CN118146967A - 一种高效合成脂肪醇的菌株及其构建方法 - Google Patents

一种高效合成脂肪醇的菌株及其构建方法 Download PDF

Info

Publication number
CN118146967A
CN118146967A CN202211580749.9A CN202211580749A CN118146967A CN 118146967 A CN118146967 A CN 118146967A CN 202211580749 A CN202211580749 A CN 202211580749A CN 118146967 A CN118146967 A CN 118146967A
Authority
CN
China
Prior art keywords
strain
fatty alcohol
gene
peroxisome
methanol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202211580749.9A
Other languages
English (en)
Inventor
周雍进
翟晓鑫
高教琪
李云霞
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dalian Institute of Chemical Physics of CAS
Original Assignee
Dalian Institute of Chemical Physics of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dalian Institute of Chemical Physics of CAS filed Critical Dalian Institute of Chemical Physics of CAS
Priority to CN202211580749.9A priority Critical patent/CN118146967A/zh
Publication of CN118146967A publication Critical patent/CN118146967A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0008Oxidoreductases (1.) acting on the aldehyde or oxo group of donors (1.2)
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/37Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from fungi
    • C07K14/39Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from fungi from yeasts
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0006Oxidoreductases (1.) acting on CH-OH groups as donors (1.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/1022Transferases (2.) transferring aldehyde or ketonic groups (2.2)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/1025Acyltransferases (2.3)
    • C12N9/1029Acyltransferases (2.3) transferring groups other than amino-acyl groups (2.3.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/16Hydrolases (3) acting on ester bonds (3.1)
    • C12N9/18Carboxylic ester hydrolases (3.1.1)
    • C12N9/20Triglyceride splitting, e.g. by means of lipase
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/64Fats; Fatty oils; Ester-type waxes; Higher fatty acids, i.e. having at least seven carbon atoms in an unbroken chain bound to a carboxyl group; Oxidised oils or fats
    • C12P7/6409Fatty acids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/64Fats; Fatty oils; Ester-type waxes; Higher fatty acids, i.e. having at least seven carbon atoms in an unbroken chain bound to a carboxyl group; Oxidised oils or fats
    • C12P7/6409Fatty acids
    • C12P7/6427Polyunsaturated fatty acids [PUFA], i.e. having two or more double bonds in their backbone
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/64Fats; Fatty oils; Ester-type waxes; Higher fatty acids, i.e. having at least seven carbon atoms in an unbroken chain bound to a carboxyl group; Oxidised oils or fats
    • C12P7/6409Fatty acids
    • C12P7/6427Polyunsaturated fatty acids [PUFA], i.e. having two or more double bonds in their backbone
    • C12P7/6431Linoleic acids [18:2[n-6]]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y101/00Oxidoreductases acting on the CH-OH group of donors (1.1)
    • C12Y101/01Oxidoreductases acting on the CH-OH group of donors (1.1) with NAD+ or NADP+ as acceptor (1.1.1)
    • C12Y101/01001Alcohol dehydrogenase (1.1.1.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y101/00Oxidoreductases acting on the CH-OH group of donors (1.1)
    • C12Y101/01Oxidoreductases acting on the CH-OH group of donors (1.1) with NAD+ or NADP+ as acceptor (1.1.1)
    • C12Y101/01037Malate dehydrogenase (1.1.1.37)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y101/00Oxidoreductases acting on the CH-OH group of donors (1.1)
    • C12Y101/01Oxidoreductases acting on the CH-OH group of donors (1.1) with NAD+ or NADP+ as acceptor (1.1.1)
    • C12Y101/01041Isocitrate dehydrogenase (NAD+) (1.1.1.41)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y102/00Oxidoreductases acting on the aldehyde or oxo group of donors (1.2)
    • C12Y102/01Oxidoreductases acting on the aldehyde or oxo group of donors (1.2) with NAD+ or NADP+ as acceptor (1.2.1)
    • C12Y102/01003Aldehyde dehydrogenase (NAD+) (1.2.1.3)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y102/00Oxidoreductases acting on the aldehyde or oxo group of donors (1.2)
    • C12Y102/01Oxidoreductases acting on the aldehyde or oxo group of donors (1.2) with NAD+ or NADP+ as acceptor (1.2.1)
    • C12Y102/01084Alcohol-forming fatty acyl-CoA reductase (1.2.1.84)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y202/00Transferases transferring aldehyde or ketonic groups (2.2)
    • C12Y202/01Transketolases and transaldolases (2.2.1)
    • C12Y202/01003Formaldehyde transketolase (2.2.1.3)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y203/00Acyltransferases (2.3)
    • C12Y203/01Acyltransferases (2.3) transferring groups other than amino-acyl groups (2.3.1)
    • C12Y203/01026Sterol O-acyltransferase (2.3.1.26)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y301/00Hydrolases acting on ester bonds (3.1)
    • C12Y301/01Carboxylic ester hydrolases (3.1.1)
    • C12Y301/01003Triacylglycerol lipase (3.1.1.3)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12RINDEXING SCHEME ASSOCIATED WITH SUBCLASSES C12C - C12Q, RELATING TO MICROORGANISMS
    • C12R2001/00Microorganisms ; Processes using microorganisms
    • C12R2001/645Fungi ; Processes using fungi
    • C12R2001/78Hansenula

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Genetics & Genomics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • Medicinal Chemistry (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Mycology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Biophysics (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

本发明属于微生物基因工程与代谢工程应用领域,具体涉及一种利用甲醇高效合成脂肪醇的重组多形汉逊酵母及其构建方法。构建方法获得菌株为在整合有Cas9蛋白的多形汉逊酵母菌株的NS2位点整合含SEQ ID NO:1所示来源于仓鸮(Tyto alba)的过氧化物酶体过表达脂酰辅酶A还原酶1(TaFAR1)的表达盒。而后在此基础上,进一步构建获得重组菌株。最终获得采用不同方式构建获得重组菌株,实现工程菌株甲醇利用与脂肪醇高效合成相耦合,为脂肪醇的绿色、温和合成以及甲醇的高效转化奠定了基础。

Description

一种高效合成脂肪醇的菌株及其构建方法
技术领域
本发明属于微生物基因工程与代谢工程应用领域,具体涉及一种利用甲醇高效合成脂肪醇的重组多形汉逊酵母及其构建方法。
背景技术
脂肪醇广泛应用于个人护理产品(如肥皂、洗发水和面霜)中的洗涤剂、乳化剂和润肤剂。全球脂肪醇市场复合增长率为5.2%,将在2025年达到70亿美元。目前脂肪醇的生产主要是从化石燃料(如石油、天然气)、植物油等化学加工而成,化石燃料是不可再生能源,而植物油是我们日常生活中最重要的食用油脂来源,这样的脂肪醇生产模式并非长久之计。因此很有必要开拓一条能够可持续生产脂肪醇的途径。
近年来,基于微生物进行脂肪醇的生产研究已经开始涌现,微生物生产一方面能够提供可持续的脂肪醇供应,另一方面相较于传统热化学方法,微生物还可以对脂肪醇进行特定的化学修饰,通过提高脂肪醇的性能从而拓宽其应用范围。目前脂肪醇及其衍生物的生产原料还主要以葡萄糖为主。José L Adrio等在2015年以圆冬红孢酵母为底盘利用葡萄糖合成了8g/L脂肪醇,是目前报道的脂肪醇最高产量;Jay D.Keasling等在2017年以酿酒酵母为底盘利用葡萄糖合成了6g/L脂肪醇;另外Hal S Alper等在2020年以解脂耶氏酵母为底盘实现了以葡萄糖为碳源生产5.8g/L脂肪醇。但是,以主要来源于农作物的葡萄糖为碳源生产脂肪醇等化学品,存在“与人争粮、与粮争地”等问题,并且以传统的生物质或者粮食原料为碳源受到耕地面积、地理气候等因素制约导致成本偏高,另外还间接导致了额外的CO2排放。而甲醇作为重要的一碳化合物,其可以通过CO2加氢大量制备,有望成为继生物质糖类外另一重要原料。而且,甲醇的生物转化将促进我国煤炭资源洁净利用,实现重要能源产品和精细化学品的高效生产,并最终推动我国生产模式转型,助力我国“双碳”目标的实现。
多形汉逊酵母是一种重要的甲基营养型酵母,具有广泛的底物谱,能够天然利用甲醇等碳源,而且能够高密度发酵,这些优良特性使其成为一种潜在的优良微生物细胞工厂。但是,目前以汉逊酵母为底盘细胞生产脂肪醇的领域还是一片空白。因此,本发明旨在构建汉逊酵母以甲醇为碳源高效生产脂肪醇的菌株,一方面填补领域空白,另一方面探索汉逊酵母作为细胞工厂的应用潜力与前景。
发明内容
本发明的目的是提供一种利用甲醇高效合成脂肪醇的重组多形汉逊酵母及其构建方法。
为实现上述目的,本发明采用技术方案为:
一种高效合成脂肪醇的菌株的构建方法(第一方面),菌株为在整合有Cas9蛋白的多形汉逊酵母菌株的NS2位点整合含SEQ ID NO:1所示来源于仓鸮(Tyto alba)的过氧化物酶体过表达脂酰辅酶A还原酶1(TaFAR1)的表达盒。
所述TaFAR1的表达盒中启动子为POpTAL1启动子,同时表达盒通过与靶向基因NS2的sgRNA表达载体pHpgRNA-NS2转化整合至多形汉逊酵母菌株中。
更进一步的说:
首先,构建靶向基因NS2的sgRNA表达载体pHpgRNA-NS2,其中20bp靶向序列如SEQID NO:2所示的核苷酸序列;接着,构建供体DNA分子,分别扩增基因TaFAR1编码区序列(或含编码过氧化物酶体信号肽序列)、NS2位点上下游各1000bp序列、POpTAL1启动子序列以及TOpADH2终止子序列,通过融合PCR方法获得完整供体DNA片段(TaFAR1的表达盒);将gRNA表达载体pHpgRNA-NS2和供体DNA以各500ng的量,电击转化进入整合有Cas9蛋白的重组汉逊酵母,于SD平板37℃静置培养2~3天;转化子经液体YPD培养基培养后,通过PCR验证正确,涂布于含有5-氟乳清酸的平板(SD-5FOA)进行质粒丢失,质粒丢失后的菌株经划线YPD平板进一步筛选单克隆,通过PCR再次验证正确后保存备用。
一种高效合成脂肪醇的菌株的构建方法(第二方面),菌株为于上述获得菌株中依次敲除编码醛脱氢酶的HFD1基因,编码乙酰辅酶A-胆固醇酰基转移酶的ARE基因,编码乙醇脱氢酶的ADH6-3基因和编码假定脂肪酶的LPL1基因以及编码锌代谢相关膜蛋白的IZH3基因;并靶向过氧化物酶体过表达酿酒酵母来源乙醇脱氢酶5编码基因ScADH5;
进一步按照上述获得重组菌株中过表达编码过氧化物酶体ABC转运蛋白编码基因PXA1,2。
所述于菌株NS5位点过表达酿酒酵母来源乙醇脱氢酶5编码基因ScADH5;于5NS6位点过表达编码过氧化物酶体ABC转运蛋白编码基因PXA1,2;
其中,PXA1,2基因如SEQ ID NO:8所示的核苷酸序列;
ScADH5基因如SEQ ID NO:5所示的核苷酸序列;
HFD1基因具有如SEQ ID NO:10所示的核苷酸序列;
ADH6-3基因具有如SEQ ID NO:11所示的核苷酸序列;
ARE基因具有如SEQ ID NO:12所示的核苷酸序列;
LPL1基因具有如SEQ ID NO:28所示的核苷酸序列;
IZH3基因具有如SEQ ID NO:29所示的核苷酸序列。
更进一步的说,
(1)基因HFD1的无缝敲除
构建含有sgRNA表达载体为pHpgRNA66,20bp靶向序列如SEQ ID NO:3所示的核苷酸序列。接着,构建供体DNA分子,分别扩增基因OpHFD1编码区上下游各1000bp序列,通过融合PCR方法获得完整供体DNA片段(DNA片段删除如SEQ ID NO:10所示的核苷酸序列);将gRNA表达载体pHpgRNA66和供体DNA以各500ng的量,电击转化进入上述整合TaFAR1表达盒的产脂肪醇的重组汉逊酵母,于SD平板37℃静置培养2~3天;转化子经液体YPD培养基培养后,通过PCR验证正确,涂布于含有5-氟乳清酸的平板(SD-5FOA)进行质粒丢失,质粒丢失后的菌株经划线YPD平板进一步筛选单克隆,通过PCR再次验证正确后保存备用,获得敲除HFD1基因的多形汉逊酵母菌株。
(2)基因OpADH6-3的无缝敲除
参照步骤(1)中记载方式,构建的sgRNA表达载体为pHpgRNA-10,20bp靶向序列如SEQ ID NO:4所示的核苷酸序列。构建供体DNA片段删除如SEQ ID NO:11所示的ADH6-3基因;而后电击转化至进一步敲除HFD1基因的多形汉逊酵母菌株,获得再进一步敲除ADH6-3基因的多形汉逊酵母菌株。
(3)基因ScADH5的过表达
参照步骤(1)中记载方式,构建的sgRNA表达载体为pHpgRNA-NS5,20bp靶向序列如SEQ ID NO:6所示的核苷酸序列;构建供体DNA通过分别扩增经密码子优化的基因ScADH5编码区序列(含编码过氧化物酶体信号肽序列)、NS5位点上下游各1000bp序列、POpPMA1启动子序列以及TOpFBA终止子序列经融合PCR方法获得。而后将sgRNA表达载体为pHpgRNA-NS5和供体DNA整合至所述上述步骤(2)中连续敲除多个基因片段的多形汉逊酵母菌株的NS5位点。
(4)基因ARE的无缝敲除
参照步骤(1)中记载方式,构建的sgRNA表达载体为pHpgRNA-06,20bp靶向序列如SEQ ID NO:7所示的核苷酸序列。构建供体DNA片段删除如SEQ ID NO:12所示的OpARE基因;而后电击转化至上述步骤(3)中过表达ScADH5基因的多形汉逊酵母菌株,获得进一步敲除ARE基因的多形汉逊酵母菌株。
(5)LPL1以及IZH3基因的敲除
参照步骤(1)中记载方式,构建的sgRNA表达载体为pHpgRNA-10,20bp靶向序列如SEQ ID NO:26、SEQ ID NO:27所示的核苷酸序列。构建供体DNA片段删除如SEQ ID NO:28、EQ ID NO:29所示的LPL1以及IZH3基因;而后电击转化至敲除ARE基因的多形汉逊酵母菌株,获得再进一步敲除LPL1以及IZH3基因的多形汉逊酵母菌株。
(6)基因OpPXA1,2的过表达
参照步骤(1)中记载方式,构建的sgRNA表达载体为pHpgRNA-5NS6,20bp靶向序列如SEQ ID NO:9所示的核苷酸序列;构建的供体DNA通过分别扩增如SEQ ID NO:8所示基因OpPXA1,2表达盒(启动子+基因编码区+终止子)序列、NS2位点上下游各1000bp序列经融合PCR方法获得。而后将sgRNA表达载体为pHpgRNA-5NS6和供体DNA整合至所述上述步骤(5)中敲除LPL1以及IZH3基因的多形汉逊酵母菌株的5NS6位点,获得高效合成脂肪醇的菌株。
一种高效合成脂肪醇的菌株的构建方法(第三方面),菌株为于上述方式步骤(5)所获得ZX-F51菌株中靶向过氧化物酶体构建的苹果酸循环并过表达异柠檬酸脱氢酶基因ScIDP2;其中,建立的苹果酸循环为于菌株内过表达丙酮酸羧化酶基因PYC1、苹果酸酶RtME1以及苹果酸脱氢酶基因MDH3。
所述异柠檬酸脱氢酶整合至菌株NS18位点,其序列如SEQ ID NO:13所示的核苷酸序列;
所述丙酮酸羧化酶基因OpPYC1、苹果酸脱氢酶基因MDH3整合至菌株NS3位点,基因序列依次为有SEQ ID NO:15所示的核苷酸序列、SEQ ID NO:16所示的核苷酸序列;
所述苹果酸酶RtME1整合至菌株整合至菌株NS19位点,基因序列如SEQ ID NO:18所示的核苷酸序列。
更进一步的说:
(1)基因ScIDP2的过表达
具体流程参照上述方法记载,构建的sgRNA表达载体为pHpgRNA-NS18,20bp靶向序列如SEQ ID NO:14所示的核苷酸序列;构建的供体DNA通过分别扩增经密码子优化的基因ScIDP2编码区序列并在3′末端添加编码连接肽以及过氧化物酶体信号肽核苷酸序列(如,SEQ ID NO:13所示的核苷酸序列)、NS18位点上下游各1000bp序列、POpTAL1启动子序列以及TOpPDB终止子序列经融合PCR方法获得。而后将sgRNA表达载体为pHpgRNA-NS18和供体DNA整合至所述上述形成的重组高效合成脂肪醇的菌株。
(2)基因PYC1、MDH3的过表达
具体流程参照上述方法记载,构建的sgRNA表达载体为pHpgRNA-NS3,20bp靶向序列如SEQ ID NO:17所示的核苷酸序列;构建的供体DNA通过分别扩增基因PYC1、MDH3编码区序列并在3′末端分别添加编码连接肽以及过氧化物酶体信号肽核苷酸序列(如,SEQ IDNO:15所示的核苷酸序列、SEQ ID NO:16所示的核苷酸序列)、NS3位点上下游各1000bp序列、POpCAT-0.329启动子序列、POpAOX启动子序列、TOpFBA终止子序列以及TOpPDB终止子序列经融合PCR方法获得。而后将sgRNA表达载体为pHpgRNA-NS3和供体DNA整合至上述步骤(1)形成的重组高效合成脂肪醇的菌株。
(3)基因RtME1的过表达
具体流程参照上述方法记载,构建的sgRNA表达载体为pHpgRNA-NS19,20bp靶向序列如SEQ ID NO:19所示的核苷酸序列;构建的供体DNA通过分别扩增经密码子优化的基因RtME1编码区序列并在3′末端添加编码连接肽以及过氧化物酶体信号肽核苷酸序列(如,SEQ ID NO:18所示的核苷酸序列)、NS19位点上下游各1000bp序列、POpADH2-1启动子序列以及TOpFBA终止子序列经融合PCR方法获得。而后将sgRNA表达载体为pHpgRNA-NS19和供体DNA整合至上述步骤(2)形成的重组高效合成脂肪醇的菌株。
一种高效合成脂肪醇的菌株的构建方法(第四方面),菌株为减弱上述方法(第三方面)构建获得ZX-F65菌株中过氧化物酶体因子,其中,过氧化物酶体因子为过氧化物酶体因子Pex10和/或Pex20。
所述过氧化物酶体因子Pex10为含过氧化物酶体因子Pex10,且,带有CLN2降解标签,其基因序列如SEQ ID NO:20所示的核苷酸序列;
所述过氧化物酶体因子Pex20为含过氧化物酶体因子Pex20,且,带有CLN2降解标签,其基因序列如SEQ ID NO:22所示的核苷酸序列。
更进一步的说:
(1)弱化PEX10基因
构建含有sgRNA表达载体为pHpgRNA-25,20bp靶向序列如SEQ ID NO:21所示的核苷酸序列。接着,构建供体DNA分子,分别扩增基因PEX10启动子加编码区序列加CLN2标签序列(如SEQ ID NO:20所示的核苷酸序列)、TOpFBA终止子序列以及PEX10位点上下游各1000bp序列,通过融合PCR方法获得完整供体DNA片段;将gRNA表达载体pHpgRNA-25和供体DNA以各500ng的量,电击转化进入上述方法构建获得产脂肪醇的重组汉逊酵母,于SD平板37℃静置培养2~3天;转化子经液体YPD培养基培养后,通过PCR验证正确,涂布于含有5-氟乳清酸的平板(SD-5FOA)进行质粒丢失,质粒丢失后的菌株经划线YPD平板进一步筛选单克隆,通过PCR再次验证正确后保存备用。
(2)弱化PEX20基因
具体流程参照上述方法记载,具体流程与上述本发明第四方面(1)内容一致,其中构建的sgRNA表达载体为pHpgRNA-NS18,20bp靶向序列如SEQ ID NO:23所示的核苷酸序列;构建的供体DNA通过分别扩增基因PEX20启动子加编码区序列加CLN2标签序列(如SEQ IDNO:22所示的核苷酸序列)、TOpFBA终止子序列以及PEX20位点上下游各1000bp序列经融合PCR方法获得。而后将sgRNA表达载体为pHpgRNA-NS18和供体DNA整合至上述步骤形成的重组高效合成脂肪醇的菌株。
一种高效合成脂肪醇的菌株的构建方法(第五方面),菌株为于上述本发明第三方面(3)菌株的4NS5位点中过表达二羟基丙酮合酶DAS2基因。
具体为:
具体流程参照上述方法记载,构建的sgRNA表达载体为pHpgRNA-4NS5,20bp靶向序列如SEQ ID NO:25所示的核苷酸序列;构建的供体DNA通过分别扩增如SEQ ID NO:24所示的基因OpDAS2表达盒序列、4NS5位点上下游各1000bp序列经融合PCR方法获得。而后将sgRNA表达载体为pHpgRNA-4NS5和供体DNA整合发明第三方面(3)的重组高效合成脂肪醇的菌株。
一种按照上述不同构建方法获得不同高效合成脂肪醇的菌株。
一种所述菌株的应用,所述上述不同构建方法获得不同高效合成脂肪醇的菌株在以甲醇为唯一碳源进行发酵培养产脂肪醇中的应用。
摇瓶发酵:采用发酵体积为20mLDelft最小成分培养基,并以初始OD600为0.4接种菌株,37℃、220rpm发酵120h。其中在发酵0h和48h添加10g/L甲醇(即总体消耗20g/L甲醇)。发酵终点检测脂肪醇产量。
批式补料发酵:发酵体积0.3L YPM培养基,初始OD600为0.5。当甲醇耗尽时,以1mL/h的速率进料600g/L甲醇和5×Delft最小成分培养基(2:1,v/v)。温度、pH值和溶解氧分别设置为37℃、5.6%和30%。初始搅动速率设置为400r.p.m.,并根据溶解氧水平增加到最大800r.p.m.。初始通气速率为18sL/h,并根据溶解氧水平增加到最大48sL/h。在发酵过程中,监测残留甲醇以控制补料速率,同时保持低甲醇浓度(<5g/L),发酵279h测定脂肪产量。
本申请能产生的有益效果包括:
(1)本发明构建以甲醇为底物合成脂肪醇的重组多形汉逊酵母,其能够实现脂肪醇高效合成,敲除醛脱氢酶(由基因HFD1编码)、乙酰辅酶A-胆固醇酰基转移酶(由基因ARE编码)、乙醇脱氢酶6-3(由基因ADH6-3编码)以及靶向过氧化物酶体过表达乙醇脱氢酶5(由基因ScADH5编码)、过氧化物酶体ABC转运蛋白(由基因PXA1,2编码)能够显著提高脂肪醇积累。在含有10g/L甲醇的基础成分培养基中发酵120h,摇瓶水平脂肪酸产量达到120mg/L,脂肪酸种类包括C16:0、C18:2、C18:1和C18:0。在此基础上,通过靶向过氧化物酶体过表达异柠檬酸裂解酶2(由基因ScIDP2编码)以及构建苹果酸循环进一步提升了40%的脂肪醇产量(在含有20g/L甲醇的基础成分培养基中发酵120h,摇瓶水平脂肪酸产量达到279mg/L)。
(2)本发明在获得重组多形汉逊酵母进行调节多形汉逊酵母过氧化物酶体进一步提高产率,其通过弱化过氧化物酶体因子Pex10、Pex20(分别由基因PEX10和PEX20编码)的表达,显著提升了产脂肪醇重组多形汉逊酵母菌株的过氧化物酶体的性能。
(3)本发明在获得重组多形汉逊酵母再进行增强多形汉逊酵母甲醛转化进一步提高产率,其通过过表达二羟基丙酮合酶2(由基因OpDAS2编码),显著降低了产脂肪醇的重组多形汉逊酵母菌株的甲醛积累。
(4)本发明最终实现工程菌株甲醇利用与脂肪醇高效合成相耦合(以甲醇为唯一碳源批式补料发酵脂肪醇产量为3.6g/L),为脂肪醇的绿色、温和合成以及甲醇的高效转化奠定了基础。
附图说明
图1为本发明实施例提供的汉逊酵母CRISPR/Cas9系统中供体DNA构建过程示意图(a)、基因过表达供体DNA构建电泳检测图(b)以及基因无缝敲除HFD1基因供体DNA构架示意图(c)。
图2a-2d为本发明实施例提供的脂肪醇过氧化物酶体合成途径示意图(a)、脂肪醇成分占比、过氧化物酶体合成脂肪醇菌株构建以及脂肪醇过氧化物酶体途径同胞质途径合成比较效果图。
图3a-3b为本发明实施例提供的疏通脂肪醇合成代谢流以及增加前体供给示意图(a)和对应菌株脂肪醇发酵情况效果图(b)。
图4为本发明实施例提供的增加过氧化物酶体NADPH供给相应菌株脂肪酸发酵情况效果图。
图5为本发明实施例提供的调节过氧化物酶体蛋白相应菌株脂肪醇发酵情况效果图。
图6为本发明实施例提供的过表达二羟丙酮合酶DAS2基因对脂肪醇发酵过程的影响效果图,其中,a为发酵28h单位OD600菌株甲醛积累量统计,b为发酵终点菌株脂肪醇产量和OD600统计,c为发酵前期菌株甲醇消耗曲线,d为发酵28h以及96h菌株脂肪醇产量统计。
图7为本发明实施例提供的分批补料发酵过程以及发酵终点脂肪醇分布(a)和成分占比(b)情况效果图。
具体实施方式
下述非限制性实施例可以使本领域的普通技术人员更全面地理解本发明,但不以任何方式限制本发明。下述实施例中,如无特殊说明,所使用的实验方法均为常规方法,所用材料、试剂等均可从生物或化学公司购买。
实施例1
多形汉逊酵母脂肪醇过氧化物酶体合成途径构建
(1)整合及敲除基因所需元件的构建方法
①参见图1a,出发菌株多形汉逊酵母的JQCR03L由Ogataeapolymorpha NCYC495leu1.1衍生,该菌株整合有CRISPR/Cas9系统并优化提升了了同源重组效率(Gao,J.,Li,Y.,Yu,W.&Zhou,Y.J.Nat.Metab.4,932-943.)。
②sgRNA表达载体的构建为本发明中使用的所有sgRNA表达载体除20bp靶向序列不同以外,其余部分完全相同。简单来说,首先使用引物p506(ATCTGAGACGAGCTTACTCGTTTCG)和p507(GTTCATCAGGTCGTCTGTTGATCCAAAC)扩增载体骨架;接着,使用引物pX(GAGGACGAAACGAGTAAGCTCGTCTCAGATxxx
GTTTTAGAGCTAGAAATAG,其中xxx为可替换20bp靶向序列,针对获得不同载体)和引物p102(AGAAAGCTGGCGGCCGCCGCGTTTGGATCAACAGACGAC)扩增sgRNA;最后,sgRNA片段和载体骨架片段使用Gibson Assembly的方法进行克隆连接,获得的重组载体测序后进行应用。
以获得pHpgRNA-NS2为例,具体为:
使用引物p506(ATCTGAGACGAGCTTACTCGTTTCG)和p507(GTTCATCAGGTCGTCTGTTGATCCAAAC)以pHpgRNA66为模板扩增载体骨架;接着,使用引物pNS2(GAGGACGAAACGAGTAAGCTCGTCTCAGAT AATGGTGACATACTTTTATAGTTTTAGAGCTAGAAATAG)和引物p102(AGAAAGCTGGCGGCCGCCGCGTTTGGATCAACAGACGAC)扩增sgRNA;最后,sgRNA片段和载体骨架片段使用Gibson Assembly的方法进行克隆连接,获得的重组载体后化学转化发转化大肠杆菌DH5α,抽提质粒测序后进行应用。
扩增体系为50μL,具体为:
扩增程序为:
Gibson Assembly体系为10μL,具体为:
而后按照上述记载方法将引物进行替换获得下述实施例中涉及的sgRNA表达载体,具体为pHpgRNA66(靶向基因OpHFD1),pHpgRNA-06(靶向基因OpADH6-3),pHpgRNA-10(靶向基因OpARE),pHpgRNA-NS2(靶向位点NS2),其核酸序列图SEQ ID NO:2所示;pHpgRNA-NS3(靶向位点NS3),pHpgRNA-NS18(靶向位点NS18),pHpgRNA-NS19(靶向位点NS19),pHpgRNA-4NS5(靶向位点4NS5),pHpgRNA-5NS6(靶向位点5NS6),pHpgRNA98(靶向基因OpLPL1),pHpgRNA101(基因OpIZH3),pHpgRNA-NS5(靶向位点NS5),pHpgRNA-25(靶向基因OpPEX10),pHpgRNA-18(靶向基因OpPEX20)。
③基因过表达供体DNA构建如图1b所示。以NS2位点过表达TaFAR1为例,总体来说,扩增基因组NS2位点上下游各1000bp序列作为同源臂、扩增启动子POpGAP序列、扩增终止子TOpADH2序列以及经密码子优化的TaFAR1编码区序列,其核酸序列图SEQ ID NO:1所示;具体为:
扩增体系为50μL
扩增程序为:
④之后通过融合PCR的方式将各个片段进行组装,获得完整的供体DNA分子用于电击转化实验,具体为:
将gRNA表达载体pHpgRNA-NS2和供体DNA以各500ng的量,电击转化进入整合至上述步骤①获得Cas9蛋白的重组汉逊酵母,于SD平板37℃静置培养2~3天;转化子经液体YPD培养基培养后,通过PCR验证正确,涂布于含有5-氟乳清酸的平板(SD-5FOA)进行质粒丢失,质粒丢失后的菌株经划线YPD平板进一步筛选单克隆,通过PCR再次验证正确后保存备用,即获得重组菌株(ZX-F17)。
本发明实施例其余基因过表达供体DNA构建方式与上述类似。
基因无缝敲除供体DNA构建以敲除HFD1基因为例,如图1c所示。总体来说,扩增HFD1基因编码区上下游各1000bp序列作为同源臂(扩增条件同本实施例上述3○内容相似),之后通过融合PCR的方式将各个片段进行组装,获得完整的供体DNA分子用于电击转化实验。本发明其余基因无缝敲除供体DNA构建方式与上述类似。
(2)脂肪醇合成途径构建
多形汉逊酵母自身并不合成脂肪醇,如图2a所示,将上述步骤④获得重组菌株(ZX-F17)在以葡萄糖为底物合成脂肪醇的体系内,具体为:培养基成分为:(NH4)2SO4 2.5g/L,KH2PO4 14.4g/L,MgSO4·7H2O 0.5g/L,20g/L葡萄糖,20mg/L尿嘧啶以及维他命和微量金属离子,发酵用培养基体积为20mL,在37℃,200rpm条件下培养96h后检测脂肪醇产量。结果显示重组汉逊酵母菌株能够利用20g/L葡萄糖合106mg/L脂肪醇(参见图2b,FAR pathway)。
而后,将上述步骤④获得重组菌株(ZX-F17)在以甲醇为底物合成脂肪醇的体系内,具体为:培养基成分为:(NH4)2SO4 2.5g/L,KH2PO4 14.4g/L,MgSO4·7H2O 0.5g/L,10g/L甲醇,20mg/L尿嘧啶以及维他命和微量金属离子,发酵用培养基体积为20mL,在37℃,200rpm条件下培养120h后检测脂肪醇产量。结果显示重组汉逊酵母菌株利用10g/L甲醇仅能合成不到20mg/L脂肪醇(参见图2d,Cytosolic pathway),在此基础上进一步优化。
(3)脂肪醇合成场所优化
上述重组多形汉逊酵母菌株虽然实现了以葡萄糖为底物合成脂肪醇,但是以甲醇为底物合成脂肪醇能力低下。上述现象主要是由甲醇和脂肪醇对细胞的双重毒性所导致,通过将脂肪醇合成途径靶向过氧化物酶体可将脂肪醇合成从胞质分割开来,降低脂肪醇对细胞的毒性,另外,过氧化物酶体作为多形汉逊酵母甲醇转化以及脂肪酸β氧化的主要场所,其内含有较多的脂肪醇合成前体。
进而将上述获得重组菌株(ZX-F17)中基因过表达供体DNA中的构建方法按上述记载,同时将启动子替换为POpTAL1,继而获得TaFAR1per2基因过表达菌(ZX-F21,图2c)。
并将获得菌株按照上述以甲醇为唯一碳源的合成脂肪醇的方法进行培养,其脂肪醇产量提升4倍,利用10g/L甲醇合成72.5mg/L脂肪醇(图2d,Peroxisomal pathway)。
实施例2
强化脂肪醇合成代谢流以及增加前体供给以提高脂肪醇产量
脂肪醇的前体为脂酰辅酶A,其具有多条竞争性副反应途径,例如甾醇酯以及脂肪酸等,因此为了增加脂肪醇合成通量,对脂酰辅酶A相关副反应进行了调控。首先靶向过氧化物酶体表达了ScADH5、敲除了ADH6-3和HFD1,然后敲除了ARE1,最后过表达了PXA1,2。
(1)靶向过氧化物酶体过表达ScADH5
脂酰辅酶A须经两步还原生成脂肪醇,第一步由脂酰辅酶A还原酶催化生成脂肪醛,第二步脂肪醛经汉逊内源的醇脱氢酶催化生成脂肪醇,酿酒酵母来源的ScADH5是一种活性较高的醇脱氢酶,为了提升脂肪醛向脂肪醇的反应通量,于上述获得重组菌株ZX-F21中靶向过氧化物酶体异源表达了ScADH5,检测到脂肪醇产量提升了34%,消耗20g/L葡萄糖得到142mg/L脂肪醇(图3a),说明ScADH5的表达加快了脂肪醛向脂肪醇的转化。
菌株构建所需DNA供体以及gRNA质粒信息构建参照本发明内容第二方面(3),体系和条件参照实施例1。
(2)敲除ADH6-3基因
Adh属于氧化还原酶,汉逊酵母体内存在几种Adh催化脂肪醇脱氢生成脂肪醛,Adh6-3具有较强的脱氢活性,因此将ADH6-3进行敲除以降低脂肪醇的氧化,结果显示ADH6-3的敲除使脂肪醇产量进一步提升7%,消耗20g/L葡萄糖得到158mg/L脂肪醇(图3a)。
菌株构建所需DNA供体以及gRNA质粒信息构建参照本发明内容第二方面(2),体系和条件参照实施例1。
(3)敲除HFD1基因
HFD1基因编码脂肪醛脱氢酶,该酶催化脂肪醛转化为脂肪酸,在脂肪醇工程菌株中有可能对脂肪醇前体脂肪醛形成竞争,通过对HFD1基因敲除,脂肪醇产量提升14%,消耗10g/L甲醇得到81mg/L脂肪醇(图3b,ZX-F38)。
菌株构建所需DNA供体以及gRNA质粒信息构建参照本发明内容第二方面(1),体系和条件参照实施例1。
(4)敲除ARE基因
Are催化脂酰辅酶A和甾醇生成甾醇酯,该途径消耗了脂酰辅酶A从而降低了脂酰辅酶A到脂肪醇的通量。通过对ARE基因敲除,脂肪醇产量进一步提升22%,消耗10g/L甲醇得到98mg/L脂肪醇(图3b,ZX-F46)。菌株构建所需DNA供体以及gRNA质粒信息构建参照本发明内容第二方面(4),体系和条件参照实施例1。
(5)敲除LPL1以及IZH3基因
菌株ZX-F46虽然实现利用甲醇合成脂肪醇,但是工程菌株在甲醇培养基中生长并不稳定。LPL1和IZH3基因所编码蛋白分子参与汉逊酵母磷脂代谢,主要体现为抑制磷脂的合成。汉逊酵母主要通过过氧化物酶体转化甲醇,甲醇转化过程中甲醛向细胞质的泄露可能造成菌株生长压力,通过敲除上述基因可能会增加磷脂合成,进而增强膜结构,最终增加脂肪醇工程菌株的甲醇耐受力。鉴于此,我们基于菌株ZX-F46进行了LPL1和IZH3基因的敲除构建菌株ZX-F51,使得菌株在甲醇培养基中生长趋于稳定,并使脂肪醇产量进一步提升10%,消耗10g/L甲醇得到108mg/L脂肪醇(图3b)。
菌株构建所需DNA供体以及gRNA质粒信息构建参照本发明内容第二方面(5),体系和条件参照实施例1。
(6)过表达脂酰辅酶A转运复合体基因PXA1,2
胞质中的脂酰辅酶A需要借助过氧化物酶体膜上的脂酰辅酶A转运复合体转运至过氧化物酶体内进行进一步的氧化过程,进一步在菌株ZX-F51基础上过表达编码该转运体的基因PXA1,2构建菌株ZX-F51PXA,增加过氧化物酶体中脂酰辅酶A积累,经甲醇发酵检测到脂肪醇产量进一步提升20%,消耗10g/L甲醇得到131mg/L脂肪醇(图3b)。
菌株构建所需DNA供体以及gRNA质粒信息构建参照本发明内容第二方面(6),体系和条件参照实施例1。
实施例3
增强还原力NADPH供给提升脂肪醇生产能力
为了提升过氧化物酶体中还原力水平,在过氧化物酶体分别构建里异柠檬酸裂解途径和苹果酸循环。具体为靶向过氧化物酶体过表达ScIDP2、PYC1、MDH3以及RtME1基因。
(1)构建异柠檬酸裂解途径
细胞质中的柠檬酸或异柠檬酸会在异柠檬酸脱氢酶Idp2p催化下形成α-酮戊二酸,同时伴随NADPH的生成。因此,过表达ScIDP2基因是一种常用增加胞内NADPH供给的策略。通过于菌株ZX-F51靶向过氧化物酶体并以强甲醇诱导型启动子POpTAL1驱动ScIDP2基因表达构建菌株ZX-F65,以甲醇为单一碳源发酵检测到脂肪醇产量提升15%,消耗20g/L甲醇得到256mg/L脂肪醇(图4)。说明ScIDP2基因在汉逊酵母过氧化物酶体中能够正常发挥功能,增加的NADPH供给提高了脂肪醇的产量。
菌株构建所需DNA供体以及gRNA质粒信息构建参照本发明内容第三方面(1),体系和条件参照实施例1。
(2)构建过氧化物酶体苹果酸循环
脂肪醇由脂酰辅酶A经过两步还原反应得到,该过程需要NADPH提供质子充当还原力,而过氧化物酶体作为脂肪酸氧化的场所富含NADH,因此有必要提升过氧化物酶体中NADPH水平进一步增加脂肪醇产量。由丙酮酸羧化酶、苹果酸脱氢酶以及苹果酸酶构成的苹果酸循环可以实现将NADH和ATP的还原力转移到NADPH,通过于上述步骤(1)获得菌株ZX-F65中靶向过氧化物酶体过表达上述酶的编码基因PYC1、MDH3以及RtME1,分别以启动子POpCAT-329、POpAOX以及POpADH2-1启动上述三个基因的表达,进而获得菌株ZX-F71,脂肪醇产量进一步提升9%,消耗20g/L甲醇得到279mg/L脂肪醇(图4),说明过氧化物酶体中构建苹果酸循环进一步提供了NADPH,从而促进了脂肪醇的合成。
菌株构建所需DNA供体以及gRNA质粒信息构建参照本发明内容第三方面(2)和(3),体系和条件参照实施例1。
实施例4
调控过氧化物酶体促进脂肪醇生产
过氧化物酶体作为甲醇转化以及脂肪醇合成场所,通过对其进行优化可调控脂肪醇合成。鉴于此,分别弱化了PEX20、PEX10基因。通过在PEX20基因末端添加弱化标签Cln2的编码序列,并将PEX20-CLN2进行原位整合至菌株ZX-F65,进而获得重组菌株PEX20-CLN2,将其以甲醇为单一碳源进行发酵,结果显示该基因的弱化是脂肪醇的产量进一步提升了12%。类似地,在菌株ZX-F65基础上通过弱化PEX10基因同样也可以使脂肪醇产量提升12%左右(图5)。菌株构建所需DNA供体以及gRNA质粒信息构建参照本发明内容第四方面(1)和(2),体系和条件参照实施例1。
实施例5
强化甲醇同化作用,提升甲醇利用效率
甲醇进入过氧化物酶体后首先被氧化为甲醛,然后甲醛经木酮糖循环进一步转化位二羟丙酮进入后续代谢途径,其中二羟丙酮合酶Das催化甲醛向二羟丙酮的转化。通过在菌株ZX-F71基础上过表达DAS2基因构建了菌株ZX-F75,以甲醇为单一碳源进行发酵。发酵24h检测甲醛含量,菌株ZX-F75单位OD甲醛积累量较ZX-F71减少28%(图6a),而且通过检测发酵终点脂肪醇产量发现菌株ZX-F75较ZX-F71提升7%消耗20g/L甲醇得到300mg/L脂肪醇(图6b)。另外通过YPM培养基发酵发现,在发酵前期菌株ZX-F75的甲醇消耗速率以及脂肪醇合成速率明显高于ZX-F71(图6c-d),以上结果说明DSA2基因的过表达确实加快了甲醛二羟丙酮的转化,提升了脂肪醇前体的代谢通量,同时通过降低过氧化物酶体中甲醛积累减少其向胞质的泄露,从而进一步增强了工程菌株的鲁棒性。
菌株构建所需DNA供体以及gRNA质粒信息构建参照本发明内容第五方面,体系和条件参照实施例1。
实施例6
以甲醇为底物合成脂肪醇菌株发酵
(1)培养基
YPD培养基:20g/L葡萄糖,20g/L蛋白胨,10g/L酵母粉;
发酵培养基(基础成分培养基):(NH4)2SO4 2.5g/L,KH2PO4 14.4g/L,MgSO4·7H2O0.5g/L,加入约900mL ddH2O,调节pH为5.6,定容至950mL,115℃灭菌30min。灭菌后,补加1mL维生素溶液和2mL微量金属溶液,使用时添加必需氨基酸。向发酵培养基中添加不同种类碳源,包括20g/L葡萄糖、10g/L甲醇,用于脂肪醇发酵。
(2)实验流程及条件
菌株活化,挑取3个单菌落于3/15mL YPD培养基中,或者SD培养基中,37℃,220rpm震荡培养24h;种子液培养,将活化后的菌液按1%(v/v)转接于20/100mL YPD培养基中,37℃,220rpm震荡培养16~18h;接种,按初始OD600=0.4接种于发酵培养基,装液量为20mL/100mL锥形瓶,37℃,220rpm条件下进行发酵。定点取样或者终点取样,用于生物量(以600nm处的吸光值表示)和产量分析。
(5)以甲醇为底物的脂肪醇合成
选择工程菌株ZX-F75原位回补URA3基因得到菌株ZX-F75U,采用1.2-L DasGip平行生物反应器(Eppendorf)进行补料分批发酵。将工程菌株ZX-F75U在含有20g/L葡萄糖的Delft最小成分培养基中预培养,直到OD600达到5-6,然后接种到含有0.3L YPM培养基的生物反应器中,初始OD600为0.5。当甲醇耗尽时,以1mL/h的速率进料600g/L甲醇和5×Delft最小成分培养基(2:1,v/v)。温度、pH值和溶解氧分别设置为37℃、5.6%和30%。初始搅动速率设置为400r.p.m.,并根据溶解氧水平增加到最大800r.p.m.。初始通气速率为18sL/h,并根据溶解氧水平增加到最大48sL/h。在发酵过程中,监测残留甲醇以控制补料速率,同时保持低甲醇浓度(<5g/L)。经过279h发酵,工程菌株ZX-F75消耗225g/L甲醇合成了3.6g/L脂肪醇,进一步分析脂肪醇成分,十六醇占比52%、十八醇占比43%、油醇和亚油醇占比5%,76%的脂肪醇存在于胞内(图7a-b)。
以上所述,仅是本申请的几个实施例,并非对本申请做任何形式的限制,虽然本申请以较佳实施例揭示如上,然而并非用以限制本申请,任何熟悉本专业的技术人员,在不脱离本申请技术方案的范围内,利用上述揭示的技术内容做出些许的变动或修饰均等同于等效实施案例,均属于技术方案范围内。
说明书核酸序列

Claims (8)

1.一种高效合成脂肪醇的菌株的构建方法,其特征在于:菌株为在整合有Cas9蛋白的多形汉逊酵母菌株的NS2位点整合含SEQ ID NO:1所示来源于仓鸮(Tyto alba)的过氧化物酶体过表达脂酰辅酶A还原酶1(TaFAR1)的表达盒。
2.一种高效合成脂肪醇的菌株的构建方法,其特征在于:菌株为于权利要求1所述获得菌株中依次敲除编码醛脱氢酶的HFD1基因,编码乙酰辅酶A-胆固醇酰基转移酶的ARE基因,编码乙醇脱氢酶的ADH6-3基因和编码假定脂肪酶的LPL1基因以及编码锌代谢相关膜蛋白的IZH3基因;并靶向过氧化物酶体过表达酿酒酵母来源乙醇脱氢酶5编码基因ScADH5。
3.一种高效合成脂肪醇的菌株的构建方法,其特征在于:菌株为于权利要求2所述获得菌株中过表达编码过氧化物酶体ABC转运蛋白编码基因OpPXA1,2。
4.一种高效合成脂肪醇的菌株的构建方法,其特征在于:菌株为于权利要求2所述获得菌株中靶向过氧化物酶体构建的苹果酸循环并过表达异柠檬酸脱氢酶基因ScIDP2;其中,建立的苹果酸循环为于菌株内靶向过氧化物酶体过表达丙酮酸羧化酶基因PYC1、苹果酸酶RtME1以及苹果酸脱氢酶基因MDH3。
5.一种高效合成脂肪醇的菌株的构建方法,其特征在于:菌株为减弱权利要求4所述获得菌株中过氧化物酶体因子,其中,过氧化物酶体因子为过氧化物酶体因子Pex10和/或Pex20。
6.一种高效合成脂肪醇的菌株的构建方法,其特征在于:菌株为于权利要求4所述菌株的4NS5位点中过表达二羟基丙酮合酶基因DAS2。
7.一种权利要求1、2、3、4、5或6所述方法构建获得高效合成脂肪醇的菌株。
8.一种权利要求6所述菌株的应用,其特征在于:所述菌株在以甲醇为唯一碳源进行发酵培养产脂肪醇中的应用。
CN202211580749.9A 2022-12-07 2022-12-07 一种高效合成脂肪醇的菌株及其构建方法 Pending CN118146967A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202211580749.9A CN118146967A (zh) 2022-12-07 2022-12-07 一种高效合成脂肪醇的菌株及其构建方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202211580749.9A CN118146967A (zh) 2022-12-07 2022-12-07 一种高效合成脂肪醇的菌株及其构建方法

Publications (1)

Publication Number Publication Date
CN118146967A true CN118146967A (zh) 2024-06-07

Family

ID=91285818

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202211580749.9A Pending CN118146967A (zh) 2022-12-07 2022-12-07 一种高效合成脂肪醇的菌株及其构建方法

Country Status (1)

Country Link
CN (1) CN118146967A (zh)

Similar Documents

Publication Publication Date Title
CN105121637B (zh) 酿酒酵母中替代甘油形成的消耗电子的乙醇生产途径
CN104126011B (zh) 由乙酸和甘油生产乙醇的工程化酵母菌株
KR101390085B1 (ko) 글리세롤의 혐기성 발효
US20150167034A1 (en) Engineered microbes and methods for microbial oil production
AU2011266953B2 (en) Production of Biodiesel by yeast from lignocellulose and glycerol
EP2895593B1 (en) Production of organic acids by fermentation at low ph
Liao et al. The significance of proline on lignocellulose-derived inhibitors tolerance in Clostridium acetobutylicum ATCC 824
Kalnenieks et al. Metabolic engineering of bacterial respiration: high vs. low P/O and the case of Zymomonas mobilis
EP3825410A1 (en) Genetically modified yeasts and fermentation processes using genetically modified yeasts
Kim et al. Deletion of glycerol-3-phosphate dehydrogenase genes improved 2, 3-butanediol production by reducing glycerol production in pyruvate decarboxylase-deficient Saccharomyces cerevisiae
JP2001525682A (ja) 改良された性質を有する形質転換微生物
Meinander et al. Fed‐batch xylitol production with two recombinant Saccharomyces cerevisiae strains expressing XYL1 at different levels, using glucose as a cosubstrate: a comparison of production parameters and strain stability
CN108603179B (zh) 发酵产物生产增加的真核细胞
Zhang et al. Consolidated bioprocessing for bioethanol production by metabolically engineered cellulolytic fungus Myceliophthora thermophila
WO2009143495A2 (en) Fast-growing yeast
Wang et al. Carbon-economic biosynthesis of poly-2-hydrobutanedioic acid driven by nonfermentable substrate ethanol
US8999683B2 (en) Production of biodiesel by yeast from lignocellulose and glycerol
Kim et al. Coupling gas purging with inorganic carbon supply to enhance biohydrogen production with Clostridium thermocellum
Lee et al. Enantiopure meso-2, 3-butanediol production by metabolically engineered Saccharomyces cerevisiae expressing 2, 3-butanediol dehydrogenase from Klebsiella oxytoca
CN118146967A (zh) 一种高效合成脂肪醇的菌株及其构建方法
JP2005507255A (ja) バイオテクノロジープロセスを実施する能力が増強された真菌微生物
Yang et al. Enhancing l-malic acid production in Aspergillus niger via natural activation of sthA gene expression
CN113774078B (zh) 一种重组巴斯德毕赤酵母菌株、其构建方法和应用
Cui et al. Efficient production of acetoin from lactate by engineered Escherichia coli whole-cell biocatalyst
WO2023108504A1 (zh) 一种提高酵母菌株nadph和fadh 2供应的方法、工程菌及其应用

Legal Events

Date Code Title Description
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination