CN118395877B - Method, device, equipment and medium for optimally designing microstrip patch antenna - Google Patents

Method, device, equipment and medium for optimally designing microstrip patch antenna Download PDF

Info

Publication number
CN118395877B
CN118395877B CN202410814332.7A CN202410814332A CN118395877B CN 118395877 B CN118395877 B CN 118395877B CN 202410814332 A CN202410814332 A CN 202410814332A CN 118395877 B CN118395877 B CN 118395877B
Authority
CN
China
Prior art keywords
parameter
antenna
model
determining
microstrip patch
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202410814332.7A
Other languages
Chinese (zh)
Other versions
CN118395877A (en
Inventor
杨成福
阿琴花
李俊玮
兰秋松
宁悦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yunnan Normal University
Original Assignee
Yunnan Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yunnan Normal University filed Critical Yunnan Normal University
Priority to CN202410814332.7A priority Critical patent/CN118395877B/en
Publication of CN118395877A publication Critical patent/CN118395877A/en
Application granted granted Critical
Publication of CN118395877B publication Critical patent/CN118395877B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • G06F30/27Design optimisation, verification or simulation using machine learning, e.g. artificial intelligence, neural networks, support vector machines [SVM] or training a model
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/04Architecture, e.g. interconnection topology
    • G06N3/044Recurrent networks, e.g. Hopfield networks
    • G06N3/0442Recurrent networks, e.g. Hopfield networks characterised by memory or gating, e.g. long short-term memory [LSTM] or gated recurrent units [GRU]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/08Learning methods
    • G06N3/084Backpropagation, e.g. using gradient descent

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Evolutionary Computation (AREA)
  • Software Systems (AREA)
  • Artificial Intelligence (AREA)
  • General Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Mathematical Physics (AREA)
  • Computational Linguistics (AREA)
  • Molecular Biology (AREA)
  • Computing Systems (AREA)
  • Biophysics (AREA)
  • Biomedical Technology (AREA)
  • Data Mining & Analysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Medical Informatics (AREA)
  • Computer Hardware Design (AREA)
  • Geometry (AREA)
  • Waveguide Aerials (AREA)

Abstract

The application discloses an optimization design method, a device, equipment and a medium of a microstrip patch antenna, which relate to the technical field of antenna design, and the method comprises the following steps: when antenna parameters are received, determining the parameter types corresponding to the antenna parameters; determining a forward prediction model or a reverse inversion model based on the parameter type, wherein the forward prediction model is a hybrid model; the antenna parameters are processed based on the forward prediction model or the reverse inversion model, and the target S parameter spectrum curve or the target structure parameter of the antenna is determined, so that the technical problems that the error of predicting the performance parameter curve of the antenna based on the structure parameter through experimental data in the related technology is large and the accuracy is low are effectively solved, the technical effects of shortening the antenna design period and improving the antenna design efficiency and accuracy are achieved.

Description

微带贴片天线的优化设计方法、装置、设备及介质Optimization design method, device, equipment and medium of microstrip patch antenna

技术领域Technical Field

本申请涉及天线设计技术领域,尤其涉及一种微带贴片天线的优化设计方法、装置、设备及介质。The present application relates to the field of antenna design technology, and in particular to an optimization design method, device, equipment and medium for a microstrip patch antenna.

背景技术Background Art

在无线通信领域,天线是发送和接收电磁波的装置,其性能直接影响到整个通信系统的质量,天线设计引起了越来越广泛的关注。面对无线通信的迅猛发展,不仅需要提出各种新型的符合设计指标的天线,同时也需要提供一种能够快速且精准地预测天线性能或设计天线结构方案,这无疑给天线设计人员提出了较大挑战。In the field of wireless communications, antennas are devices that send and receive electromagnetic waves. Their performance directly affects the quality of the entire communication system, and antenna design has attracted more and more attention. Faced with the rapid development of wireless communications, it is necessary not only to propose various new antennas that meet the design indicators, but also to provide a method that can quickly and accurately predict antenna performance or design antenna structure solutions, which undoubtedly poses a great challenge to antenna designers.

在相关技术中,主要采用的天线设计方法主要包括经验法和数值法,经验法,主要是基于设计者的经验和以往成功的案例进行天线设计,适用于一些简单的天线结构或者常见的应用场景;数值法,利用计算机模拟和数值计算技术,对天线的电磁场进行数值求解,从而设计出符合要求的天线。常见的数值方法包括有限元法、时域积分方程法、时域有限差分法等。这些方法主要用于设计比较简单的天线结构。但这些方法在设计周期长、准确率低等方面存在局限性。基于此,随着深度学习技术的发展,人们开始将其应用于天线设计领域。例如将机器学习用于多频带矩形螺旋形微带天线、矩形微带贴片天线的设计等。这些方法大多仅限于由结构参数得到天线的性能参数曲线。In the relevant technology, the main antenna design methods used mainly include empirical methods and numerical methods. The empirical method is mainly based on the designer's experience and previous successful cases to design antennas, which is suitable for some simple antenna structures or common application scenarios; the numerical method uses computer simulation and numerical calculation technology to numerically solve the electromagnetic field of the antenna, so as to design an antenna that meets the requirements. Common numerical methods include finite element method, time domain integral equation method, time domain finite difference method, etc. These methods are mainly used to design relatively simple antenna structures. However, these methods have limitations in terms of long design cycle and low accuracy. Based on this, with the development of deep learning technology, people have begun to apply it to the field of antenna design. For example, machine learning is used in the design of multi-band rectangular spiral microstrip antennas and rectangular microstrip patch antennas. Most of these methods are limited to obtaining the performance parameter curve of the antenna from the structural parameters.

然而,这些方法仅限于通过实验数据来基于结构参数预测天线的性能参数曲线,而实验所得的误差较大,且准确率较低。However, these methods are limited to predicting the performance parameter curve of the antenna based on the structural parameters through experimental data, and the experimental results have large errors and low accuracy.

发明内容Summary of the invention

本申请实施例通过提供一种微带贴片天线的优化设计方法、装置、设备及介质,解决了相关技术中通过实验数据来基于结构参数预测天线的性能参数曲线的误差较大,且准确率较低的技术问题,实现了缩短天线设计周期,提高天线设计效率和准确率的技术效果。The embodiments of the present application provide a method, device, equipment and medium for optimizing the design of a microstrip patch antenna, thereby solving the technical problem in the related art that the performance parameter curve of the antenna is predicted based on structural parameters using experimental data with large errors and low accuracy, thereby achieving the technical effect of shortening the antenna design cycle and improving the antenna design efficiency and accuracy.

本申请实施例提供了一种微带贴片天线的优化设计方法,所述微带贴片天线的优化设计方法包括:The embodiment of the present application provides an optimization design method for a microstrip patch antenna, and the optimization design method for a microstrip patch antenna includes:

在接收到天线参数时,确定所述天线参数对应的参数类型;Upon receiving the antenna parameter, determining a parameter type corresponding to the antenna parameter;

基于所述参数类型确定正向预测模型或逆向反演模型,其中,所述正向预测模型为混合模型;Determining a forward prediction model or a reverse inversion model based on the parameter type, wherein the forward prediction model is a hybrid model;

基于所述正向预测模型或逆向反演模型对所述天线参数进行处理,确定天线的目标S参数频谱曲线或目标结构参数。The antenna parameters are processed based on the forward prediction model or the reverse inversion model to determine a target S parameter spectrum curve or a target structural parameter of the antenna.

可选地,所述在接收到天线参数时,确定所述天线参数对应的参数类型的步骤,包括:Optionally, when receiving the antenna parameter, the step of determining the parameter type corresponding to the antenna parameter includes:

在接收到天线参数对应的输入值时,对所述输入值进行判断;Upon receiving an input value corresponding to an antenna parameter, determining the input value;

根据判断结果确定所述天线参数的参数类型为结构参数或S参数频谱曲线。According to the judgment result, it is determined that the parameter type of the antenna parameter is a structural parameter or an S-parameter spectrum curve.

可选地,所述基于所述参数类型确定正向预测模型或逆向反演模型,其中,所述正向预测模型为混合模型的步骤,包括:Optionally, the step of determining a forward prediction model or a reverse inversion model based on the parameter type, wherein the forward prediction model is a hybrid model, comprises:

当所述参数类型为结构参数时,确定所述正向预测模型为长短期记忆模型混合注意力机制模型;When the parameter type is a structural parameter, determining that the forward prediction model is a long short-term memory model hybrid attention mechanism model;

当所述参数类型为S参数频谱曲线时,确定所述逆向反演模型为转换器模型。When the parameter type is an S-parameter spectrum curve, the reverse inversion model is determined to be a converter model.

可选地,所述基于所述正向预测模型或逆向反演模型对所述天线参数进行处理,确定天线的目标S参数频谱曲线或目标结构参数的步骤,包括:Optionally, the step of processing the antenna parameters based on the forward prediction model or the reverse inversion model to determine a target S parameter spectrum curve or a target structural parameter of the antenna includes:

基于所述正向预测模型处理结构参数,确定所述天线的所述目标S参数频谱曲线;或,Determine the target S-parameter spectrum curve of the antenna based on the forward prediction model processing structure parameters; or,

基于所述逆向反演模型处理S参数频谱曲线,确定所述天线的目标结构参数。The target structural parameters of the antenna are determined by processing the S-parameter spectrum curve based on the inverse inversion model.

可选地,所述基于所述正向预测模型处理结构参数,确定所述天线的所述目标S参数频谱曲线的步骤,包括:Optionally, the step of processing structural parameters based on the forward prediction model to determine the target S-parameter spectrum curve of the antenna includes:

基于长短期记忆模型内部的门控单元捕捉所述结构参数中的长期依赖关系;The gating unit inside the long short-term memory model captures the long-term dependencies in the structural parameters;

基于所述长期依赖关系确定所述结构参数对应的时间依赖性以及参数信息;Determining the time dependency and parameter information corresponding to the structural parameters based on the long-term dependency;

基于注意力机制对所述长期依赖关系的隐藏状态进行加权求和,提取关注特征;Based on the attention mechanism, weighted summation is performed on the hidden states of the long-term dependency to extract the attention features;

基于所述时间依赖性、所述参数信息以及所述关注特征预测所述天线的所述目标S参数频谱曲线。The target S-parameter spectrum curve of the antenna is predicted based on the time dependency, the parameter information, and the feature of interest.

可选地,所述基于所述逆向反演模型处理S参数频谱曲线,确定所述天线的目标结构参数的步骤,包括:Optionally, the step of processing the S-parameter spectrum curve based on the inverse inversion model to determine the target structural parameters of the antenna includes:

基于所述S参数频谱曲线作为转换器模型中编码器的输入序列;Based on the S-parameter spectrum curve as an input sequence of an encoder in a converter model;

基于自注意力机制对所述输入序列进行关联性建模,确定参数特征;Based on the self-attention mechanism, the input sequence is modeled for correlation to determine parameter features;

基于所述转换器模型的输出层将所述参数特征映射至所述天线的结构参数空间,确定所述目标结构参数。The parameter features are mapped to the structural parameter space of the antenna based on the output layer of the converter model to determine the target structural parameters.

可选地,所述基于所述正向预测模型或逆向反演模型对所述天线参数进行处理,确定天线的目标S参数频谱曲线或目标结构参数的步骤之后,包括:Optionally, after the step of processing the antenna parameters based on the forward prediction model or the reverse inversion model to determine the target S parameter spectrum curve or target structural parameters of the antenna, the method further comprises:

对所述天线参数进行数据降维并提取关键特征;Performing data dimension reduction on the antenna parameters and extracting key features;

基于所述关键特征以及反向传播算法学习所述结构参数与天线性能之间的非线性关系;Learning the nonlinear relationship between the structural parameters and the antenna performance based on the key features and the back propagation algorithm;

基于所述非线性关系训练所述逆向反演模型。The reverse inversion model is trained based on the nonlinear relationship.

此外,本申请还提出一种微带贴片天线的优化设计装置,所述微带贴片天线的优化设计装置包括:In addition, the present application also proposes an optimization design device for a microstrip patch antenna, the optimization design device for a microstrip patch antenna comprising:

选择模块,用于在接收到天线参数时,确定所述天线参数对应的参数类型;基于所述参数类型确定正向预测模型或逆向反演模型,其中,所述正向预测模型为混合模型;A selection module, configured to determine, upon receiving antenna parameters, a parameter type corresponding to the antenna parameters; and determine a forward prediction model or a reverse inversion model based on the parameter type, wherein the forward prediction model is a hybrid model;

正向频谱曲线预测模块,用于基于正向预测模型处理结构参数,确定天线的所述目标S参数频谱曲线;A forward spectrum curve prediction module, used to process structural parameters based on a forward prediction model to determine the target S-parameter spectrum curve of the antenna;

逆向结构参数反演模块,用于基于所述逆向反演模型处理S参数频谱曲线,确定所述天线的目标结构参数。The inverse structural parameter inversion module is used to process the S parameter spectrum curve based on the inverse inversion model to determine the target structural parameters of the antenna.

此外,本申请还提出一种微带贴片天线的优化设计设备,所述微带贴片天线的优化设计设备包括存储器、处理器及存储在存储器上并可在处理器上运行的微带贴片天线的优化设计程序,所述处理器执行所述微带贴片天线的优化设计程序时实现如上所述的微带贴片天线的优化设计方法的步骤。In addition, the present application also proposes an optimization design device for a microstrip patch antenna, which includes a memory, a processor, and an optimization design program for a microstrip patch antenna stored in the memory and executable on the processor. When the processor executes the optimization design program for the microstrip patch antenna, the steps of the optimization design method for the microstrip patch antenna as described above are implemented.

此外,本申请还提出一种计算机可读存储介质,所述计算机可读存储介质上存储有微带贴片天线的优化设计程序,所述微带贴片天线的优化设计程序被处理器执行时实现如上所述的微带贴片天线的优化设计方法的步骤。In addition, the present application also proposes a computer-readable storage medium, on which is stored an optimization design program for a microstrip patch antenna. When the optimization design program for a microstrip patch antenna is executed by a processor, the steps of the optimization design method for a microstrip patch antenna as described above are implemented.

本申请实施例中提供的一个或多个技术方案,至少具有如下技术效果或优点:One or more technical solutions provided in the embodiments of the present application have at least the following technical effects or advantages:

由于采用了在接收到天线参数时,确定所述天线参数对应的参数类型;基于所述参数类型确定正向预测模型或逆向反演模型,其中,所述正向预测模型为混合模型;基于所述正向预测模型或逆向反演模型对所述天线参数进行处理,确定天线的目标S参数频谱曲线或目标结构参数,所以,有效解决了相关技术中通过实验数据来基于结构参数预测天线的性能参数曲线的误差较大,且准确率较低的技术问题,实现了缩短天线设计周期,提高天线设计效率和准确率的技术效果。Since the method adopts the method of determining the parameter type corresponding to the antenna parameter when the antenna parameter is received; determining the forward prediction model or the reverse inversion model based on the parameter type, wherein the forward prediction model is a hybrid model; processing the antenna parameters based on the forward prediction model or the reverse inversion model to determine the target S parameter spectrum curve or the target structural parameter of the antenna, the technical problem in the related art that the performance parameter curve of the antenna is predicted based on the structural parameters through experimental data has a large error and a low accuracy rate, and the technical effect of shortening the antenna design cycle and improving the antenna design efficiency and accuracy rate is achieved.

附图说明BRIEF DESCRIPTION OF THE DRAWINGS

图1为本申请微带贴片天线的优化设计方法实施例一的流程示意图;FIG1 is a schematic diagram of a flow chart of a first embodiment of a method for optimizing the design of a microstrip patch antenna of the present application;

图2为本申请微带贴片天线的优化设计方法实施例二中步骤S210的流程示意图;FIG2 is a flow chart of step S210 in Embodiment 2 of the optimization design method for a microstrip patch antenna of the present application;

图3为本申请微带贴片天线的优化设计方法实施例三的流程示意图;FIG3 is a flow chart of a third embodiment of the optimization design method of the microstrip patch antenna of the present application;

图4为本申请微带贴片天线的优化设计方法实施例三中微带贴片天线的优化设计涉及整体流程的示意图;FIG4 is a schematic diagram of the overall process involved in the optimization design of the microstrip patch antenna in Embodiment 3 of the optimization design method of the microstrip patch antenna of the present application;

图5为本申请微带贴片天线的优化设计设备实施例涉及的硬件结构示意图。FIG5 is a schematic diagram of the hardware structure involved in an embodiment of the optimization design device for the microstrip patch antenna of the present application.

具体实施方式DETAILED DESCRIPTION

在相关技术中,主要采用的天线设计方法主要包括经验法和数值法,经验法,主要是基于设计者的经验和以往成功的案例进行天线设计,适用于一些简单的天线结构或者常见的应用场景;数值法,利用计算机模拟和数值计算技术,对天线的电磁场进行数值求解,从而设计出符合要求的天线。常见的数值方法包括有限元法、时域积分方程法、时域有限差分法等。这些方法主要用于设计比较简单的天线结构。但这些方法在设计周期长、准确率低等方面存在局限性。基于此,随着深度学习技术的发展,人们开始将其应用于天线设计领域。例如将机器学习用于多频带矩形螺旋形微带天线、矩形微带贴片天线的设计等。这些方法大多仅限于由结构参数得到天线的性能参数曲线。然而,这些方法仅限于通过实验数据来基于结构参数预测天线的性能参数曲线,而实验所得的误差较大,且准确率较低。本申请实施例采用的主要技术方案是:在接收到天线参数时,确定所述天线参数对应的参数类型;In the related art, the antenna design methods mainly used include empirical methods and numerical methods. The empirical method mainly designs antennas based on the designer's experience and previous successful cases, and is suitable for some simple antenna structures or common application scenarios; the numerical method uses computer simulation and numerical calculation technology to numerically solve the electromagnetic field of the antenna, so as to design an antenna that meets the requirements. Common numerical methods include finite element method, time domain integral equation method, time domain finite difference method, etc. These methods are mainly used to design relatively simple antenna structures. However, these methods have limitations in terms of long design cycle and low accuracy. Based on this, with the development of deep learning technology, people have begun to apply it to the field of antenna design. For example, machine learning is used for the design of multi-band rectangular spiral microstrip antennas and rectangular microstrip patch antennas. Most of these methods are limited to obtaining the performance parameter curve of the antenna from the structural parameters. However, these methods are limited to predicting the performance parameter curve of the antenna based on the structural parameters through experimental data, and the experimental errors are large and the accuracy is low. The main technical solution adopted in the embodiment of the present application is: when receiving the antenna parameters, determining the parameter type corresponding to the antenna parameters;

基于所述参数类型确定正向预测模型或逆向反演模型,其中,所述正向预测模型为混合模型;Determining a forward prediction model or a reverse inversion model based on the parameter type, wherein the forward prediction model is a hybrid model;

基于所述正向预测模型或逆向反演模型对所述天线参数进行处理,确定天线的目标S参数频谱曲线或目标结构参数。从而实现了缩短天线设计周期,提高天线设计效率和准确率的技术效果。The antenna parameters are processed based on the forward prediction model or the reverse inversion model to determine the target S parameter spectrum curve or target structural parameters of the antenna, thereby achieving the technical effect of shortening the antenna design cycle and improving the antenna design efficiency and accuracy.

为了更好地理解上述技术方案,下面将参照附图更详细地描述本申请的示例性实施例。虽然附图中显示了本申请的示例性实施例,然而应当理解,能够以各种形式实现本申请而不应被这里阐述的实施例所限制。相反,提供这些实施例是为了能够更透彻地理解本申请,并且能够将本申请的范围完整地传达给本领域的技术人员。In order to better understand the above technical solution, exemplary embodiments of the present application will be described in more detail below with reference to the accompanying drawings. Although exemplary embodiments of the present application are shown in the accompanying drawings, it should be understood that the present application can be implemented in various forms and should not be limited by the embodiments described herein. On the contrary, these embodiments are provided in order to enable a more thorough understanding of the present application and to fully convey the scope of the present application to those skilled in the art.

本申请实施例一公开了一种微带贴片天线的优化设计方法,参照图1,所述微带贴片天线的优化设计方法包括:Embodiment 1 of the present application discloses an optimization design method for a microstrip patch antenna. Referring to FIG. 1 , the optimization design method for a microstrip patch antenna includes:

步骤S110,在接收到天线参数时,确定所述天线参数对应的参数类型。Step S110: upon receiving antenna parameters, determining parameter types corresponding to the antenna parameters.

在本实施例中,天线参数是微带贴片天线的相关参数,根据参数类型分为结构参数以及频谱曲线。微带贴片天线是一种常用的平面天线结构。它由一个金属贴片和一个接地板构成,中间通过绝缘介质分隔开来。结构参数包括贴片的尺寸、形状和位置,以及介质的厚度。常见的微带贴片天线的频谱曲线可以根据不同的设计参数有所不同,一般包括中心频率、带宽以及辐射特性。结构参数包括:贴片尺寸:贴片的长度、宽度和厚度;贴片形状:常见的形状有矩形、圆形、椭圆形等;贴片位置:贴片相对于接地板的位置。频谱曲线的特征包括:中心频率:微带贴片天线的工作频率中心;带宽:天线能够覆盖的频率范围;驻波比:用来描述输入端口的匹配情况,较低的驻波比表示较好的匹配性能;辐射特性:天线在不同方向上的增益、辐射图案、辐射功率等相关参数。In this embodiment, the antenna parameters are related parameters of the microstrip patch antenna, which are divided into structural parameters and spectrum curves according to the parameter type. The microstrip patch antenna is a commonly used planar antenna structure. It consists of a metal patch and a ground plane, separated by an insulating medium in the middle. The structural parameters include the size, shape and position of the patch, and the thickness of the medium. The spectrum curve of a common microstrip patch antenna can be different according to different design parameters, generally including center frequency, bandwidth and radiation characteristics. The structural parameters include: patch size: the length, width and thickness of the patch; patch shape: common shapes include rectangle, circle, ellipse, etc.; patch position: the position of the patch relative to the ground plane. The characteristics of the spectrum curve include: center frequency: the operating frequency center of the microstrip patch antenna; bandwidth: the frequency range that the antenna can cover; standing wave ratio: used to describe the matching of the input port, a lower standing wave ratio indicates better matching performance; radiation characteristics: the gain, radiation pattern, radiation power and other related parameters of the antenna in different directions.

作为一种可选实施方式,步骤S110包括:在接收到天线参数对应的输入值时,对所述输入值进行判断;根据判断结果确定所述天线参数的参数类型为结构参数或频谱曲线。As an optional implementation, step S110 includes: when receiving an input value corresponding to an antenna parameter, judging the input value; and determining, according to the judgment result, whether the parameter type of the antenna parameter is a structural parameter or a spectrum curve.

将微带贴片天线的结构参数或S参数输入至所述的模型中,对输入值进行判断,判断的结果有两种,如果输入值为微带贴片天线的结构参数,则进行正向S参数频谱曲线预测;反之,如果输入为S参数频谱曲线则进行逆向结构参数反演。其中,S参数是指散射参数(Scattering Parameters),也称为网络参数或矩阵描述的参数。S参数用于描述电路或器件在某一特定频率下的输入和输出之间的电压和电流之间的关系,是电磁波在传输过程中的重要参数。对于微带贴片天线,常见的S参数为S11和S21,分别表示入射波和反射波之间的关系以及入射波和透射波之间的关系。S11表示在天线输入端口的反射系数,即从天线输入端口发射的信号中部分被反射回去的比例。S21表示在天线输入端口的透射系数,即从天线输入端口发射的信号中通过天线传输到输出端口的比例。The structural parameters or S parameters of the microstrip patch antenna are input into the model, and the input values are judged. There are two results of the judgment. If the input value is the structural parameter of the microstrip patch antenna, a forward S parameter spectrum curve prediction is performed; otherwise, if the input is an S parameter spectrum curve, a reverse structural parameter inversion is performed. Among them, S parameters refer to scattering parameters, also known as network parameters or matrix description parameters. S parameters are used to describe the relationship between the voltage and current between the input and output of a circuit or device at a certain frequency, and are important parameters in the transmission process of electromagnetic waves. For microstrip patch antennas, common S parameters are S11 and S21, which represent the relationship between the incident wave and the reflected wave and the relationship between the incident wave and the transmitted wave, respectively. S11 represents the reflection coefficient at the antenna input port, that is, the proportion of the signal emitted from the antenna input port that is partially reflected back. S21 represents the transmission coefficient at the antenna input port, that is, the proportion of the signal emitted from the antenna input port that is transmitted to the output port through the antenna.

步骤S120,基于所述参数类型确定正向预测模型或逆向反演模型,其中,所述正向预测模型为混合模型。Step S120: determining a forward prediction model or a reverse inversion model based on the parameter type, wherein the forward prediction model is a hybrid model.

在本实施例中,正向预测模型用于根据输入的结构参数,确定天线的S参数频谱曲线作为目标S参数频谱曲线。逆向反演模型用于根据输入的S参数频谱曲线,逆向反演出天线的结构参数。In this embodiment, the forward prediction model is used to determine the S parameter spectrum curve of the antenna as the target S parameter spectrum curve according to the input structural parameters, and the reverse inversion model is used to reversely invert the structural parameters of the antenna according to the input S parameter spectrum curve.

作为一种可选实施方式,当所述参数类型为结构参数时,确定所述正向预测模型为长短期记忆模型混合注意力机制模型;当所述参数类型为S参数频谱曲线时,确定所述逆向反演模型为转换器模型。As an optional implementation, when the parameter type is a structural parameter, the forward prediction model is determined to be a long short-term memory model mixed attention mechanism model; when the parameter type is an S parameter spectrum curve, the reverse inversion model is determined to be a converter model.

确定参数类型,例如结构参数和S参数频谱曲线。如果参数类型为结构参数,正向预测模型为长短期记忆(LSTM)模型混合注意力机制模型。该模型结合了LSTM模型和注意力机制,能够对输入的结构参数进行预测,并输出天线的相关性能。如果参数类型为S参数频谱曲线,逆向反演模型为转换器模型。该模型能够将输入的S参数频谱曲线转换为天线的结构参数,从而实现逆向反演。其中,正向预测模型为LSTM模型结合Attention模型,逆向反演模型为Transformer模型。Determine the parameter type, such as structural parameters and S-parameter spectrum curves. If the parameter type is structural parameters, the forward prediction model is a long short-term memory (LSTM) model mixed with an attention mechanism model. This model combines the LSTM model and the attention mechanism to predict the input structural parameters and output the relevant performance of the antenna. If the parameter type is an S-parameter spectrum curve, the reverse inversion model is a transformer model. This model can convert the input S-parameter spectrum curve into the structural parameters of the antenna, thereby achieving reverse inversion. Among them, the forward prediction model is an LSTM model combined with an Attention model, and the reverse inversion model is a Transformer model.

步骤S130,基于所述正向预测模型或逆向反演模型对所述天线参数进行处理,确定天线的目标S参数频谱曲线或目标结构参数。Step S130: Process the antenna parameters based on the forward prediction model or the reverse inversion model to determine a target S-parameter spectrum curve or a target structural parameter of the antenna.

在本实施例中,对于正向预测模型(长短期记忆模型混合注意力机制模型):输入:已知的天线结构参数,预测:使用混合模型对输入的结构参数进行处理,得到天线的目标S参数频谱曲线,输出:天线的目标S参数频谱曲线。In this embodiment, for the forward prediction model (long short-term memory model mixed attention mechanism model): input: known antenna structure parameters, prediction: use the hybrid model to process the input structure parameters to obtain the target S parameter spectrum curve of the antenna, output: target S parameter spectrum curve of the antenna.

对于逆向反演模型(转换器模型):输入:已知的天线的S参数频谱曲线,反演:使用转换器模型对输入的S参数频谱曲线进行处理,得到天线的目标结构参数,输出:天线的目标结构参数。For the reverse inversion model (converter model): Input: known S-parameter spectrum curve of the antenna, Inversion: use the converter model to process the input S-parameter spectrum curve to obtain the target structural parameters of the antenna, Output: target structural parameters of the antenna.

由于采用了在接收到天线参数时,确定所述天线参数对应的参数类型;基于所述参数类型确定正向预测模型或逆向反演模型,其中,所述正向预测模型为混合模型;基于所述正向预测模型或逆向反演模型对所述天线参数进行处理,确定天线的目标S参数频谱曲线或目标结构参数,所以,有效解决了相关技术中通过实验数据来基于结构参数预测天线的性能参数曲线的误差较大,且准确率较低的技术问题,实现了缩短天线设计周期,提高天线设计效率和准确率的技术效果。Since the method adopts the method of determining the parameter type corresponding to the antenna parameter when the antenna parameter is received; determining the forward prediction model or the reverse inversion model based on the parameter type, wherein the forward prediction model is a hybrid model; processing the antenna parameters based on the forward prediction model or the reverse inversion model to determine the target S parameter spectrum curve or the target structural parameter of the antenna, the technical problem in the related art that the performance parameter curve of the antenna is predicted based on the structural parameters through experimental data has a large error and a low accuracy rate, and the technical effect of shortening the antenna design cycle and improving the antenna design efficiency and accuracy rate is achieved.

基于实施例一,本申请实施例二提出一种微带贴片天线的优化设计方法,步骤S130包括:Based on the first embodiment, the second embodiment of the present application proposes an optimization design method for a microstrip patch antenna, and step S130 includes:

步骤S210,基于所述正向预测模型处理结构参数,确定所述天线的所述目标S参数频谱曲线;或,Step S210, processing structural parameters based on the forward prediction model to determine the target S parameter spectrum curve of the antenna; or,

步骤S220,基于所述逆向反演模型处理S参数频谱曲线,确定所述天线的目标结构参数。Step S220: Processing the S-parameter spectrum curve based on the inverse inversion model to determine the target structural parameters of the antenna.

在本实施例中,收集已知的天线结构参数数据集,或者根据输入值确定结构参数,包括天线的尺寸、材料等信息,以及对应的目标S参数频谱曲线数据集。对数据集进行预处理,包括数据清洗、归一化等操作,以便于模型的训练和预测。使用正向预测模型(例如深度学习中的长短期记忆模型混合注意力机制模型)对天线的结构参数进行处理,通过学习结构参数与目标S参数频谱曲线之间的关系,预测出天线的目标S参数频谱曲线。进行模型评估和调优,使用训练集和验证集进行模型训练,并在测试集上进行性能评估,通过调整模型的参数和结构,以获得更准确的预测结果。收集已知的天线的S参数频谱曲线数据集,或者根据输入值确定S参数频谱曲线,同时也需要对应的天线的结构参数数据集。进行数据预处理,包括数据清洗、归一化等操作,以便于模型的训练和反演。使用逆向反演模型(例如转换器模型)对S参数频谱曲线进行处理,通过学习S参数频谱曲线与结构参数之间的关系,反演出天线的目标结构参数。进行模型评估和调优,使用训练集和验证集进行模型训练,并在测试集上进行性能评估,通过调整模型的超参数和结构,以获得更准确的反演结果。In this embodiment, a known antenna structural parameter data set is collected, or the structural parameters are determined according to the input values, including information such as the size and material of the antenna, and the corresponding target S parameter spectrum curve data set. The data set is preprocessed, including data cleaning, normalization and other operations, to facilitate model training and prediction. The structural parameters of the antenna are processed using a forward prediction model (such as a long short-term memory model hybrid attention mechanism model in deep learning), and the target S parameter spectrum curve of the antenna is predicted by learning the relationship between the structural parameters and the target S parameter spectrum curve. Model evaluation and tuning are performed, and the model training is performed using a training set and a validation set, and the performance is evaluated on the test set, and the parameters and structure of the model are adjusted to obtain more accurate prediction results. A known antenna S parameter spectrum curve data set is collected, or the S parameter spectrum curve is determined according to the input value, and a corresponding antenna structural parameter data set is also required. Data preprocessing is performed, including data cleaning, normalization and other operations, to facilitate model training and inversion. The S parameter spectrum curve is processed using an inverse inversion model (such as a converter model), and the target structural parameters of the antenna are inverted by learning the relationship between the S parameter spectrum curve and the structural parameters. Perform model evaluation and tuning, use the training set and validation set to train the model, and perform performance evaluation on the test set, and adjust the model's hyperparameters and structure to obtain more accurate inversion results.

可选地,参见图2,步骤S210包括:Optionally, referring to FIG. 2 , step S210 includes:

步骤S211,基于长短期记忆模型内部的门控单元捕捉所述结构参数中的长期依赖关系;Step S211, capturing the long-term dependency in the structural parameters based on the gating unit inside the long short-term memory model;

步骤S212,基于所述长期依赖关系确定所述结构参数对应的时间依赖性以及参数信息;Step S212, determining the time dependency and parameter information corresponding to the structural parameters based on the long-term dependency;

步骤S213,基于注意力机制对所述长期依赖关系的隐藏状态进行加权求和,提取关注特征;Step S213, performing weighted summation on the hidden states of the long-term dependency relationship based on the attention mechanism to extract attention features;

步骤S214,基于所述时间依赖性、所述参数信息以及所述关注特征预测所述天线的所述目标S参数频谱曲线。Step S214: predicting the target S-parameter spectrum curve of the antenna based on the time dependency, the parameter information, and the focus feature.

作为一种可选实施方式,将结构参数序列输入到长短期记忆(LSTM)模型中作为输入。LSTM模型内部的门控单元能够捕捉到输入序列中的长期依赖关系,通过自适应地选择性记忆和遗忘部分历史信息。使用LSTM模型进行训练,学习结构参数序列中的长期依赖关系。根据训练好的LSTM模型,获取每个时刻的隐藏状态信息。对这些隐藏状态计算注意力权重,以捕捉到重要的时间依赖关系。在时间维度上,将每个时刻的隐藏状态与对应的注意力权重相乘并求和,得到关注特征。使用注意力机制对隐藏状态进行加权求和,以提取关注的特征。注意力机制可以根据隐藏状态的重要性分配不同的权重,以捕捉到长期依赖关系中的关键信息。将关注特征与时间依赖性、参数信息进行组合。使用组合后的特征作为输入,经过预测模型,例如多层感知机(MLP)模型,进行目标S参数频谱曲线的预测。通过训练和优化预测模型,使得其能够准确地预测出天线的目标S参数频谱曲线。As an optional implementation, the structural parameter sequence is input into a long short-term memory (LSTM) model as input. The gated unit inside the LSTM model can capture the long-term dependency in the input sequence by adaptively selectively memorizing and forgetting some historical information. The LSTM model is used for training to learn the long-term dependency in the structural parameter sequence. According to the trained LSTM model, the hidden state information at each moment is obtained. The attention weight is calculated for these hidden states to capture important time dependencies. In the time dimension, the hidden state at each moment is multiplied and summed with the corresponding attention weight to obtain the attention feature. The attention mechanism is used to perform weighted summation on the hidden states to extract the attention feature. The attention mechanism can assign different weights according to the importance of the hidden state to capture the key information in the long-term dependency. The attention feature is combined with the time dependency and parameter information. The combined feature is used as input, and the target S parameter spectrum curve is predicted through a prediction model, such as a multi-layer perceptron (MLP) model. The prediction model is trained and optimized so that it can accurately predict the target S parameter spectrum curve of the antenna.

作为另一种可选实施方式,利用LSTM+Attention模型进行正向S参数频谱曲线预测时,LSTM网络通过其内部的门控单元,能够有效地捕捉序列数据中的长期依赖关系,并且保持对序列中先前信息的记忆。LSTM网络会将接收到微带贴片天线的结构参数序列作为输入,并通过序列学习来提取这些参数的特征。这些特征包含了结构参数序列中的时间依赖性和相关信息,以便模型能够对未来的S参数频谱曲线进行预测。通过引入Attention机制,模型可以对LSTM隐藏状态进行加权求和,从而进一步提取出重要的特征,以便在预测过程中更加关注相关的信息,从而提高预测的准确性。As another optional implementation, when using the LSTM+Attention model to predict the forward S-parameter spectrum curve, the LSTM network can effectively capture the long-term dependencies in the sequence data through its internal gating unit and maintain the memory of the previous information in the sequence. The LSTM network will receive the structural parameter sequence of the microstrip patch antenna as input and extract the features of these parameters through sequence learning. These features contain the time dependency and related information in the structural parameter sequence so that the model can predict the future S-parameter spectrum curve. By introducing the Attention mechanism, the model can perform weighted summation on the LSTM hidden state, thereby further extracting important features, so that more attention can be paid to relevant information during the prediction process, thereby improving the accuracy of the prediction.

可选地,步骤S210之前,对模型进行训练,在训练LSTM+Attention模型时,将微带贴片天线的S参数频谱曲线和结构参数输入到模型中,其中输入为微带贴片天线的结构参数,S参数频谱曲线为标签;LSTM网络能够有效地捕捉S参数序列数据和结构参数之间复杂的关联性特征,高效预测出给定微带贴片天线结构对应的S参数频谱曲线,对比其他传统的神经网络算法具有较低的均方误差。Optionally, before step S210, the model is trained. When training the LSTM+Attention model, the S-parameter spectrum curve and structural parameters of the microstrip patch antenna are input into the model, wherein the input is the structural parameters of the microstrip patch antenna, and the S-parameter spectrum curve is the label; the LSTM network can effectively capture the complex correlation characteristics between the S-parameter sequence data and the structural parameters, and efficiently predict the S-parameter spectrum curve corresponding to a given microstrip patch antenna structure, with a lower mean square error than other traditional neural network algorithms.

可选地,步骤S220包括:Optionally, step S220 includes:

步骤S221,基于所述S参数频谱曲线作为转换器模型中编码器的输入序列;Step S221, using the S-parameter spectrum curve as an input sequence of an encoder in a converter model;

步骤S222,基于自注意力机制对所述输入序列进行关联性建模,确定参数特征;Step S222, performing correlation modeling on the input sequence based on a self-attention mechanism to determine parameter features;

步骤S223,基于所述转换器模型的输出层将所述参数特征映射至所述天线的结构参数空间,确定所述目标结构参数。Step S223: Mapping the parameter features to the structural parameter space of the antenna based on the output layer of the converter model to determine the target structural parameters.

作为一种可选实施方式,基于S参数频谱曲线作为转换器模型中编码器的输入序列的步骤,将S参数频谱曲线转换为序列形式作为转换器模型的输入。S参数频谱曲线可能是一个包含不同频率上参数值的向量序列,或是一个时间序列,根据具体应用而定。基于自注意力机制对输入序列进行关联性建模,确定参数特征的步骤,使用自注意力机制对输入序列进行建模,以捕获序列中不同元素之间的关联性。自注意力机制可以根据输入序列中每个元素的重要性,自适应地分配不同的权重,以获得参数特征。基于转换器模型的输出层将参数特征映射至天线的结构参数空间,确定目标结构参数的步骤,使用转换器模型的输出层将参数特征映射至天线的结构参数空间。输出层可以是一个全连接层,将参数特征映射为目标结构参数。训练转换器模型时,需要使用带有目标结构参数的样本数据进行训练,以优化输出层的参数。As an optional implementation, based on the step of using the S-parameter spectrum curve as an input sequence of the encoder in the converter model, the S-parameter spectrum curve is converted into a sequence form as an input of the converter model. The S-parameter spectrum curve may be a vector sequence containing parameter values at different frequencies, or a time series, depending on the specific application. Based on the self-attention mechanism, the input sequence is modeled for correlation and the parameter features are determined. The input sequence is modeled using the self-attention mechanism to capture the correlation between different elements in the sequence. The self-attention mechanism can adaptively assign different weights according to the importance of each element in the input sequence to obtain the parameter features. Based on the output layer of the converter model, the parameter features are mapped to the structural parameter space of the antenna, and the step of determining the target structural parameters is to use the output layer of the converter model to map the parameter features to the structural parameter space of the antenna. The output layer can be a fully connected layer that maps the parameter features to the target structural parameters. When training the converter model, sample data with the target structural parameters need to be used for training to optimize the parameters of the output layer.

作为另一种可选实施方式,利用Transformer模型进行逆向结构参数反演时,编码器的主要作用是特征提取。Transformer模型中的编码器由多个相同结构的层组成,每个层中包含了自注意力机制和前馈神经网络。在逆向结构参数反演中,输入是微带贴片天线的S参数频谱曲线,Transformer模型中的编码器将这些S参数作为输入序列,并通过自注意力机制来对序列中的各个元素进行关联性建模,从而提取特征。这些特征包含了S参数序列中的相关信息和相互之间的依赖关系。最后,通过Transformer模型的输出层,可以将提取到的特征映射到天线的结构参数空间中,从而实现逆向反演。As another optional implementation, when the Transformer model is used for reverse structural parameter inversion, the main function of the encoder is feature extraction. The encoder in the Transformer model is composed of multiple layers of the same structure, each of which contains a self-attention mechanism and a feedforward neural network. In the reverse structural parameter inversion, the input is the S parameter spectrum curve of the microstrip patch antenna. The encoder in the Transformer model takes these S parameters as the input sequence and uses the self-attention mechanism to model the correlation of each element in the sequence to extract features. These features contain relevant information in the S parameter sequence and the dependencies between them. Finally, through the output layer of the Transformer model, the extracted features can be mapped to the structural parameter space of the antenna, thereby realizing reverse inversion.

可选地,步骤S220之前,还包括对逆向反演模型进行训练,其训练过程为:在训练Transformer模型时,将微带贴片天线的S参数频谱曲线和结构参数输入到模型中,其中输入数据为S参数频谱曲线,结构参数为标签;Transformer模型以序列到序列(seq2seq)的方式处理微带贴片天线的结构参数预测任务,能够直接从S参数曲线中学习到结构参数之间的复杂关系;同时,Transformer模型引入了全局注意力机制,使得模型可以同时关注到S参数频谱曲线序列中的所有位置,从而更好地捕捉到结构参数之间的全局依赖关系,这在微带贴片天线设计中有利于探究整体结构对性能的影响;而Transformer模型中的自注意力机制则能够根据输入序列中每个结构参数之间的相互关系动态调整权重,从而能够更好地捕捉到结构参数之间的依赖关系,这对于微带贴片天线结构参数预测非常有效。Optionally, before step S220, the inverse inversion model is also included to be trained, and the training process is as follows: when training the Transformer model, the S parameter spectrum curve and structural parameters of the microstrip patch antenna are input into the model, wherein the input data is the S parameter spectrum curve and the structural parameters are labels; the Transformer model processes the structural parameter prediction task of the microstrip patch antenna in a sequence-to-sequence (seq2seq) manner, and can directly learn the complex relationship between the structural parameters from the S parameter curve; at the same time, the Transformer model introduces a global attention mechanism, so that the model can simultaneously pay attention to all positions in the S parameter spectrum curve sequence, so as to better capture the global dependency between the structural parameters, which is beneficial to explore the impact of the overall structure on the performance in the design of the microstrip patch antenna; and the self-attention mechanism in the Transformer model can dynamically adjust the weights according to the relationship between each structural parameter in the input sequence, so as to better capture the dependency between the structural parameters, which is very effective for predicting the structural parameters of the microstrip patch antenna.

在本实施例中,一方面,使用LSTM+Attention模型由输入的结构参数快速高效预测出其S参数频谱曲线,可以节约由HFS等仿真软件进行仿真计算的时间,并避免在仿真建模过程中可能出现的操作失误。另一方面,使用Transformer模型由输入的S参数频谱曲线快速高效预测出天线结构参数,可以节约根据经验法试错反演的时间,降低设计人员的学识要求。最后,使用VAE+BPNN+SWO模型,结合用户具体需要对微带贴片天线进行优化,使设计出的微带天线具有更好的性能,同时可以节约大量迭代优化的时间。In this embodiment, on the one hand, the LSTM+Attention model is used to quickly and efficiently predict the S parameter spectrum curve from the input structural parameters, which can save the time of simulation calculation by simulation software such as HFS and avoid possible operational errors in the simulation modeling process. On the other hand, the Transformer model is used to quickly and efficiently predict the antenna structure parameters from the input S parameter spectrum curve, which can save the time of trial and error inversion based on empirical methods and reduce the knowledge requirements of designers. Finally, the VAE+BPNN+SWO model is used to optimize the microstrip patch antenna in combination with the specific needs of the user, so that the designed microstrip antenna has better performance and can save a lot of iterative optimization time.

基于实施例一或者实施例二,本申请实施例三提出一种微带贴片天线的优化设计方法,参见图3,步骤S130之后,包括:Based on the first or second embodiment, the third embodiment of the present application proposes an optimization design method for a microstrip patch antenna, referring to FIG. 3 , after step S130, including:

步骤S310,对所述天线参数进行数据降维并提取关键特征。Step S310, performing data dimension reduction on the antenna parameters and extracting key features.

在本实施例中,针对原始的天线参数数据,可以通过常见的降维技术(如主成分分析、特征选择等)对数据进行降维。降维后的数据可能包含更少但具有信息丰富度的关键特征,以减少模型的复杂性和计算量。In this embodiment, the original antenna parameter data may be reduced in dimension by using common dimension reduction techniques (such as principal component analysis, feature selection, etc.) The reduced-dimensional data may contain fewer but more informative key features to reduce the complexity and computational complexity of the model.

步骤S320,基于所述关键特征以及反向传播算法学习所述结构参数与天线性能之间的非线性关系。Step S320: learning the nonlinear relationship between the structural parameters and the antenna performance based on the key features and a back propagation algorithm.

在本实施例中,使用提取的关键特征作为输入,利用反向传播算法训练一个神经网络模型。神经网络模型的输出为天线的目标S参数频谱曲线或目标结构参数。神经网络可以是多层感知机,也可以是逆向反演模型,即Transformer模型,通过多个隐藏层和激活函数来学习非线性关系。In this embodiment, the extracted key features are used as input to train a neural network model using a back propagation algorithm. The output of the neural network model is the target S parameter spectrum curve or target structural parameter of the antenna. The neural network can be a multi-layer perceptron or a reverse inversion model, i.e., a Transformer model, which learns nonlinear relationships through multiple hidden layers and activation functions.

步骤S330,基于所述非线性关系训练所述逆向反演模型。Step S330: training the reverse inversion model based on the nonlinear relationship.

在本实施例中,使用训练好的正向预测模型的权重和结构参数与天线性能之间的非线性关系作为逆向反演模型的输入和标签。使用逆向反演模型通过反向传播算法进行训练,以学习从天线性能向目标结构参数的映射。In this embodiment, the weights of the trained forward prediction model and the nonlinear relationship between the structural parameters and the antenna performance are used as the input and label of the reverse inversion model. The reverse inversion model is trained by the back propagation algorithm to learn the mapping from the antenna performance to the target structural parameters.

作为一种可选实施方式,用VAE+BPNN+SWO完成微带贴片天线的性能优化设计,其中,VAE(Variational Autoencoder,变分自编码器)用于学习微带贴片天线的结构参数的潜在表示,以降低数据维度并提取关键特征;BPNN(Backpropagation Neural Network,反向传播神经网络)利用VAE学习到的低维潜在表示,通过反向传播算法训练神经网络模型,以实现对微带贴片天线的结构参数的准确预测。通过反向传播算法,模型可以学习到结构参数与微带贴片天线性能之间的复杂非线性关系。WSO(Sine Wave Optimization,正弦波优化算法)通过加权求和的方式综合考虑微带贴片天线的多个性能指标,从而在优化过程中实现多目标优化。通过调整权重,可以实现不同性能指标之间的平衡,从而得到更优的微带贴片天线设计。As an optional implementation, VAE+BPNN+SWO is used to complete the performance optimization design of the microstrip patch antenna. VAE (Variational Autoencoder) is used to learn the potential representation of the structural parameters of the microstrip patch antenna to reduce the data dimension and extract key features; BPNN (Backpropagation Neural Network) uses the low-dimensional potential representation learned by VAE to train the neural network model through the backpropagation algorithm to accurately predict the structural parameters of the microstrip patch antenna. Through the backpropagation algorithm, the model can learn the complex nonlinear relationship between the structural parameters and the performance of the microstrip patch antenna. WSO (Sine Wave Optimization) comprehensively considers multiple performance indicators of the microstrip patch antenna by weighted summation, thereby achieving multi-objective optimization in the optimization process. By adjusting the weights, a balance between different performance indicators can be achieved, resulting in a better microstrip patch antenna design.

在本实施例中,VAE(Variational Autoencoder):变分自编码器是一种无监督学习的神经网络模型,由编码器和解码器组成。它可以用于学习和提取输入数据的潜在特征表示,并可以用于生成与原始数据类似的新样本。在微带贴片天线设计中,VAE可以用于降维和特征提取,从原始天线参数中学习关键特征。BPNN(Backpropagation NeuralNetwork):反向传播神经网络是一种常用的机器学习算法,可以用于训练具有多个隐藏层的神经网络模型。在微带贴片天线设计中,BPNN可以用于学习输入特征和输出目标之间的非线性映射关系,例如学习结构参数与天线性能之间的关系。SWO(Sine WaveOptimization):正弦波优化算法是一种基于正弦波函数的全局优化算法,用于寻找优化问题的最优解。在微带贴片天线设计中,SWO算法可以用于搜索和优化天线结构参数的取值,以最大化天线性能,例如最大化效率或带宽。In this embodiment, VAE (Variational Autoencoder): Variational Autoencoder is a neural network model for unsupervised learning, which consists of an encoder and a decoder. It can be used to learn and extract the potential feature representation of input data, and can be used to generate new samples similar to the original data. In the design of microstrip patch antennas, VAE can be used for dimensionality reduction and feature extraction, and learn key features from the original antenna parameters. BPNN (Backpropagation Neural Network): Backpropagation Neural Network is a commonly used machine learning algorithm that can be used to train a neural network model with multiple hidden layers. In the design of microstrip patch antennas, BPNN can be used to learn the nonlinear mapping relationship between input features and output targets, such as the relationship between learning structural parameters and antenna performance. SWO (Sine Wave Optimization): Sine wave optimization algorithm is a global optimization algorithm based on sine wave function, which is used to find the optimal solution to the optimization problem. In the design of microstrip patch antennas, the SWO algorithm can be used to search and optimize the values of antenna structural parameters to maximize antenna performance, such as maximizing efficiency or bandwidth.

可选地,在步骤S130之后,还包括:通过比较均方误差(MSE)来判断是否符合要求,对微带贴片的S参数频谱曲线进行优化。一般微带贴片天线的S参数在谐振点的-10dB以下即可将其视作天线性能良好,对此进一步进行性能优化,使回波损耗尽可能地小,设定当微带贴片天线在谐振点的回波损耗在-15dB以下判断为符合优化完成的条件。Optionally, after step S130, the method further includes: comparing the mean square error (MSE) to determine whether the requirements are met, and optimizing the S parameter spectrum curve of the microstrip patch. Generally, if the S parameter of a microstrip patch antenna is below -10dB at the resonance point, it can be regarded as having good antenna performance. Further performance optimization is performed to minimize the return loss. It is set that when the return loss of the microstrip patch antenna at the resonance point is below -15dB, it is determined to meet the optimization completion condition.

参见图4,微带贴片天线的优化设计方法的整体流程为:在用户输入微带贴片天线的结构参数或者S参数频谱曲线,当输入的是结构参数时,进行正向S参数频谱曲线预测,即给予输入的结构参数,使用LSTM+Attention模型,输出S参数频谱曲线。当输入的不是结构参数,是S参数频谱曲线时,使用Transformer模型输出结构参数,基于输出的结构参数进行HFS仿真,输出S参数频谱曲线,此时判定是否符合要求或者达到最大迭代次数,若否,则重新执行判断输入的是否为结构参数的步骤。若是,则将两者,即正向预测模型和逆向反演模型输出的S参数频谱曲线进行对比,并使用均方误差来评判预测的好坏,当均方误差在接受范围内则表明预测成功,即不需要优化,将预测的结果进行输出。若均方误差不在接受范围内则表明预测需要优化,此时通过VAE+BPNN+SWO对预测值进行性能优化,判断是否达到优化要求或者达到最大迭代次数,若否则重新执行优化,若是,则输出优化结果。Referring to FIG4 , the overall process of the optimization design method of the microstrip patch antenna is as follows: when the user inputs the structural parameters or S parameter spectrum curve of the microstrip patch antenna, when the input is the structural parameters, the forward S parameter spectrum curve prediction is performed, that is, the input structural parameters are given, and the LSTM+Attention model is used to output the S parameter spectrum curve. When the input is not the structural parameters but the S parameter spectrum curve, the Transformer model is used to output the structural parameters, and the HFS simulation is performed based on the output structural parameters to output the S parameter spectrum curve. At this time, it is determined whether it meets the requirements or reaches the maximum number of iterations. If not, the step of determining whether the input is a structural parameter is re-executed. If so, the S parameter spectrum curves output by the two, that is, the forward prediction model and the reverse inversion model, are compared, and the mean square error is used to judge the quality of the prediction. When the mean square error is within the acceptable range, it indicates that the prediction is successful, that is, no optimization is required, and the prediction result is output. If the mean square error is not within the acceptable range, it indicates that the prediction needs to be optimized. At this time, VAE+BPNN+SWO is used to optimize the performance of the predicted value to determine whether the optimization requirements are met or the maximum number of iterations is reached. If not, the optimization is re-executed. If so, the optimization result is output.

由于采用了对所述天线参数进行数据降维并提取关键特征;基于所述关键特征以及反向传播算法学习所述结构参数与天线性能之间的非线性关系;基于所述非线性关系训练所述逆向反演模型,实现了基于用户的选择来确定不同性能指标之间的平衡,从而得到更优的微带贴片天线设计。By performing data dimensionality reduction on the antenna parameters and extracting key features; learning the nonlinear relationship between the structural parameters and the antenna performance based on the key features and a back propagation algorithm; and training the inverse inversion model based on the nonlinear relationship, it is possible to determine the balance between different performance indicators based on user selection, thereby obtaining a better microstrip patch antenna design.

本申请还提出一种微带贴片天线的优化设计设备,参照图5,图5为本申请实施例方案涉及的硬件运行环境的微带贴片天线的优化设计设备结构示意图。The present application also proposes an optimization design device for a microstrip patch antenna, referring to FIG5 , which is a schematic diagram of the structure of the optimization design device for a microstrip patch antenna in the hardware operating environment involved in the embodiment of the present application.

如图5所示,该微带贴片天线的优化设计设备可以包括:处理器1001,例如中央处理器(Central ProceSing Unit,CPU),通信总线1002、用户接口1003,网络接口1004,存储器1005。其中,通信总线1002用于实现这些组件之间的连接通信。用户接口1003可以包括显示屏(Display)、输入单元比如键盘(Keyboard),可选用户接口1003还可以包括标准的有线接口、无线接口。网络接口1004可选的可以包括标准的有线接口、无线接口(如无线保真(WIreleS-FIdelity,WI-FI)接口)。存储器1005可以是高速的随机存取存储器(RandomAcceS Memory,RAM)存储器,也可以是稳定的非易失性存储器(Non-Volatile Memory,NVM),例如磁盘存储器。存储器1005可选的还可以是独立于前述处理器1001的存储装置。As shown in FIG5 , the optimization design device of the microstrip patch antenna may include: a processor 1001, such as a central processing unit (CPU), a communication bus 1002, a user interface 1003, a network interface 1004, and a memory 1005. Among them, the communication bus 1002 is used to realize the connection and communication between these components. The user interface 1003 may include a display screen (Display), an input unit such as a keyboard (Keyboard), and the optional user interface 1003 may also include a standard wired interface and a wireless interface. The network interface 1004 may optionally include a standard wired interface and a wireless interface (such as a wireless fidelity (WIreleS-FIdelity, WI-FI) interface). The memory 1005 may be a high-speed random access memory (RandomAcceS Memory, RAM) memory, or a stable non-volatile memory (Non-Volatile Memory, NVM), such as a disk memory. The memory 1005 may also be a storage device independent of the aforementioned processor 1001.

本领域技术人员可以理解,图5中示出的结构并不构成对微带贴片天线的优化设计设备的限定,可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置。Those skilled in the art will appreciate that the structure shown in FIG. 5 does not constitute a limitation on the optimized design device for the microstrip patch antenna, and may include more or fewer components than shown, or a combination of certain components, or a different arrangement of components.

可选地,存储器1005与处理器1001电性连接,处理器1001可用于控制存储器1005的运行,还可以读取存储器1005中的数据以实现微带贴片天线的优化设计。Optionally, the memory 1005 is electrically connected to the processor 1001 , and the processor 1001 can be used to control the operation of the memory 1005 , and can also read data in the memory 1005 to achieve an optimized design of the microstrip patch antenna.

可选地,如图5所示,作为一种存储介质的存储器1005中可以包括操作系统、数据存储模块、网络通信模块、用户接口模块以及微带贴片天线的优化设计程序。Optionally, as shown in FIG. 5 , the memory 1005 as a storage medium may include an operating system, a data storage module, a network communication module, a user interface module, and an optimization design program for a microstrip patch antenna.

可选地,在图5所示的微带贴片天线的优化设计设备中,网络接口1004主要用于与其他设备进行数据通信;用户接口1003主要用于与用户进行数据交互;本申请微带贴片天线的优化设计设备中的处理器1001、存储器1005可以设置在微带贴片天线的优化设计设备中。Optionally, in the optimization design device for the microstrip patch antenna shown in Figure 5, the network interface 1004 is mainly used for data communication with other devices; the user interface 1003 is mainly used for data interaction with the user; the processor 1001 and the memory 1005 in the optimization design device for the microstrip patch antenna of the present application can be set in the optimization design device for the microstrip patch antenna.

如图5所示,所述微带贴片天线的优化设计设备通过处理器1001调用存储器1005中存储的微带贴片天线的优化设计程序,并执行本申请实施例提供的微带贴片天线的优化设计方法的相关步骤操作:As shown in FIG5 , the microstrip patch antenna optimization design device calls the microstrip patch antenna optimization design program stored in the memory 1005 through the processor 1001, and performs the relevant steps of the microstrip patch antenna optimization design method provided in the embodiment of the present application:

在接收到天线参数时,确定所述天线参数对应的参数类型;Upon receiving the antenna parameter, determining a parameter type corresponding to the antenna parameter;

基于所述参数类型确定正向预测模型或逆向反演模型,其中,所述正向预测模型为混合模型;Determining a forward prediction model or a reverse inversion model based on the parameter type, wherein the forward prediction model is a hybrid model;

基于所述正向预测模型或逆向反演模型对所述天线参数进行处理,确定天线的目标S参数频谱曲线或目标结构参数。The antenna parameters are processed based on the forward prediction model or the reverse inversion model to determine a target S parameter spectrum curve or a target structural parameter of the antenna.

可选地,处理器1001可以调用存储器1005中存储的微带贴片天线的优化设计程序,还执行以下操作:Optionally, the processor 1001 may call an optimization design program for a microstrip patch antenna stored in the memory 1005, and further perform the following operations:

在接收到天线参数对应的输入值时,对所述输入值进行判断;Upon receiving an input value corresponding to an antenna parameter, determining the input value;

根据判断结果确定所述天线参数的参数类型为结构参数或S参数频谱曲线。According to the judgment result, it is determined that the parameter type of the antenna parameter is a structural parameter or an S-parameter spectrum curve.

可选地,处理器1001可以调用存储器1005中存储的微带贴片天线的优化设计程序,还执行以下操作:Optionally, the processor 1001 may call an optimization design program for a microstrip patch antenna stored in the memory 1005, and further perform the following operations:

当所述参数类型为结构参数时,确定所述正向预测模型为长短期记忆模型混合注意力机制模型;When the parameter type is a structural parameter, determining that the forward prediction model is a long short-term memory model hybrid attention mechanism model;

当所述参数类型为S参数频谱曲线时,确定所述逆向反演模型为转换器模型。When the parameter type is an S-parameter spectrum curve, the reverse inversion model is determined to be a converter model.

可选地,处理器1001可以调用存储器1005中存储的微带贴片天线的优化设计程序,还执行以下操作:Optionally, the processor 1001 may call an optimization design program for a microstrip patch antenna stored in the memory 1005, and further perform the following operations:

基于所述正向预测模型处理结构参数,确定所述天线的所述目标S参数频谱曲线;或,Determine the target S-parameter spectrum curve of the antenna based on the forward prediction model processing structure parameters; or,

基于所述逆向反演模型处理S参数频谱曲线,确定所述天线的目标结构参数。The target structural parameters of the antenna are determined by processing the S-parameter spectrum curve based on the inverse inversion model.

可选地,处理器1001可以调用存储器1005中存储的微带贴片天线的优化设计程序,还执行以下操作:Optionally, the processor 1001 may call an optimization design program for a microstrip patch antenna stored in the memory 1005, and further perform the following operations:

基于长短期记忆模型内部的门控单元捕捉所述结构参数中的长期依赖关系;The gating unit inside the long short-term memory model captures the long-term dependencies in the structural parameters;

基于所述长期依赖关系确定所述结构参数对应的时间依赖性以及参数信息;Determining the time dependency and parameter information corresponding to the structural parameters based on the long-term dependency;

基于注意力机制对所述长期依赖关系的隐藏状态进行加权求和,提取关注特征;Based on the attention mechanism, weighted summation is performed on the hidden states of the long-term dependency to extract the attention features;

基于所述时间依赖性、所述参数信息以及所述关注特征预测所述天线的所述目标S参数频谱曲线。The target S-parameter spectrum curve of the antenna is predicted based on the time dependency, the parameter information, and the feature of interest.

可选地,处理器1001可以调用存储器1005中存储的微带贴片天线的优化设计程序,还执行以下操作:Optionally, the processor 1001 may call an optimization design program for a microstrip patch antenna stored in the memory 1005, and further perform the following operations:

基于所述S参数频谱曲线作为转换器模型中编码器的输入序列;Based on the S-parameter spectrum curve as an input sequence of an encoder in a converter model;

基于自注意力机制对所述输入序列进行关联性建模,确定参数特征;Based on the self-attention mechanism, the input sequence is modeled for correlation to determine parameter features;

基于所述转换器模型的输出层将所述参数特征映射至所述天线的结构参数空间,确定所述目标结构参数。The parameter features are mapped to the structural parameter space of the antenna based on the output layer of the converter model to determine the target structural parameters.

可选地,处理器1001可以调用存储器1005中存储的微带贴片天线的优化设计程序,还执行以下操作:Optionally, the processor 1001 may call an optimization design program for a microstrip patch antenna stored in the memory 1005, and further perform the following operations:

对所述天线参数进行数据降维并提取关键特征;Performing data dimension reduction on the antenna parameters and extracting key features;

基于所述关键特征以及反向传播算法学习所述结构参数与天线性能之间的非线性关系;Learning the nonlinear relationship between the structural parameters and the antenna performance based on the key features and the back propagation algorithm;

基于所述非线性关系训练所述逆向反演模型。The reverse inversion model is trained based on the nonlinear relationship.

此外,本申请还提出一种微带贴片天线的优化设计装置,所述微带贴片天线的优化设计装置包括:In addition, the present application also proposes an optimization design device for a microstrip patch antenna, the optimization design device for a microstrip patch antenna comprising:

选择模块,用于在接收到天线参数时,确定所述天线参数对应的参数类型;基于所述参数类型确定正向预测模型或逆向反演模型,其中,所述正向预测模型为混合模型;A selection module, configured to determine, upon receiving antenna parameters, a parameter type corresponding to the antenna parameters; and determine a forward prediction model or a reverse inversion model based on the parameter type, wherein the forward prediction model is a hybrid model;

正向频谱曲线预测模块,用于基于正向预测模型处理结构参数,确定天线的所述目标S参数频谱曲线;A forward spectrum curve prediction module, used to process structural parameters based on a forward prediction model to determine the target S-parameter spectrum curve of the antenna;

逆向结构参数反演模块,用于基于所述逆向反演模型处理S参数频谱曲线,确定所述天线的目标结构参数。The inverse structural parameter inversion module is used to process the S parameter spectrum curve based on the inverse inversion model to determine the target structural parameters of the antenna.

在本实施例中,正向频谱曲线预测模块,即对微带贴片天线的S参数频谱曲线进行高精度、高效率的预测。逆向结构参数反演模块,即用户可以根据所输入S参数频谱曲线反演出对应的结构参数,从而设计出微带贴片天线结构,并且将预测出的S参数频谱曲线和真实S参数频谱曲线进行比对,以验证反演出的结构参数是否符合设计标准。性能优化模块,用于对微带贴片天线性能优化,即对微带贴片的S参数频谱曲线进行优化。一般微带贴片天线的S参数在谐振点的-10dB以下即可将其视作天线性能良好,对此进一步进行性能优化,使回波损耗尽可能地小。设定当微带贴片天线在谐振点的回波损耗在-15dB以下判断为符合优化完成的条件。In this embodiment, the forward spectrum curve prediction module is used to predict the S parameter spectrum curve of the microstrip patch antenna with high precision and high efficiency. The reverse structural parameter inversion module is used to invert the corresponding structural parameters according to the input S parameter spectrum curve, so as to design the microstrip patch antenna structure, and compare the predicted S parameter spectrum curve with the real S parameter spectrum curve to verify whether the inverted structural parameters meet the design standards. The performance optimization module is used to optimize the performance of the microstrip patch antenna, that is, to optimize the S parameter spectrum curve of the microstrip patch. Generally, the S parameter of the microstrip patch antenna is below -10dB at the resonance point, which can be regarded as a good antenna performance. Further performance optimization is performed to make the return loss as small as possible. It is set that when the return loss of the microstrip patch antenna at the resonance point is below -15dB, it is judged to meet the conditions for the completion of optimization.

进一步地,还包括S参数频谱曲线预测和结构参数反演的精度评估模块,通过比较均方误差(MSE)来判断是否符合要求。Furthermore, it also includes an accuracy assessment module for S-parameter spectrum curve prediction and structural parameter inversion, which determines whether it meets the requirements by comparing the mean square error (MSE).

在本实施例中,使用LSTM+Attention模型,对用户输入的结构参数进行快速预测,同时将与该组结构参数的HFS仿真得出的S参数频谱曲线进行对比,并使用均方误差来评判预测的好坏,当均方误差在一定可接受范围内则表明预测成功。逆向结构参数反演模块,使用Transformer模型,对用户输入的S参数频谱曲线进行快速预测,同时将预测出的结构参数放到HFS中进行仿真,将两者的S参数频谱曲线进行对比,并使用均方误差来评判预测的好坏,当均方误差在一定可接受范围内则表明预测成功。性能优化模块,使用VAE+BPNN+SWO模型,对需要优化的结构参数或者S参数频谱曲线进行性能优化。对于微带贴片天线而言,回波损耗是一个主要的评估性能的影响因素,在本实验中主要优化谐振点处的回波损耗,使其尽可能地小,一般回波损耗在-10dB以下可视作性能良好。在选择进行优化的情况下,使回波损耗达到-15dB以下则算达到优化目标,即完成优化。In this embodiment, the LSTM+Attention model is used to quickly predict the structural parameters input by the user, and the S parameter spectrum curve obtained by HFS simulation of the group of structural parameters is compared, and the mean square error is used to judge the quality of the prediction. When the mean square error is within a certain acceptable range, it indicates that the prediction is successful. The reverse structural parameter inversion module uses the Transformer model to quickly predict the S parameter spectrum curve input by the user, and puts the predicted structural parameters into HFS for simulation, compares the S parameter spectrum curves of the two, and uses the mean square error to judge the quality of the prediction. When the mean square error is within a certain acceptable range, it indicates that the prediction is successful. The performance optimization module uses the VAE+BPNN+SWO model to optimize the performance of the structural parameters or S parameter spectrum curves that need to be optimized. For microstrip patch antennas, return loss is a major factor affecting performance evaluation. In this experiment, the return loss at the resonance point is mainly optimized to make it as small as possible. Generally, a return loss below -10dB can be regarded as good performance. When optimization is selected, the optimization target is achieved when the return loss is below -15dB, that is, the optimization is completed.

此外,本申请还提出一种计算机可读存储介质,所述计算机可读存储介质上存储有微带贴片天线的优化设计程序,所述微带贴片天线的优化设计程序被处理器执行时实现如上各个实施例所述的微带贴片天线的优化设计方法的步骤。In addition, the present application also proposes a computer-readable storage medium, which stores an optimization design program for a microstrip patch antenna. When the optimization design program for the microstrip patch antenna is executed by a processor, the steps of the optimization design method for the microstrip patch antenna described in the above embodiments are implemented.

本领域内的技术人员应明白,本申请的实施例可提供为方法、系统或计算机程序产品。因此,本申请可采用完全硬件实施例、完全软件实施例,或结合软件和硬件方面的实施例的形式。而且,本申请可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。Those skilled in the art will appreciate that the embodiments of the present application may be provided as methods, systems or computer program products. Therefore, the present application may take the form of a complete hardware embodiment, a complete software embodiment, or an embodiment combining software and hardware. Moreover, the present application may take the form of a computer program product implemented on one or more computer-usable storage media (including but not limited to disk storage, CD-ROM, optical storage, etc.) containing computer-usable program codes.

本申请是参照根据本申请实施例的方法、设备(系统)和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框,以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。The present application is described with reference to the flowcharts and/or block diagrams of the methods, devices (systems) and computer program products according to the embodiments of the present application. It should be understood that each process and/or box in the flowchart and/or block diagram, as well as the combination of the processes and/or boxes in the flowchart and/or block diagram, can be implemented by computer program instructions. These computer program instructions can be provided to a processor of a general-purpose computer, a special-purpose computer, an embedded processor or other programmable data processing device to generate a machine, so that the instructions executed by the processor of the computer or other programmable data processing device generate a device for implementing the functions specified in one or more processes in the flowchart and/or one or more boxes in the block diagram.

这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。These computer program instructions may also be stored in a computer-readable memory that can direct a computer or other programmable data processing device to operate in a specific manner, so that the instructions stored in the computer-readable memory produce a manufactured product including an instruction device that implements the functions specified in one or more processes in the flowchart and/or one or more boxes in the block diagram.

这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。These computer program instructions may also be loaded onto a computer or other programmable data processing device so that a series of operational steps are executed on the computer or other programmable device to produce a computer-implemented process, whereby the instructions executed on the computer or other programmable device provide steps for implementing the functions specified in one or more processes in the flowchart and/or one or more boxes in the block diagram.

应当注意的是,在权利要求中,不应将位于括号之间的任何参考符号构造成对权利要求的限制。单词“包含”不排除存在未列在权利要求中的部件或步骤。位于部件之前的单词“一”或“一个”不排除存在多个这样的部件。本申请可以借助于包括有若干不同部件的硬件以及借助于适当编程的计算机来实现。在列举了若干装置的单元权利要求中,这些装置中的若干个可以是通过同一个硬件项来具体体现。单词第一、第二,以及第三等的使用不表示任何顺序。可将这些单词解释为名称。It should be noted that in the claims, any reference signs placed between brackets shall not be construed as limiting the claims. The word "comprising" does not exclude the presence of components or steps not listed in the claims. The word "a" or "an" preceding a component does not exclude the presence of a plurality of such components. The present application may be implemented by means of hardware comprising several different components and by means of a suitably programmed computer. In a unit claim enumerating several means, several of these means may be embodied by the same item of hardware. The use of the words first, second, and third etc. does not indicate any order. These words may be interpreted as names.

尽管已描述了本申请的优选实施例,但本领域内的技术人员一旦得知了基本创造性概念,则可对这些实施例作出另外的变更和修改。所以,所附权利要求意欲解释为包括优选实施例以及落入本申请范围的所有变更和修改。Although the preferred embodiments of the present application have been described, those skilled in the art may make other changes and modifications to these embodiments once they have learned the basic creative concept. Therefore, the appended claims are intended to be interpreted as including the preferred embodiments and all changes and modifications falling within the scope of the present application.

显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的精神和范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。Obviously, those skilled in the art can make various changes and modifications to the present application without departing from the spirit and scope of the present application. Thus, if these modifications and variations of the present application fall within the scope of the claims of the present application and their equivalents, the present application is also intended to include these modifications and variations.

Claims (7)

1. The method for optimally designing the microstrip patch antenna is characterized by comprising the following steps of:
when antenna parameters are received, determining the parameter types corresponding to the antenna parameters;
Determining a forward prediction model or a reverse inversion model based on the parameter type, wherein the forward prediction model is a hybrid model;
processing the antenna parameters based on the forward prediction model or the inverse inversion model, and determining a target S parameter spectrum curve or a target structure parameter of the antenna;
The step of determining a forward prediction model or a reverse inversion model based on the parameter type, wherein the forward prediction model is a hybrid model, comprises the following steps:
when the parameter type is a structural parameter, determining that the forward prediction model is a long-period memory model and short-period memory model mixed attention mechanism model;
When the parameter type is an S-parameter spectrum curve, determining the inverse inversion model as a converter model;
The step of processing the antenna parameters based on the forward prediction model or the inverse inversion model to determine a target S parameter spectrum curve or a target structure parameter of the antenna comprises the following steps:
Determining the target S parameter spectrum curve of the antenna based on the forward prediction model processing structure parameters; or alternatively, the first and second heat exchangers may be,
Processing an S-parameter spectrum curve based on the inverse inversion model, and determining a target structure parameter of the antenna;
The step of determining the target S parameter spectral curve or the target structural parameter of the antenna includes:
Performing data dimension reduction on the antenna parameters and extracting key features;
Learning a nonlinear relationship between the structural parameters and antenna performance based on the key features and a back propagation algorithm;
Training the inverse inversion model based on the nonlinear relationship.
2. The method for optimizing design of microstrip patch antenna according to claim 1, wherein said step of determining a type of parameter corresponding to an antenna parameter when receiving said antenna parameter comprises:
When receiving an input value corresponding to an antenna parameter, judging the input value;
And determining the parameter type of the antenna parameter as a structural parameter or an S-parameter spectrum curve according to the judging result.
3. The method of optimizing design of a microstrip patch antenna according to claim 1, wherein said step of determining said target S-parameter spectral curve of said antenna based on said forward prediction model processing structure parameters comprises:
Capturing a long-term dependency relationship in the structural parameters based on a gating unit in the long-term and short-term memory model;
determining the time dependence and parameter information corresponding to the structural parameters based on the long-term dependence;
Weighting and summing the hidden states of the long-term dependency relationship based on an attention mechanism, and extracting attention features;
Predicting the target S-parameter spectral curve of the antenna based on the time dependence, the parameter information and the feature of interest.
4. The method of optimizing design of microstrip patch antenna according to claim 1, wherein said step of determining a target structural parameter of said antenna based on said inverse inversion model processing S-parameter spectral curves comprises:
Taking the S parameter spectrum curve as an input sequence of an encoder in a converter model;
Performing relevance modeling on the input sequence based on a self-attention mechanism, and determining parameter characteristics;
the target structural parameters are determined based on mapping the parametric features to a structural parameter space of the antenna by an output layer of the converter model.
5. An apparatus for implementing the method for optimally designing a microstrip patch antenna according to claim 1, said apparatus comprising:
The selection module is used for determining the parameter type corresponding to the antenna parameter when the antenna parameter is received; determining a forward prediction model or a reverse inversion model based on the parameter type, wherein the forward prediction model is a hybrid model;
The forward spectrum curve prediction module is used for processing structural parameters based on a forward prediction model and determining the target S parameter spectrum curve of the antenna;
and the inverse structure parameter inversion module is used for processing the S-parameter spectrum curve based on the inverse inversion model and determining the target structure parameter of the antenna.
6. An apparatus for optimizing a microstrip patch antenna, comprising a memory, a processor, and an optimizing program for the microstrip patch antenna stored in the memory and operable on the processor, wherein the processor performs the steps of the optimizing method for the microstrip patch antenna according to any one of claims 1 to 4 when executing the optimizing program for the microstrip patch antenna.
7. A computer-readable storage medium, wherein the computer-readable storage medium has stored thereon an optimization design program for a microstrip patch antenna, which when executed by a processor, implements the steps of the optimization design method for a microstrip patch antenna according to any one of claims 1 to 4.
CN202410814332.7A 2024-06-24 2024-06-24 Method, device, equipment and medium for optimally designing microstrip patch antenna Active CN118395877B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202410814332.7A CN118395877B (en) 2024-06-24 2024-06-24 Method, device, equipment and medium for optimally designing microstrip patch antenna

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202410814332.7A CN118395877B (en) 2024-06-24 2024-06-24 Method, device, equipment and medium for optimally designing microstrip patch antenna

Publications (2)

Publication Number Publication Date
CN118395877A CN118395877A (en) 2024-07-26
CN118395877B true CN118395877B (en) 2024-08-20

Family

ID=92005928

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202410814332.7A Active CN118395877B (en) 2024-06-24 2024-06-24 Method, device, equipment and medium for optimally designing microstrip patch antenna

Country Status (1)

Country Link
CN (1) CN118395877B (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107831408A (en) * 2017-09-15 2018-03-23 河北省电力建设调整试验所 A kind of universal design of ultra high-frequency partial discharge sensor, optimization and method of testing
CN113587990A (en) * 2021-07-30 2021-11-02 中北大学 Parameter detection method, device and equipment based on microstrip antenna sensor

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117313558B (en) * 2023-11-29 2024-03-15 深圳飞骧科技股份有限公司 Optimizing method, optimizing system and related equipment for ultra-wideband antenna parameters with gradual change structure

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107831408A (en) * 2017-09-15 2018-03-23 河北省电力建设调整试验所 A kind of universal design of ultra high-frequency partial discharge sensor, optimization and method of testing
CN113587990A (en) * 2021-07-30 2021-11-02 中北大学 Parameter detection method, device and equipment based on microstrip antenna sensor

Also Published As

Publication number Publication date
CN118395877A (en) 2024-07-26

Similar Documents

Publication Publication Date Title
Marculescu et al. Hardware-aware machine learning: Modeling and optimization
US11386256B2 (en) Systems and methods for determining a configuration for a microarchitecture
CN113627066A (en) Displacement prediction method for reservoir bank landslide
EP4510036A1 (en) Circuit wiring determination method and related device
CN112669143A (en) Risk assessment method, device and equipment based on associated network and storage medium
CN115510795A (en) Data processing method and related device
CN111461445A (en) Short-term wind speed prediction method and device, computer equipment and storage medium
CN114386580A (en) Decision model training method and device, decision method and device, electronic equipment and storage medium
Yan et al. Efficient spiking neural network design via neural architecture search
Ma et al. Temporal pyramid recurrent neural network
Fu et al. Enhanced machine learning model via twin support vector regression for streamflow time series forecasting of hydropower reservoir
Chen et al. ACT‐GAN: Radio map construction based on generative adversarial networks with ACT blocks
CN118395877B (en) Method, device, equipment and medium for optimally designing microstrip patch antenna
CN118630744A (en) A photovoltaic power prediction method and system based on Bayesian parameter optimization
CN110830939A (en) Positioning method based on improved CPN-WLAN fingerprint positioning database
CN118376923A (en) Fuel cell voltage prediction method and device based on CNN-GRU
CN117541291A (en) An electricity price prediction method and system based on EMD decomposition and SSA-SVM model
US20240046065A1 (en) System, devices and/or processes for defining a search space for neural network processing device architectures
CN116709409A (en) Knowledge distillation-based lightweight spectrum prediction method
CN116047330A (en) Battery performance prediction method, model training method and related devices
CN108229572A (en) A kind of parameter optimization method and computing device
Fang et al. Interval prediction of PV power based on double sample entropy framework and integrated bidomain decomposition deep learning
CN112085146A (en) Service life prediction method of MKRVM (multi-level read-only memory) to RF-MEMS (radio frequency-micro-electromechanical systems) switch based on DE-QPSO (Degrees-Quadrature-time-delay Quadrature-time-of-use mechanism)
Peng et al. An Efficient Antenna Optimization Framework Based on Inverse Radial Basis Function Network
Wu et al. Surrogate model-based precipitation tuning for CAM5

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant