564号;
(h)显示器的应用;参见例如美国专利第7,312,784和8,009,348号;
(i)非电泳显示器,如美国专利第6,241,921号和美国专利申请公开第2015/0277160号中所述;以及除显示器以外的封装和微单元技术的应用;参见例如美国专利申请公开第2015/0005720及2016/0012710号;以及
(j)用于驱动显示器的方法;参见例如美国专利第5,930,026;6,445,489;6,504,524;6,512,354;6,531,997;6,753,999;6,825,970;6,900,851;6,995,550;7,012,600;7,023,420;7,034,783;7,061,166;7,061,662;7,116,466;7,119,772;7,177,066;7,193,625;7,202,847;7,242,514;7,259,744;7,304,787;7,312,794;7,327,511;7,408,699;7,453,445;7,492,339;7,528,822;7,545,358;7,583,251;7,602,374;7,612,760;7,679,599;7,679,813;7,683,606;7,688,297;7,729,039;7,733,311;7,733,335;7,787,169;7,859,742;7,952,557;7,956,841;7,982,479;7,999,787;8,077,141;8,125,501;8,139,050;8,174,490;8,243,013;8,274,472;8,289,250;8,300,006;8,305,341;8,314,784;8,373,649;8,384,658;8,456,414;8,462,102;8,537,105;8,558,783;8,558,785;8,558,786;8,558,855;8,576,164;8,576,259;8,593,396;8,605,032;8,643,595;8,665,206;8,681,191;8,730,153;8,810,525;8,928,562;8,928,641;8,976,444;9,013,394;9,019,197;9,019,198;9,019,318;9,082,352;9,171,508;9,218,773;9,224,338;9,224,342;9,224,344;9,230,492;9,251,736;9,262,973;9,269,311;9,299,294;9,373,289;9,390,066;9,390,661;以及9,412,314号;以及美国专利申请公开第2003/0102858;2004/0246562;2005/0253777;2007/0070032;2007/0076289;2007/0091418;2007/0103427;2007/0176912;2007/0296452;2008/0024429;2008/0024482;2008/0136774;2008/0169821;2008/0218471;2008/0291129;2008/0303780;2009/0174651;2009/0195568;2009/0322721;2010/0194733;2010/0194789;2010/0220121;2010/0265561;2010/0283804;2011/0063314;2011/0175875;2011/0193840;2011/0193841;2011/0199671;2011/0221740;2012/0001957;2012/0098740;2013/0063333;2013/0194250;2013/0249782;2013/0321278;2014/0009817;2014/0085355;2014/0204012;2014/0218277;2014/0240210;2014/0240373;2014/0253425;2014/0292830;2014/0293398;2014/0333685;2014/0340734;2015/0070744;2015/0097877;2015/0109283;2015/0213749;2015/0213765;2015/0221257;2015/0262255;2016/0071465;2016/0078820;2016/0093253;2016/0140910;以及2016/0180777号。
很多前述专利和申请认识到在封装的电泳介质中围绕离散微囊体的壁可以被连续相取代,由此生产所谓的聚合物分散型电泳显示器,其中,电泳介质包括电泳流体的多个离散液滴和聚合物材料的连续相,并且这种聚合物分散型电泳显示器内的电泳流体的离散液滴可以被视为囊体或微囊体,即使没有离散的囊体膜与每个单独的液滴相关联;参见例如前述第2002/0131147号。因此,为了本申请的目的,这种聚合物分散型电泳介质被视为封装的电泳介质的子类。
一种相关类型的电泳显示器是所谓的“微单元电泳显示器”。在微单元电泳显示器中,带电粒子和悬浮流体并未封装在微囊体内,而是保持在形成于载体介质(例如,聚合物膜)中的多个腔室内。参见例如国际申请公开第WO 02/01281号和已公开的美国专利申请第2002/0075556号,两者均被转让给Sipix Imaging公司。
前述伊英克公司和MIT的很多专利和申请也考虑了微单元电泳显示器和聚合物分散型电泳显示器。术语“封装的电泳显示器”可以指代所有这种显示器类型,它们也可以被统称为“微腔电泳显示器”,以概括壁的形态。
另一类型的电光显示器为电湿润显示器,其由飞利浦开发且在Hayes,R.A.等人的“Video-Speed Electronic Paper Based on Electrowetting”,Nature,425,383-385(2003)中描述。在2004年10月6日提交的共同未决申请第10/711,802号中显示,这种电湿润显示器可以制成双稳态的。
也可以使用其他类型的电光材料。特别令人感兴趣的是,双稳态铁电液晶显示器(FLC)在本领域中是已知的且已经表现出残余电压行为。
尽管电泳介质可以是不透明的(由于例如在很多电泳介质中粒子基本上阻挡可见光透射穿过显示器)并且在反射模式下操作,但是一些电泳显示器可以制造为在所谓的“快门模式”下操作,在该模式下,一种显示状态是基本上不透明的,而一种显示状态是透光的。参见例如美国专利第6,130,774号和第6,172,798号以及美国专利第5,872,552、6,144,361、6,271,823、6,225,971和6,184,856号。类似于电泳显示器但依靠电场强度变化的介电泳显示器可以在相似的模式下操作;参见美国专利第4,418,346号。其他类型的电光显示器也能够在快门模式下操作。
高分辨率显示器可以包括单独的像素,这些像素为可寻址的而不受相邻像素的干扰。获得这种像素的一种方法是提供非线性元件例如晶体管或二极管的阵列,其中,至少一个非线性元件与每个像素相关联,以产生“有源矩阵”显示器。对一个像素进行寻址的寻址电极或像素电极通过相关联的非线性元件而连接到适当的电压源。当非线性元件是晶体管时,像素电极可连接到晶体管的漏极,并且在以下详细描述中将假设该布置,尽管其基本上是任意的,并且像素电极可以连接到晶体管的源极。在高分辨率阵列中,像素可以以行和列的二维阵列来布置,使得任何特定像素由一个指定行和一个指定列的交点唯一地限定。每列中的所有晶体管的源极可连接到单个列电极,而每行中的所有晶体管的栅极可连接到单个行电极;同样,如果需要,可以颠倒源极到行和栅极到列的分配。
可以以逐行的方式写入显示器。行电极连接到行驱动器,行驱动器可以将电压施加到所选择的行电极,以便确保所选择的行中的所有晶体管导通,同时将电压施加到所有其他行,以便确保这些未选择的行中的所有晶体管保持不导通。列电极连接到列驱动器,列驱动器将选择的电压施加到各个列电极,以将所选择的行中的像素驱动到其期望的光学状态。(前述电压是相对于公共前电极而言的,公共前电极可以设置在电光介质的与非线性阵列相对的一侧且延伸跨过整个显示器。如在本领域中已知的,电压是相对的并且是两个点之间的电荷差的量度。一个电压值是相对于另一个电压值的。例如,零电压(“0V”)是指相对于另一个电压没有电压差。)在被称为“线寻址时间”的预选择间隔之后,取消选择所选择的行,选择另一行,并且改变列驱动器上的电压,以便写入显示器的下一条线。
示例性EPD
图1示出了根据本文呈现的主题的电泳显示器或EPD的像素100的示意图。像素100可以包括成像膜110。在一些实施例中,成像膜110可以是双稳态的。在一些实施例中,成像膜110可以包括但不限于封装的电泳成像膜,该封装的电泳成像膜可以包括例如带电颜料粒子。
成像膜110可以设置在前电极102和后电极104之间。前电极102可以形成在成像膜与显示器的前面之间。在一些实施例中,前电极102可以是透明的。在一些实施例中,前电极102可以由任何适合的透明材料形成,包括但不局限于氧化铟锡(ITO)。后电极104可以形成为与前电极102相对。在一些实施例中,寄生电容(未示出)可能形成在前电极102与后电极104之间。
像素100可以是多个像素中的一个像素。多个像素可以以行和列的二维阵列来布置以形成矩阵,使得任何特定像素由一个指定行和一个指定列的交点唯一地限定。在一些实施例中,像素矩阵可以是“有源矩阵”,其中,每个像素与至少一个非线性电路元件120相关联。非线性电路元件120可以耦接在背板电极104与寻址电极108之间。在一些实施例中,非线性元件120可以包括二极管和/或晶体管,包括但不局限于MOSFET。MOSFET的漏极(或源极)可以耦接至背板电极104,MOSFET的源极(或漏极)可以耦接至寻址电极108,并且MOSFET的栅极可以耦接至驱动器电极106,驱动器电极106被配置为控制MOSFET的激活和去激活。(为简单起见,MOSFET中耦接至背板电极104的端子将被称为MOSFET的漏极,并且MOSFET中耦接至寻址电极108的端子将被称为MOSFET的源极。然而,本领域普通技术人员将认识到,在一些实施例中,MOSFET的源极和漏极可以互换。)
在有源矩阵的一些实施例中,每列中的所有像素的寻址电极108可以连接到相同的列电极,并且每行中的所有像素的驱动器电极106可以连接到相同的行电极。行电极可以连接到行驱动器,行驱动器可以通过将足以激活所选择的行中的所有像素100的非线性元件120的电压施加到所选择的行电极来选择一行或多行像素。列电极可以连接到列驱动器,列驱动器可以在所选择的(激活的)像素的寻址电极106上施加适于将像素驱动到期望的光学状态的电压。施加到寻址电极108的电压可以与施加到像素的前平面电极102的电压(例如,大约0伏的电压)相关。在一些实施例中,有源矩阵中的所有像素的前平面电极102可以耦接至公共电极。
在一些实施例中,有源矩阵的像素100可以以逐行的方式来写入。例如,可以通过行驱动器来选择一行像素,并且可以通过列驱动器将与该行像素的期望光学状态相对应的电压施加到像素。在被称为“线寻址时间”的预选择间隔之后,可以取消选择所选择的行,可以选择另一行,并且可以改变列驱动器上的电压,以便写入显示器的另一条线。
图2示出了根据本文提出的主题的设置在前电极102与后电极104之间的电光成像层110的电路模型。电阻器202和电容器204可以表示电光成像层110、前电极102以及后电极104(包括任何粘合剂层)的电阻和电容。电阻器212和电容器214可以表示层压粘合剂层的电阻和电容。电容器216可以表示可能在前电极102与后电极104之间形成的电容,例如,层之间的界面接触区域,例如,成像层与层压粘合剂层之间和/或层压粘合剂层与背板电极之间的界面。像素的成像膜110两端的电压Vi可能包括像素的残余电压。
据观察,电泳显示器的性能可以根据环境条件而变化。例如,前平面层压板(“FPL”)的阻抗变化可能与温度波动相关。因此,阻抗测量值例如前平面层压板阻抗的测量值可用于了解电泳显示器和显示器墨水系统的操作特性。
图3是示出示例性前平面层压板的阻抗与温度的曲线图305的图表300。具体地,图表300示出了Y轴上在10HZ下以MΩcm2为单位的FPL阻抗Zreal与x轴上以摄氏度为单位的温度的曲线图305。如图表300所示,FPL阻抗随着温度升高而降低。应当理解,本文所指的FPL可以包括但不限于电泳显示器的透光导电层、电光介质层和粘合剂层。在一些实施例中,可以使用该阻抗测量信息而不是温度测量值进行波形选择以优化显示性能。
图4A示出了在28℃下对三个示例性显示模块在不同波形频率下执行的示例性阻抗测量的两个曲线图,其中所述模块中的两个模块1和3具有非常相似的阻抗,而模块2显示出与其他两个模块不同的阻抗。
图4B是示出在不同的灰度转变期间的重影性能的曲线图,例如,支持从1(黑色)到16(白色)表示的4位、16个灰度级的显示器,其使用与图4A中在28℃下所用的相同的驱动波形进行转变(例如,{GT1,GT2,…,GT15}→{GT1,GT2,…,GT16})。该图的x轴表示不同的灰度转变。如图所示,模块1的重影性能与模块3非常相似,而模块2具有非常不同的重影性能。重影结果与图4A中所示的阻抗测量值相关。因此,可以推断出,阻抗测量值可以用作光学性能的量度,并且具有相似阻抗的模块在光学上表现相似,并且因此可以被相似地驱动。
图5示出了电泳显示器500的示意图。在该实施例中,控制器502输出同步的源极506和栅极508的线电压,以按顺序地扫描显示像素。每次更新期间,可通过Vcom 504线向顶平面510供给直流电压。
在实践中,可能需要使用外部仪器访问有源矩阵显示器的像素电极,以通过施加信号直接测量电特性。根据用作输入的信号,测量的电特性可以包括但不限于电流、电阻、电荷、电容、时间常数、相移、幅值和频率峰值。
现在参考图6,测量电特性的一种方法是使用已知波形更新有源矩阵显示器600,同时通过公共电极测量墨水层602的电响应。在该方法中,在每一帧期间施加到所有像素电极的电压是相同的。因此,在每一帧结束时,可以在更新的显示区域内的墨水上形成均匀的电场。因此,通过公共电极测量的电响应可以反映更新区域的平均电特性。例如,有源矩阵背板的像素可以被置于非零电压,同时测量通过Vcom 604线的电流。背板上的电压脉冲期间和电压脉冲之后的电流瞬变可以揭示显示器600的区域平均电特性,例如与薄层电阻和薄层电容相关的特性。在该配置中,由于波形由控制器中的源极和栅极驱动器施加到像素,因此当有源矩阵显示器400在正常扫描模式下操作时可以使用该方法。
如图6所示,可在Vcom线604和顶平面电极608之间插入电流测量电路606。在一些实施例中,该电流测量电路可以包括小电阻(例如,大约500欧姆)和差分电压放大器,其中差分电压放大器的输入线跨接在电阻器上。在该配置中,电阻器的电阻可以足够小,从而不会显著影响显示器600的操作,但又足够大,从而提供与流过Vcom线604的电流成比例的电压信号。在操作中,当显示器600更新时,选择波形和图像,从而将相同的时间相关电压施加到所有像素。该时间相关电压可以是简单的电压脉冲,例如,在有限长度的时间内施加的均匀电压。在另一个实施例中,该时间相关电压可以包括两个幅值相反的连续脉冲。可以在整个显示器寻址事件中测量作为时间函数的电流。可以对覆盖每个脉冲后面部分的一部分的时间段内的电流进行平均。该值近似地与显示膜的有效电阻或阻抗成比例。该有效阻抗可能与显示膜的电光行为相关,并且因此可以用于选择适当的波形以在标准显示操作中进行更新。这种测量方法提供了执行选择性区域或局部测量的灵活性,同时不会影响显示器的正常扫描操作。
在另一个实施例中,可以在测量通过Vcom 604线的电流的同时驱动一部分显示像素。在该配置中,虽然电流瞬变提供了显示器的区域平均电特性,但仅在被驱动像素的区域上进行平均。在这种情况下,“驱动”被定义为:驱动像素接收非零电压,而其余像素不被驱动,即非驱动像素接收零电压偏置。以这种方式,可以通过仅向显示器的左半部分的像素施加非零电压并且测量通过Vcom 604线的电流来测量显示器600的仅左半部的电特性。当然,该示例可以扩展为通过仅在显示器的任何子区域选择像素接收非零电压来测量显示器的该区域的电特性。此配置还可以扩展到驱动一组不连续的显示像素。
在操作中,可以采用各种波形来执行特定区域的电测量。本文将“波形”定义为一组电压列表,以实现从一种灰度级的灰度到相同或不同灰度级的灰度的转变。在一些实施例中,可以使用在显示器的某个区域测量的电特性作为输入来选择要施加到显示器的该区域的适当的波形。这可以对显示器的多个区域进行,并且可以选择各种波形以在显示器的各个区域中实现所需的转变。例如,完整的波形文件可以包含许多温度适当的波形,这些波形被设计为在特定的温度带上实现所需的转变,每个温度带一个波形。在一些实施例中,可以使用来自温度传感器的输入来选择用于温度测量的适当的波形。例如,控制器可以将温度和区域特定的电信息二者作为输入。区域特定的电信息可以用于提供有关显示器的各个部分之间的温差的信息,并且可以基于电测量值来改变施加到显示器的各个部分的波形。当电测量值表明显示器的左半部分和右半部分之间存在温差时,基于从区域特定的电测量值推断出的温差估计值,可以使用该信息来选择两个不同的波形,一个用于显示器的左半部分,以及一个用于右半部分。还可以扩展这一构思,以仅基于电测量值来选择波形,也就是说,不需要使用温度传感器。
在一个实施例中,源极驱动器610可以用于以足够低的电压驱动“被驱动像素”,使得电测量不会显著干扰显示图像。在另一个实施例中,可以使用非常短的电压脉冲进行电测量,使得在电测量期间显示图像不会受到显著干扰。在又一个实施例中,施加两个不同波形的两个相邻区域之间的接缝可能会通过两个区域之间的抖动掩模而“模糊”,其中抖动模式确定哪些像素接收两个波形中的哪个。可以设置抖动来提供来自所有像素接收一个波形的一个区域和所有像素接收第二波形的相邻区域的梯度,其中,接收两个波形中的每一个的局部像素部分在抖动区域内平滑转变。
因此,当显示器在其表面上具有显著的温差时,并且在整个显示器上施加单个波形将产生不良性能的情况下,使用本文描述的驱动方法或方案能够选择将各种波形施加于显示器表面的各个部分,以补偿显示器表面上的温度变化。
在另一种方法中,现在参考图7,有源矩阵显示器700可以通过公共电极使用外部源进行更新,并且可以在相同的Vcom线704上测量墨水702的电响应。可以通过公共电极注入已知的电压信号,同时所有像素电极均连接到已知电压,例如,地。为了闭合电路回路,有源矩阵的所有TFT同时导通。在该配置中,所有显示器电极可以被视为覆盖整个显示区域的单个电极。该方法具有更大的灵活性,因为可以将任意信号施加到公共电极,而不受扫描操作要求的限制。从信号发生器706的输出和测量的电响应可以推断出电泳层的电特性。
在使用中,举例来说,可以通过图7所示的信号发生器706向顶平面708施加低幅值电压。该电压的幅值可以足够低,使其对显示器的光学状态的干扰不会达到对于不经意的观察者来说显而易见的程度,并且又足够大以允许电流测量具有足够的信噪比,从而提供可靠的信息。在一些实施例中,这里可以使用10-100mV范围内的电压。在另一个实施例中,可以在有限的时间内施加振荡电压,例如50mV、1赫兹方波或正弦波。可以测量电流的同相部分,以给出与显示器的有效电阻相关的值。其中,该有效电阻可能与显示膜的电光行为相关,并且通过这样做,可以用来选择适当的波形以在标准显示器操作中进行更新。例如,如果将不同频率的正弦波施加到顶平面708,则在每个频率下可以从电响应计算出显示器700的阻抗。
图8示出了使用本文所述方法的来自示例性有源矩阵显示模块的一组阻抗测量结果。本文描述的设置在可以使用哪种类型的输入信号和可以测量哪些电特性上提供了灵活性,并且可以轻松地对整个显示模块进行测量。
现在参考图9,在一个实施例中,可以对整个有源矩阵显示区域进行阻抗测量。在该配置中,通常向显示器的前平面或顶电极以及显示器的晶体管阵列提供公共偏置电压的显示器的VCOM线可以分成两条线。一条线是VCOM_TFT 916,其向显示器的晶体管网络或薄膜晶体管(TFT)的有源矩阵提供偏置电压,通常通过向每个像素的存储电容器的与连接到像素电极的端子相对的端子提供偏置电压。另一条线是VCOM_FPL 912,其向显示器的前平面或顶电极提供偏置电压。
如图9所示,该设置或配置可以包括:有源矩阵显示模块901,其包括可由有源矩阵显示器和源极/栅极驱动器组成的显示控制器电路;EPD控制器902;电源管理集成电路(PMIC)903,其控制高(即,VGH)栅极电压和低(即,VGL)栅极电压、源极电压(VPOS和VNEG)、两个VCOM电压以及可导通有源矩阵的所有晶体管的信号(例如,XON信号)的供给;主机处理单元904;温度传感器905;以及用于执行阻抗测量的电路906。该电路可以被配置为能够在单一频率下进行测量或者扫描不同的频率,并且包括一个或多个开关907、908,用于在关闭时实现正常驱动,以及在打开时进行阻抗测量。
在一些实施例中,为了启动阻抗测量,首先将栅极高压或VGH设置为2伏至10伏之间的电压。随后,可以发送信号来导通有源矩阵中的所有晶体管。该信号可以是本领域中已知的用于执行此类任务的信号,例如XON信号。可以从PMIC 903或EPD控制器902的GPIO启用XON信号。随后,可以通过将信号(例如,IMP-EN 910)设置为适当的电压电平来启用阻抗测量电路906。一旦阻抗测量电路906被启用,可以将开关907和908设置为打开状态,从而将VCOM_FPL 912线与有源矩阵模块901隔离。可以将给定频率V的正弦电压信号发送到VCOM_FPL线912,从而允许访问显示器901的顶电极。该信号的幅值可以设置得较小(例如小于1伏),使其不会激发墨水系统的非线性。此外,由于信号的电压幅值很小,因此在阻抗测量处于活动状态时,光学影响很小,并且通常不会被观察者注意到。
在一些实施例中,当XON信号和VGH电压都开启时,通过地线GND 914可以实现对所有像素化电极的访问。而且,可以在阻抗电路906中测量在VCOM_FPL线912上汲取的电流。其中,可以分析电压和电流并且可以获得电特性,例如相移。在实践中,阻抗测量可能与频率f[Hz]相关。例如,在可以分析数据之前,可能需要先收集5到10个周期的测量数据。因此,需要的最短测量时间为5/f[s],在1Hz下至少为5s,而在10Hz下仅为0.5s。
现在参考图10所示的信号图,在主动更新1002之后,可以打开IMP-EN开关和栅极高压VGH。而且,在VGH导通的持续时间1004内,可以进行阻抗测量。应当理解,可以在显示器空闲时使用本文描述的方法进行阻抗测量,在这种情况下可以执行完整的频率扫描。
在又一个实施例中,可以从模块的未使用区域例如在像素阵列的外周周围的边界区域中获得阻抗测量值。在这种情况下,现在参考图11,通过边界电极线(例如,BORDER线1130)可以实现对边界区域的底电极的直接访问。在一些实施例中,可能不需要激活高栅极电压和XON信号,并且可以随时进行测量。如图11所示,不再需要XON信号可访问性,并且可以跨BORDER 1130线和VCOM_FPL 1112线进行测量。
在另一个实施例中,为了阻抗测量的目的,可以将专用区域设计到有源矩阵模块中。
根据本文提出的主题,使用阻抗测量而不是使用温度传感器测量进行波形选择具有在显示器上实现更佳性能的优点。这至少部分是由于阻抗是墨水系统的直接测量值,而设备中单独的温度传感器只能模拟墨水系统所经历的温度。阻抗测量值可以用于量化显示模块的老化。该信息可用于协助选择适当的波形来加载以补偿模块的老化。通过与不同阻抗数据绑定的波形数据库,对于给定的时间和模块,可以选择能够匹配最接近设备级阻抗信息的最佳波形。
对于本领域技术人员显而易见的是,可以对上述本发明的具体实施例进行许多改变和修改而不脱离本发明的范围。因此,上述描述的全部内容应以说明性而非限制性的意义来解释。

Claims (20)

1.一种用于驱动电光显示器的方法,所述电光显示器包括设置在公共电极和背板之间的电光材料层,所述背板包括像素电极阵列,其中每个像素电极耦接至一个像素晶体管,其中显示控制器电路通过经由所述像素晶体管在所述公共电极和所述像素电极阵列之间施加一个或多个时间相关电压来将波形施加到所述像素电极阵列,所述驱动方法包括:
将包括一个或多个帧的第一测量波形施加到所述像素电极阵列的第一部分像素电极,其中在所述第一测量波形的每一帧期间,将相同的时间相关电压施加到所述第一部分像素电极的每个像素电极;
测量流过电流测量电路的第一电流,所述电流测量电路耦接在所述公共电极和所述显示控制器电路的输出之间,所述显示控制器电路向所述公共电极施加时间相关电压;
基于流过所述电流测量电路的所述第一电流和在所述第一测量波形期间施加到所述第一部分像素电极的每个像素电极的所述时间相关电压,确定靠近所述第一部分像素电极的电光材料的第一阻抗;
基于靠近所述第一部分像素电极的所述电光材料的所述第一阻抗,选择要施加到所述第一部分像素电极的每个像素电极的第一驱动波形;以及
将所述第一驱动波形施加到所述第一部分像素电极,其中所述第一驱动波形包括足以改变靠近所述第一部分像素电极的所述电光显示器的光学状态的时间相关电压。
2.根据权利要求1所述的方法,其中所述电流测量电路包括电阻元件和差分电压放大器,其中所述差分电压放大器的第一输入端连接到所述电阻元件的第一端子,并且所述差分电压放大器的第二输入端连接到所述电阻元件的第二端子。
3.根据权利要求1所述的方法,其中施加到所述第一部分像素电极的每个像素电极的所述时间相关电压包括均匀电压脉冲。
4.根据权利要求1所述的方法,其中施加到所述第一部分像素电极的每个像素电极的所述时间相关电压包括具有第一极性的第一电压脉冲和具有与所述第一极性相反的第二极性的第二电压脉冲。
5.根据权利要求1所述的方法,其中所述第一部分像素电极包括所述像素电极阵列的所有像素电极。
6.根据权利要求1所述的方法,其中所述第一部分像素电极包括位于所述像素电极阵列的外周附近的像素电极。
7.根据权利要求1所述的方法,还包括:
将包括一个或多个帧的第二测量波形施加到所述像素电极阵列的第二部分像素电极,其中在所述第二测量波形的每一帧期间,将相同的时间相关电压施加到所述第二部分像素电极的每个像素电极;
测量流过所述电流测量电路的第二电流;
基于流过所述电流测量电路的所述第二电流和在所述第二测量波形期间施加到所述第一部分像素电极的每个像素电极的所述时间相关电压,确定靠近所述第二部分像素电极的电光材料的第二阻抗;
基于靠近所述第二部分像素电极的所述电光材料的所述第二阻抗,选择要施加到所述第二部分像素电极的每个像素电极的第二驱动波形;以及
将所述第二驱动波形施加到所述第二部分像素电极,其中所述第二驱动波形包括足以改变靠近所述第二部分像素电极的所述电光显示器的所述光学状态的时间相关电压。
8.根据权利要求7所述的方法,其中所述第一部分像素电极包括来自所述像素电极阵列的第一区域的像素电极,以及所述第二部分像素电极包括来自所述像素电极阵列的第二区域的像素电极,并且其中所述第一区域的像素电极和所述第二区域的像素电极不重叠。
9.根据权利要求7所述的方法,还包括:
将零伏波形施加到所述第二部分像素电极,同时将所述第一测量波形施加到所述第一部分像素电极;以及
将零伏波形施加到所述第一部分像素电极,同时将所述第二测量波形施加到所述第二部分像素电极。
10.一种用于驱动电光显示器的方法,所述电光显示器包括设置在公共电极和背板之间的电光材料层,所述背板包括像素电极阵列,其中每个像素电极耦接至一个像素晶体管,其中显示控制器电路通过经由所述像素晶体管在所述公共电极和所述像素电极阵列之间施加一个或多个时间相关电压来将波形施加到所述像素电极阵列,所述驱动方法包括:
同时激活与所述像素电极阵列的第一部分像素电极相关联的像素晶体管;
将第一电压施加到所述第一部分像素电极;
通过电流测量电路来注入来自信号发生电路的测量波形,所述电流测量电路耦接在所述信号发生电路和所述公共电极之间;
基于所述测量波形来测量流过所述电流测量电路的第一电流;
基于流过所述电流测量电路的所述第一电流和在第一测量波形期间施加到所述第一部分像素电极的每个像素电极的所述时间相关电压,确定靠近所述第一部分像素电极的电光材料的第一阻抗;
基于靠近所述第一部分像素电极的所述电光材料的所述第一阻抗,选择要施加到所述第一部分像素电极的每个像素电极的第一驱动波形;以及
将所述第一驱动波形施加到所述第一部分像素电极,其中所述第一驱动波形包括足以改变靠近所述第一部分像素电极的所述电光显示器的光学状态的时间相关电压。
11.根据权利要求10所述的方法,其中所述电流测量电路包括电阻元件和差分电压放大器,其中所述差分电压放大器的第一输入端连接到所述电阻元件的第一端子,并且所述差分电压放大器的第二输入端连接到所述电阻元件的第二端子。
12.根据权利要求10所述的方法,其中所述测量波形包括周期性方波或正弦电压波形。
13.根据权利要求10所述的方法,其中所述测量波形包括幅值不足以改变所述电光显示器的光学状态的电压。
14.根据权利要求10所述的方法,其中所述测量波形包括具有多个频率的振荡电压波形。
15.一种用于驱动电光显示器的方法,所述电光显示器包括设置在第一公共电极和像素电极阵列之间的电泳显示介质,其中每个像素电极耦接至一个存储电容器的第一端子,其中每个存储电容器的第二端子耦接至第二公共电极,并且其中显示控制器电路被配置为向彼此独立的所述第一公共电极和所述第二公共电极施加时间相关电压,所述驱动方法包括:
同时激活与第一部分像素电极相关联的像素晶体管;
切换第一开关以将所述第一公共电极与所述显示控制器电路断开并且将所述第一公共电极连接到阻抗测量电路的第一端子;
切换第二开关以将所述第二公共电极与所述显示控制器电路断开并且将所述第二公共电极连接到所述阻抗测量电路的第二端子;
将来自所述阻抗测量电路的测量波形电压注入到所述第一公共电极中,所述测量波形包括时间相关电压;
基于所述测量波形来测量流过所述阻抗测量电路的第一电流;
基于流过所述阻抗测量电路的所述第一电流和在所述测量波形期间施加到所述第一公共电极的所述时间相关电压,确定靠近所述第一部分像素电极的电光材料的第一阻抗;
基于靠近所述第一部分像素电极的所述电光材料的所述第一阻抗,选择要施加到所述第一部分像素电极的每个像素电极的第一驱动波形;
切换所述第一开关以将所述第一公共电极与所述阻抗测量电路断开并且将所述第一公共电极连接到所述显示控制器电路;
切换所述第二开关以将所述第二公共电极与所述阻抗测量电路断开并且将所述第二公共电极连接到所述显示控制器电路;以及
将所述第一驱动波形施加到所述第一部分像素电极,其中所述第一驱动波形包括足以改变靠近所述第一部分像素电极的所述电光显示器的光学状态的时间相关电压。
16.根据权利要求15所述的方法,其中所述测量波形包括周期性方波或正弦电压波形。
17.根据权利要求15所述的方法,其中所述测量波形包括幅值不足以改变靠近所述第一部分像素电极的所述电光显示器的光学状态的电压。
18.根据权利要求17所述的方法,其中所述测量波形包括幅值小于1伏的电压。
19.根据权利要求15所述的方法,其中所述测量波形包括具有多个频率的振荡电压波形。
20.根据权利要求15所述的方法,其中所述第一部分像素电极包括位于所述像素电极阵列的外周附近的像素电极。
CN202280084612.6A 2021-12-27 2022-12-27 用于测量电光显示器的电特性的方法 Pending CN118435268A (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US63/293947 2021-12-27
US202263301747P 2022-01-21 2022-01-21
US63/301747 2022-01-21
PCT/US2022/054052 WO2023129533A1 (en) 2021-12-27 2022-12-27 Methods for measuring electrical properties of electro-optic displays

Publications (1)

Publication Number Publication Date
CN118435268A true CN118435268A (zh) 2024-08-02

Family

ID=92323569

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202280084612.6A Pending CN118435268A (zh) 2021-12-27 2022-12-27 用于测量电光显示器的电特性的方法

Country Status (1)

Country Link
CN (1) CN118435268A (zh)

Similar Documents

Publication Publication Date Title
JP6284564B2 (ja) 電気光学ディスプレイを駆動する方法
US10475396B2 (en) Electro-optic displays with reduced remnant voltage, and related apparatus and methods
US10037735B2 (en) Active matrix display with dual driving modes
US20200026143A1 (en) Electro-optic displays and driving methods
CN111684513B (zh) 电光显示器和用于驱动电光显示器的方法
JP2024019719A (ja) 電気光学ディスプレイを駆動する方法
US11854448B2 (en) Methods for measuring electrical properties of electro-optic displays
TWI847453B (zh) 用於測量電光顯示器之電性質的方法
CN118435268A (zh) 用于测量电光显示器的电特性的方法
JP2020042291A (ja) 電気光学ディスプレイ
KR20200091935A (ko) 전기 광학 디스플레이들, 및 그 구동 방법들
US20240257773A1 (en) Multi-element pixel electrode circuits for electro-optic displays and methods for driving the same
TWI846017B (zh) 用於驅動電光顯示器的方法
CN114667561B (zh) 用于驱动电光显示器的方法
US11830448B2 (en) Methods for driving electro-optic displays
US20230197024A1 (en) Methods for driving electro-optic displays
JP2024530649A (ja) 電気光学ディスプレイを駆動する方法
CN118435269A (zh) 用于驱动电光显示器的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination