CN118048543A - Titanium phosphide particle reinforced Al-Si based composite material and preparation method thereof - Google Patents
Titanium phosphide particle reinforced Al-Si based composite material and preparation method thereof Download PDFInfo
- Publication number
- CN118048543A CN118048543A CN202410049352.XA CN202410049352A CN118048543A CN 118048543 A CN118048543 A CN 118048543A CN 202410049352 A CN202410049352 A CN 202410049352A CN 118048543 A CN118048543 A CN 118048543A
- Authority
- CN
- China
- Prior art keywords
- aluminum
- smelting
- industrial pure
- composite material
- titanium
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000002245 particle Substances 0.000 title claims abstract description 55
- 239000002131 composite material Substances 0.000 title claims abstract description 42
- 229910018125 Al-Si Inorganic materials 0.000 title claims abstract description 35
- 229910018520 Al—Si Inorganic materials 0.000 title claims abstract description 35
- ADDWXBZCQABCGO-UHFFFAOYSA-N titanium(iii) phosphide Chemical compound [Ti]#P ADDWXBZCQABCGO-UHFFFAOYSA-N 0.000 title claims abstract description 27
- 238000002360 preparation method Methods 0.000 title claims abstract description 9
- 238000003723 Smelting Methods 0.000 claims abstract description 65
- 229910045601 alloy Inorganic materials 0.000 claims abstract description 40
- 239000000956 alloy Substances 0.000 claims abstract description 40
- 229910052782 aluminium Inorganic materials 0.000 claims abstract description 34
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims abstract description 34
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims abstract description 33
- URRHWTYOQNLUKY-UHFFFAOYSA-N [AlH3].[P] Chemical compound [AlH3].[P] URRHWTYOQNLUKY-UHFFFAOYSA-N 0.000 claims abstract description 31
- 239000010703 silicon Substances 0.000 claims abstract description 30
- 229910052710 silicon Inorganic materials 0.000 claims abstract description 30
- 229910000838 Al alloy Inorganic materials 0.000 claims abstract description 29
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims abstract description 26
- 229910052802 copper Inorganic materials 0.000 claims abstract description 26
- 239000010949 copper Substances 0.000 claims abstract description 26
- 238000005303 weighing Methods 0.000 claims abstract description 18
- 230000008018 melting Effects 0.000 claims abstract description 17
- 238000002844 melting Methods 0.000 claims abstract description 17
- 239000002994 raw material Substances 0.000 claims abstract description 16
- 239000011159 matrix material Substances 0.000 claims abstract description 10
- 238000000034 method Methods 0.000 claims abstract description 10
- 238000010438 heat treatment Methods 0.000 claims abstract description 8
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 claims description 28
- 229910052786 argon Inorganic materials 0.000 claims description 14
- 239000007789 gas Substances 0.000 claims description 14
- 238000011065 in-situ storage Methods 0.000 claims description 9
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 3
- 239000001301 oxygen Substances 0.000 claims description 3
- 229910052760 oxygen Inorganic materials 0.000 claims description 3
- 238000006243 chemical reaction Methods 0.000 claims description 2
- 238000001816 cooling Methods 0.000 claims 1
- 239000000463 material Substances 0.000 abstract description 4
- 230000003014 reinforcing effect Effects 0.000 abstract description 4
- 239000011156 metal matrix composite Substances 0.000 abstract 1
- 230000002787 reinforcement Effects 0.000 abstract 1
- 239000010936 titanium Substances 0.000 description 25
- 229910052719 titanium Inorganic materials 0.000 description 25
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 24
- 241001062472 Stokellia anisodon Species 0.000 description 14
- 230000001681 protective effect Effects 0.000 description 12
- 239000012071 phase Substances 0.000 description 9
- 229910021364 Al-Si alloy Inorganic materials 0.000 description 5
- 239000000203 mixture Substances 0.000 description 4
- 239000002105 nanoparticle Substances 0.000 description 3
- 230000006911 nucleation Effects 0.000 description 3
- 238000010899 nucleation Methods 0.000 description 3
- CSDREXVUYHZDNP-UHFFFAOYSA-N alumanylidynesilicon Chemical compound [Al].[Si] CSDREXVUYHZDNP-UHFFFAOYSA-N 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 238000005272 metallurgy Methods 0.000 description 2
- 238000001878 scanning electron micrograph Methods 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- 101001121408 Homo sapiens L-amino-acid oxidase Proteins 0.000 description 1
- 102100026388 L-amino-acid oxidase Human genes 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- 101100012902 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) FIG2 gene Proteins 0.000 description 1
- 238000005054 agglomeration Methods 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 230000009227 antibody-mediated cytotoxicity Effects 0.000 description 1
- 229910052797 bismuth Inorganic materials 0.000 description 1
- JCXGWMGPZLAOME-UHFFFAOYSA-N bismuth atom Chemical compound [Bi] JCXGWMGPZLAOME-UHFFFAOYSA-N 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000011031 large-scale manufacturing process Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 230000035484 reaction time Effects 0.000 description 1
- 239000007790 solid phase Substances 0.000 description 1
- 238000007711 solidification Methods 0.000 description 1
- 230000008023 solidification Effects 0.000 description 1
- 238000001308 synthesis method Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C1/00—Making non-ferrous alloys
- C22C1/02—Making non-ferrous alloys by melting
- C22C1/03—Making non-ferrous alloys by melting using master alloys
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22D—CASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
- B22D7/00—Casting ingots, e.g. from ferrous metals
- B22D7/005—Casting ingots, e.g. from ferrous metals from non-ferrous metals
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C21/00—Alloys based on aluminium
- C22C21/02—Alloys based on aluminium with silicon as the next major constituent
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C32/00—Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ
- C22C32/0089—Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with other, not previously mentioned inorganic compounds as the main non-metallic constituent, e.g. sulfides, glass
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Manufacture Of Alloys Or Alloy Compounds (AREA)
- Manufacture And Refinement Of Metals (AREA)
Abstract
Description
技术领域Technical Field
本发明属于金属基复合材料领域,具体涉及一种磷化钛颗粒增强Al-Si基复合材料及其制备方法。The invention belongs to the field of metal-based composite materials, and in particular relates to a titanium phosphide particle reinforced Al-Si-based composite material and a preparation method thereof.
背景技术Background technique
铸造Al-Si系合金由于其密度低、导热性能好、比强度高、耐腐蚀性好以及铸造性能优异等特点,被广泛用于汽缸、活塞等发动机的关键零部件的制造上。然而随着人们对于汽车轻量化、节能环保等要求越来越高,这使得发动机向着更高功率的方向发展,而作为核心零件的活塞等则需要承受更大的机械负荷、热负荷和摩擦负荷。因此,对材料的高温力学性能提出了更高的要求。Cast Al-Si alloys are widely used in the manufacture of key engine parts such as cylinders and pistons due to their low density, good thermal conductivity, high specific strength, good corrosion resistance and excellent casting performance. However, as people's requirements for lightweight, energy-saving and environmental protection of automobiles become higher and higher, engines are developing in the direction of higher power, and pistons as core parts need to withstand greater mechanical loads, thermal loads and friction loads. Therefore, higher requirements are placed on the high-temperature mechanical properties of materials.
颗粒增强Al-Si基复合材料是目前研究最广,应用最多的金属基复合材料,常见的颗粒增强Al-Si基复合材料通常采用外加法制备,但增强颗粒与铝基体界面结合能力差,难以发挥增强颗粒的优势,且在大规模生产中难以控制其稳定性,利用铝合金熔体中的原位合成方法可克服上述缺点。Particle-reinforced Al-Si based composites are currently the most widely studied and applied metal-based composites. Common particle-reinforced Al-Si based composites are usually prepared by an addition method, but the interface bonding ability between the reinforced particles and the aluminum matrix is poor, making it difficult to give full play to the advantages of the reinforced particles, and it is difficult to control their stability in large-scale production. The above shortcomings can be overcome by using an in-situ synthesis method in an aluminum alloy melt.
Y.F.Wang等人在《Materials Today Communications》2024,38.上发表的“Effectof trace bismuth on the solidification structure of hypereutectic Al–22Sialloys”的一文中报道了随着硅含量的增加,合金组织中初生硅的尺寸逐渐增大,严重割裂铝基体,降低合金的强度和韧性。在外力作用下,初晶硅相尖角处出现应力集中和微裂纹,大大降低了合金的强度和韧性,限制了过共晶Al-Si合金的使用,恶化合金的综合力学性能。因此,Al-Si系合金中的初晶Si相细化具有重要意义。In the article “Effect of trace bismuth on the solidification structure of hypereutectic Al–22Sialloys” published in Materials Today Communications 2024, 38., Y.F.Wang et al. reported that with the increase of silicon content, the size of primary silicon in the alloy structure gradually increases, seriously splitting the aluminum matrix and reducing the strength and toughness of the alloy. Under the action of external force, stress concentration and microcracks appear at the sharp corners of the primary silicon phase, which greatly reduces the strength and toughness of the alloy, limits the use of hypereutectic Al-Si alloys, and deteriorates the comprehensive mechanical properties of the alloy. Therefore, the refinement of the primary Si phase in Al-Si alloys is of great significance.
目前国内外针对颗粒增强Al-Si基复合材料已有较多报道,如Dongxin Mao等人在《Journal of Alloys and Compounds》2022 891上发表的“Strength-ductility balancestrategy in SiC reinforced aluminum matrix composites via deformation-drivenmetallurgy”报道了一种用变形驱动冶金(DDM)工艺生产的直径为16mm,高度为1mm的铝Al-Si基复合材料,所制备的SiC/AMCs具有均匀的微观结构和良好的材料性能,但是制备时间长且SiC颗粒与铝基体界面结合效果不佳。微米颗粒能显著提高铝硅基复合材料强度、硬度和耐磨性,但塑韧性却大幅下降;而纳米颗粒在提高强度的同时能够保持较好的塑韧性,但由于纳米颗粒的比表面能大,易团聚。At present, there have been many reports on particle-reinforced Al-Si based composites at home and abroad. For example, Dongxin Mao et al. published "Strength-ductility balance strategy in SiC reinforced aluminum matrix composites via deformation-driven metallurgy" in Journal of Alloys and Compounds 2022 891, reporting an aluminum Al-Si based composite material with a diameter of 16 mm and a height of 1 mm produced by deformation-driven metallurgy (DDM) process. The prepared SiC/AMCs has a uniform microstructure and good material properties, but the preparation time is long and the interface bonding effect between SiC particles and aluminum matrix is not good. Micronized particles can significantly improve the strength, hardness and wear resistance of aluminum-silicon based composites, but the plasticity and toughness are greatly reduced; while nanoparticles can maintain good plasticity and toughness while improving strength, but due to the large specific surface energy of nanoparticles, they are easy to agglomerate.
发明内容Summary of the invention
本发明的目的在于提供一种磷化钛颗粒增强Al-Si基复合材料及其制备方法。The purpose of the present invention is to provide a titanium phosphide particle reinforced Al-Si based composite material and a preparation method thereof.
实现本发明目的的技术解决方案为:一种磷化钛颗粒增强Al-Si基复合材料的制备方法,包括如下步骤:The technical solution to achieve the purpose of the present invention is: a method for preparing a titanium phosphide particle reinforced Al-Si based composite material, comprising the following steps:
步骤(1):称取原料:按比例称取铝磷中间合金、工业纯铝、工业纯硅和海绵钛;Step (1): weighing raw materials: weighing aluminum-phosphorus master alloy, industrial pure aluminum, industrial pure silicon and sponge titanium according to proportion;
步骤(2):熔炼:将称取的工业纯铝、工业纯硅和海绵钛放入真空电弧炉的水冷铜坩埚中,加热到850~1150℃熔化,得到铝合金铸锭;将得到的铝合金铸锭和铝磷中间合金置于同一水冷铜坩埚中,熔炼得到磷化钛颗粒增强Al-Si基复合材料。Step (2): Smelting: weighing industrial pure aluminum, industrial pure silicon and sponge titanium into a water-cooled copper crucible of a vacuum arc furnace, heating to 850-1150° C. to melt and obtain an aluminum alloy ingot; placing the obtained aluminum alloy ingot and aluminum-phosphorus master alloy in the same water-cooled copper crucible, and smelting to obtain a titanium phosphide particle reinforced Al-Si based composite material.
进一步的,步骤(1)中原料的比例以质量百分比具体为:Furthermore, the ratio of the raw materials in step (1) is specifically as follows in terms of mass percentage:
工业纯铝7.9~75.0%,铝磷中间合金5.0~82.0%,工业纯硅1.0~21.0%,海绵钛0.1~15.0%。Industrial pure aluminum 7.9-75.0%, aluminum-phosphorus master alloy 5.0-82.0%, industrial pure silicon 1.0-21.0%, sponge titanium 0.1-15.0%.
进一步的,步骤(2)具体为:Furthermore, step (2) is specifically as follows:
步骤(21):将工业纯铝、工业纯硅、海绵钛由下到上放入真空电弧熔炼炉的水冷铜坩埚中;Step (21): placing industrial pure aluminum, industrial pure silicon and sponge titanium from bottom to top into a water-cooled copper crucible of a vacuum arc melting furnace;
步骤(22):抽真空至3×10-5Pa,然后通入氩气保护气体至5×102Pa,然后打开熔炼直流电流开关,用130A电流条件下熔炼1~2min,再在180~190A电流条件下熔炼1min,得到铸锭;Step (22): evacuate to 3×10 -5 Pa, then introduce argon protective gas to 5×10 2 Pa, then turn on the smelting DC current switch, smelt at 130A for 1 to 2 minutes, and then smelt at 180 to 190A for 1 minute to obtain an ingot;
步骤(23):将步骤(22)得到的铸锭重复翻转熔炼3~5次,得到组织均匀的铝合金铸锭;Step (23): repeatedly turning over and melting the ingot obtained in step (22) for 3 to 5 times to obtain an aluminum alloy ingot with uniform structure;
步骤(24):将步骤(23)得到的铝合金铸锭与铝磷中间合金置于同一水冷坩埚中;抽真空至3×10-5Pa,然后通入氩气保护气体至5×102Pa,打开熔炼直流电流开关,熔炼铝合金铸锭和铝磷中间合金,熔炼时先用130A电流条件下熔炼1~2min,再在180~190A电流条件下熔炼1~2min,重复翻转熔炼3~5次,得到磷化钛颗粒增强Al-Si基复合材料。Step (24): placing the aluminum alloy ingot obtained in step (23) and the aluminum-phosphorus master alloy in the same water-cooled crucible; evacuating to 3×10 -5 Pa, then introducing argon protective gas to 5×10 2 Pa, turning on the smelting DC current switch, and smelting the aluminum alloy ingot and the aluminum-phosphorus master alloy. During smelting, first smelt at 130A for 1 to 2 minutes, then smelt at 180 to 190A for 1 to 2 minutes, and repeat the inversion smelting 3 to 5 times to obtain a titanium phosphide particle reinforced Al-Si based composite material.
进一步的,在步骤(22)前,在真空电弧熔炼炉的另一个水冷铜坩埚中放置海绵钛,通过熔炼海绵钛吸收真空室内的氧。Furthermore, before step (22), sponge titanium is placed in another water-cooled copper crucible of the vacuum arc melting furnace, and oxygen in the vacuum chamber is absorbed by melting the sponge titanium.
一种磷化钛颗粒增强Al-Si基复合材料,采用上述的方法制备。A titanium phosphide particle reinforced Al-Si based composite material is prepared by the above method.
进一步的,包括原位反应生成且弥散分布在Al-Si基体中的TiP颗粒,以及纳米尺度的AlP颗粒。Furthermore, it includes TiP particles generated by in-situ reaction and dispersed in the Al-Si matrix, and nano-scale AlP particles.
进一步的,TiP颗粒尺寸为0.2~10μm。Furthermore, the TiP particle size is 0.2-10 μm.
本发明与现有技术相比,其显著优点在于:Compared with the prior art, the present invention has the following significant advantages:
(1)本发明采用一种新的增强相磷化钛颗粒来增强Al-Si基复合材料,原位生成的一部分TiP会发生固相演变形成纳米尺度的AlP颗粒,作为初晶Si相的异质形核衬底,细化了粗大的Si相,进一步增强了Al-Si基复合材料的综合力学性能,微米级别的TiP能显著提高铝硅基复合材料强度、硬度和耐磨性,但塑韧性却大幅下降;而纳米AlP颗粒在提高强度的同时能够保持较好的塑韧性,但由于纳米AlP颗粒的比表面能大,易团聚;TiP颗粒加入到基体中后,会在短时间内形成大量的纳米和亚微米尺寸的AlP成核颗粒,这种微纳米混杂颗粒增强Al-Si复合材料,能充分发挥微米和纳米颗粒各自的优势。(1) The present invention adopts a new reinforcing phase titanium phosphide particles to reinforce Al-Si based composite materials. A part of the TiP generated in situ will undergo solid phase evolution to form nano-scale AlP particles, which serve as a heterogeneous nucleation substrate for the primary Si phase, refine the coarse Si phase, and further enhance the comprehensive mechanical properties of the Al-Si based composite materials. The micron-level TiP can significantly improve the strength, hardness and wear resistance of the aluminum-silicon based composite materials, but the plasticity and toughness are greatly reduced; while the nano-AlP particles can maintain good plasticity and toughness while improving the strength, but due to the large specific surface energy of the nano-AlP particles, they are easy to agglomerate; after the TiP particles are added to the matrix, a large number of nano- and submicron-sized AlP nucleation particles will be formed in a short time. This micro-nano hybrid particle reinforced Al-Si composite material can give full play to the respective advantages of micron and nano particles.
(2)该制备方法更加节能环保,对原材料的利用率高,可以通过改变铝磷中间合金中磷的含量以及反应的时间来调控增强相TiP颗粒的尺寸大小和含量。(2) This preparation method is more energy-saving and environmentally friendly, with a high utilization rate of raw materials. The size and content of the reinforcing phase TiP particles can be controlled by changing the phosphorus content in the aluminum-phosphorus master alloy and the reaction time.
(3)本发明制备的复合材料中原位合成的微/纳米级的磷化钛颗粒具有优异的热稳定性,与铝基体的界面结合性好;增强相颗粒在铝基体中分布均匀,无明显团聚现象,复合材料展现了良好的高温力学性能。(3) The in-situ synthesized micro/nano-scale titanium phosphide particles in the composite material prepared by the present invention have excellent thermal stability and good interfacial bonding with the aluminum matrix; the reinforcing phase particles are evenly distributed in the aluminum matrix without obvious agglomeration, and the composite material exhibits good high-temperature mechanical properties.
附图说明BRIEF DESCRIPTION OF THE DRAWINGS
图1为实施例1中铝合金原位合成TiP颗粒的SEM图。FIG. 1 is a SEM image of TiP particles synthesized in situ on aluminum alloy in Example 1.
图2为图1中的TiP颗粒的EDS图。FIG. 2 is an EDS image of the TiP particles in FIG. 1 .
具体实施方式Detailed ways
下面结合附图对本发明作进一步详细描述。The present invention is further described in detail below in conjunction with the accompanying drawings.
本发明一种磷化钛颗粒增强Al-Si基复合材料及其原位制备方法,通过在Al-Si合金熔体中原位生成微/纳米尺度的TiP颗粒,其中原位生成的一部分TiP相会重新演变形成纳米AlP颗粒,作为初晶Si相的异质形核衬底来提高Al-Si合金在高温下的强度、韧性和耐磨性。The present invention discloses a titanium phosphide particle reinforced Al-Si based composite material and an in-situ preparation method thereof. Micro/nano-scale TiP particles are in-situ generated in an Al-Si alloy melt, wherein a part of the in-situ generated TiP phase re-evolves to form nano AlP particles, which serve as a heterogeneous nucleation substrate for a primary Si phase to improve the strength, toughness and wear resistance of the Al-Si alloy at high temperatures.
制备方法包括以下步骤:The preparation method comprises the following steps:
步骤(1):称取原料:按比例称取铝磷中间合金、工业纯铝、工业纯硅和海绵钛;Step (1): weighing raw materials: weighing aluminum-phosphorus master alloy, industrial pure aluminum, industrial pure silicon and sponge titanium according to proportion;
原料的配比以质量百分比具体为:The proportion of raw materials is specifically as follows in mass percentage:
工业纯铝7.9~75.0%,铝磷中间合金5.0~82.0%,工业纯硅1.0~21.0%,海绵钛0.1~15.0%。Industrial pure aluminum 7.9-75.0%, aluminum-phosphorus master alloy 5.0-82.0%, industrial pure silicon 1.0-21.0%, sponge titanium 0.1-15.0%.
步骤(2):熔炼:将称取的工业纯铝、工业纯硅和海绵钛放入真空电弧炉的水冷铜坩埚中,加热到850~1150℃熔化,得到铸锭;将得到的铸锭和一定量的铝磷中间合金置于同一水冷铜坩埚中,熔炼得到磷化钛颗粒增强Al-Si基复合材料。Step (2): Smelting: weighing industrial pure aluminum, industrial pure silicon and sponge titanium into a water-cooled copper crucible of a vacuum arc furnace, heating to 850-1150° C. to melt and obtain an ingot; placing the obtained ingot and a certain amount of aluminum-phosphorus master alloy in the same water-cooled copper crucible, and smelting to obtain a titanium phosphide particle reinforced Al-Si based composite material.
步骤(21):将称取的工业纯铝、工业纯硅、海绵钛由下到上放入真空电弧熔炼炉的水冷铜坩埚中;Step (21): placing weighed industrial pure aluminum, industrial pure silicon, and sponge titanium into a water-cooled copper crucible of a vacuum arc melting furnace from bottom to top;
步骤(22):抽真空至3×10-5Pa,然后通入氩气保护气体至5×102Pa,然后打开熔炼直流电流开关,用130A电流条件下熔炼1~2min,再在180~190A电流条件下熔炼1min,得到铸锭。Step (22): evacuate to 3×10 -5 Pa, then introduce argon protective gas to 5×10 2 Pa, then turn on the smelting DC current switch, smelt at 130A for 1-2 minutes, and then smelt at 180-190A for 1 minute to obtain an ingot.
步骤(23):将步骤(22)得到的铸锭重复翻转熔炼3~5次,得到组织均匀的铝合金铸锭。Step (23): Repeat the ingot obtained in step (22) by flipping and smelting for 3 to 5 times to obtain an aluminum alloy ingot with uniform structure.
步骤(24):将步骤(23)得到的铝合金铸锭与铝磷中间合金置于同一水冷坩埚中;抽真空至3×10-5Pa,然后通入氩气保护气体至5×102Pa,打开熔炼直流电流开关,熔炼铝合金铸锭和铝磷中间合金,熔炼时先用130A电流条件下熔炼1~2min,再在180~190A电流条件下熔炼1~2min,重复翻转熔炼3~5次,得到高强耐热磷化钛颗粒增强Al-Si基复合材料。Step (24): placing the aluminum alloy ingot obtained in step (23) and the aluminum-phosphorus master alloy in the same water-cooled crucible; evacuating to 3×10 -5 Pa, then introducing argon protective gas to 5×10 2 Pa, turning on the smelting DC current switch, smelting the aluminum alloy ingot and the aluminum-phosphorus master alloy, first smelting at 130A for 1 to 2 minutes, then smelting at 180 to 190A for 1 to 2 minutes, repeating the flipping smelting 3 to 5 times, to obtain a high-strength and heat-resistant titanium phosphide particle reinforced Al-Si based composite material.
步骤(22)在熔炼工业纯铝、工业纯硅、海绵钛和铝磷中间合金之前,在真空电弧熔炼炉的另一个水冷铜坩埚中放置海绵钛,通过熔炼海绵钛以吸收真空室内的氧。Step (22) Before melting industrial pure aluminum, industrial pure silicon, sponge titanium and aluminum-phosphorus master alloy, sponge titanium is placed in another water-cooled copper crucible in the vacuum arc melting furnace to absorb oxygen in the vacuum chamber by melting the sponge titanium.
实施例1Example 1
步骤(1):称取原料:按以下质量百分比准备所需原料:工业纯铝72.91%,Al-5P中间合金20%,海绵钛1.55%,工业纯硅5.54%;Step (1): weighing raw materials: preparing the required raw materials according to the following mass percentages: 72.91% industrial pure aluminum, 20% Al-5P master alloy, 1.55% sponge titanium, and 5.54% industrial pure silicon;
步骤(2):熔炼:将称取的工业纯铝、工业纯硅和海绵钛放入真空电弧炉的水冷铜坩埚中,加热到850~1150℃熔化,得到铸锭;将得到的铸锭和一定量的铝磷中间合金置于同一水冷铜坩埚中,熔炼得到磷化钛颗粒增强Al-Si基复合材料。Step (2): Smelting: weighing industrial pure aluminum, industrial pure silicon and sponge titanium into a water-cooled copper crucible of a vacuum arc furnace, heating to 850-1150° C. to melt and obtain an ingot; placing the obtained ingot and a certain amount of aluminum-phosphorus master alloy in the same water-cooled copper crucible, and smelting to obtain a titanium phosphide particle reinforced Al-Si based composite material.
步骤(21):将称取的工业纯铝、工业纯硅、工业海绵钛由下到上放入真空电弧熔炼炉的水冷铜坩埚中;Step (21): placing weighed industrial pure aluminum, industrial pure silicon, and industrial sponge titanium into a water-cooled copper crucible of a vacuum arc melting furnace from bottom to top;
步骤(22):抽真空至3×10-5Pa,然后通入氩气保护气体至5×102Pa,然后打开熔炼直流电流开关,用130A电流条件下熔炼2min,再在180A电流条件下熔炼1min,得到铸锭。Step (22): evacuate to 3×10 -5 Pa, then introduce argon protective gas to 5×10 2 Pa, then turn on the smelting DC current switch, smelt at 130A for 2 minutes, and then smelt at 180A for 1 minute to obtain an ingot.
步骤(23):将步骤(22)得到的铸锭重复翻转熔炼4次,得到组织均匀的铝合金铸锭。Step (23): Repeat the ingot obtained in step (22) by flipping and smelting for 4 times to obtain an aluminum alloy ingot with uniform structure.
步骤(24):将步骤(23)得到的铝合金铸锭与铝磷中间合金置于同一水冷坩埚中;抽真空至3×10-5Pa,然后通入氩气保护气体至5×102Pa,打开熔炼直流电流开关,熔炼铝合金铸锭和铝磷中间合金,熔炼时先用130A电流条件下熔炼2min,再在180A电流条件下熔炼2min,重复翻转熔炼5次,得到磷化钛颗粒增强Al-Si基复合材料。其具体成分为Al-5.54Si-2.55TiP,TiP的平均尺寸为3~4μm。Step (24): placing the aluminum alloy ingot obtained in step (23) and the aluminum-phosphorus master alloy in the same water-cooled crucible; evacuating to 3×10 -5 Pa, then introducing argon protective gas to 5×10 2 Pa, turning on the smelting DC current switch, smelting the aluminum alloy ingot and the aluminum-phosphorus master alloy, first smelting at 130A for 2 minutes, then smelting at 180A for 2 minutes, repeating the flip smelting 5 times, and obtaining a titanium phosphide particle reinforced Al-Si based composite material. The specific composition is Al-5.54Si-2.55TiP, and the average size of TiP is 3 to 4 μm.
图1为实施例1的SEM图,其中TiP颗粒为块状或板状结构,颗粒尺寸为3~4μm,AlP颗粒为六角形,颗粒尺寸为0.4~0.6μm;图2是对应颗粒的EDS图。FIG1 is a SEM image of Example 1, wherein the TiP particles are block or plate-like structures with a particle size of 3 to 4 μm, and the AlP particles are hexagonal with a particle size of 0.4 to 0.6 μm; FIG2 is an EDS image of the corresponding particles.
实施例2Example 2
步骤(1):称取原料:按以下质量百分比准备所需原料:工业纯铝36.72%,Al-10P中间合金50%,海绵钛7.74%,工业纯硅5.54%;Step (1): weighing raw materials: preparing the required raw materials according to the following mass percentages: 36.72% of industrial pure aluminum, 50% of Al-10P master alloy, 7.74% of sponge titanium, and 5.54% of industrial pure silicon;
步骤(2):熔炼:将称取的工业纯铝、工业纯硅和海绵钛放入真空电弧炉的水冷铜坩埚中,加热到850~1150℃熔化,得到铸锭;将得到的铸锭和一定量的铝磷中间合金置于同一水冷铜坩埚中,熔炼得到磷化钛颗粒增强Al-Si基复合材料。Step (2): Smelting: weighing industrial pure aluminum, industrial pure silicon and sponge titanium into a water-cooled copper crucible of a vacuum arc furnace, heating to 850-1150° C. to melt and obtain an ingot; placing the obtained ingot and a certain amount of aluminum-phosphorus master alloy in the same water-cooled copper crucible, and smelting to obtain a titanium phosphide particle reinforced Al-Si based composite material.
步骤(21):将称取的工业纯铝、工业纯硅、工业海绵钛由下到上放入真空电弧熔炼炉的水冷铜坩埚中;Step (21): placing weighed industrial pure aluminum, industrial pure silicon, and industrial sponge titanium into a water-cooled copper crucible of a vacuum arc melting furnace from bottom to top;
步骤(22):抽真空至3×10-5Pa,然后通入氩气保护气体至5×102Pa,然后打开熔炼直流电流开关,用130A电流条件下熔炼3min,再在190A电流条件下熔炼2min,得到铸锭。Step (22): evacuate to 3×10 -5 Pa, then introduce argon protective gas to 5×10 2 Pa, then turn on the smelting DC current switch, smelt at 130A for 3 minutes, and then smelt at 190A for 2 minutes to obtain an ingot.
步骤(23):将步骤(22)得到的铸锭重复翻转熔炼4次,得到组织均匀的铝合金铸锭。Step (23): Repeat the ingot obtained in step (22) by flipping and smelting for 4 times to obtain an aluminum alloy ingot with uniform structure.
步骤(24):将步骤(23)得到的铝合金铸锭与铝磷中间合金置于同一水冷坩埚中;抽真空至3×10-5Pa,然后通入氩气保护气体至5×102Pa,打开熔炼直流电流开关,熔炼铝合金铸锭和铝磷中间合金,熔炼时先用130A电流条件下熔炼3min,再在190A电流条件下熔炼2min,重复翻转熔炼3~5次,得到磷化钛颗粒增强Al-Si基复合材料。其具体成分为Al-5.54Si-12.74TiP,TiP的平均尺寸为0.2~4μm。Step (24): placing the aluminum alloy ingot obtained in step (23) and the aluminum-phosphorus master alloy in the same water-cooled crucible; evacuating to 3×10 -5 Pa, then introducing argon protective gas to 5×10 2 Pa, turning on the smelting DC current switch, smelting the aluminum alloy ingot and the aluminum-phosphorus master alloy, first smelting for 3 minutes under 130A current conditions, then smelting for 2 minutes under 190A current conditions, repeating the flip smelting 3 to 5 times, and obtaining a titanium phosphide particle reinforced Al-Si based composite material. The specific composition is Al-5.54Si-12.74TiP, and the average size of TiP is 0.2 to 4μm.
实施例3Example 3
步骤(1):称取原料:按以下质量百分比准备所需原料:工业纯铝19.96%,Al-10P中间合金50%,海绵钛12.39%,工业纯硅17.65%;Step (1): weighing raw materials: preparing the required raw materials according to the following mass percentages: 19.96% of industrial pure aluminum, 50% of Al-10P master alloy, 12.39% of sponge titanium, and 17.65% of industrial pure silicon;
步骤(2):熔炼:将称取的工业纯铝、工业纯硅和海绵钛放入真空电弧炉的水冷铜坩埚中,加热到850~1150℃熔化,得到铸锭;将得到的铸锭和一定量的铝磷中间合金置于同一水冷铜坩埚中,熔炼得到磷化钛颗粒增强Al-Si基复合材料。Step (2): Smelting: weighing industrial pure aluminum, industrial pure silicon and sponge titanium into a water-cooled copper crucible of a vacuum arc furnace, heating to 850-1150° C. to melt and obtain an ingot; placing the obtained ingot and a certain amount of aluminum-phosphorus master alloy in the same water-cooled copper crucible, and smelting to obtain a titanium phosphide particle reinforced Al-Si based composite material.
步骤(21):将称取的工业纯铝、工业纯硅、工业海绵钛由下到上放入真空电弧熔炼炉的水冷铜坩埚中;Step (21): placing weighed industrial pure aluminum, industrial pure silicon, and industrial sponge titanium into a water-cooled copper crucible of a vacuum arc melting furnace from bottom to top;
步骤(22):抽真空至3×10-5Pa,然后通入氩气保护气体至5×102Pa,然后打开熔炼直流电流开关,用130A电流条件下熔炼2min,再在190A电流条件下熔炼1min,得到铸锭。Step (22): evacuate to 3×10 -5 Pa, then introduce argon protective gas to 5×10 2 Pa, then turn on the smelting DC current switch, smelt at 130A for 2 minutes, and then smelt at 190A for 1 minute to obtain an ingot.
步骤(23):将步骤(22)得到的铸锭重复翻转熔炼4次,得到组织均匀的铝合金铸锭。Step (23): Repeat the flipping and smelting of the ingot obtained in step (22) for 4 times to obtain an aluminum alloy ingot with uniform structure.
步骤(24):将步骤(23)得到的铝合金铸锭与铝磷中间合金置于同一水冷坩埚中;抽真空至3×10-5Pa,然后通入氩气保护气体至5×102Pa,打开熔炼直流电流开关,熔炼铝合金铸锭和铝磷中间合金,熔炼时先用130A电流条件下熔炼5~6min,再在190A电流条件下熔炼2min,重复翻转熔炼4次,得到磷化钛颗粒增强Al-Si基复合材料。其具体成分为Al-17.65Si-17.39TiP,TiP的平均尺寸为0.6~8μm。Step (24): placing the aluminum alloy ingot obtained in step (23) and the aluminum-phosphorus master alloy in the same water-cooled crucible; evacuating to 3×10 -5 Pa, then introducing argon protective gas to 5×10 2 Pa, turning on the smelting DC current switch, smelting the aluminum alloy ingot and the aluminum-phosphorus master alloy, first smelting under 130A current conditions for 5 to 6 minutes, then smelting under 190A current conditions for 2 minutes, repeating the flip smelting 4 times, and obtaining a titanium phosphide particle reinforced Al-Si based composite material. The specific composition is Al-17.65Si-17.39TiP, and the average size of TiP is 0.6 to 8μm.
实施例4Example 4
步骤(1):称取原料:按以下质量百分比准备所需原料:工业纯铝24.61%,Al-10P中间合金50%,海绵钛7.74%,工业纯硅17.65%;Step (1): weighing raw materials: preparing the required raw materials according to the following mass percentages: 24.61% of industrial pure aluminum, 50% of Al-10P master alloy, 7.74% of sponge titanium, and 17.65% of industrial pure silicon;
步骤(2):熔炼:将称取的工业纯铝、工业纯硅和海绵钛放入真空电弧炉的水冷铜坩埚中,加热到850~1150℃熔化,得到铸锭;将得到的铸锭和一定量的铝磷中间合金置于同一水冷铜坩埚中,熔炼得到磷化钛颗粒增强Al-Si基复合材料。Step (2): Smelting: weighing industrial pure aluminum, industrial pure silicon and sponge titanium into a water-cooled copper crucible of a vacuum arc furnace, heating to 850-1150° C. to melt and obtain an ingot; placing the obtained ingot and a certain amount of aluminum-phosphorus master alloy in the same water-cooled copper crucible, and smelting to obtain a titanium phosphide particle reinforced Al-Si based composite material.
步骤(21):将称取的工业纯铝、工业纯硅、工业海绵钛由下到上放入真空电弧熔炼炉的水冷铜坩埚中;Step (21): placing weighed industrial pure aluminum, industrial pure silicon, and industrial sponge titanium into a water-cooled copper crucible of a vacuum arc melting furnace from bottom to top;
步骤(22):抽真空至3×10-5Pa,然后通入氩气保护气体至5×102Pa,然后打开熔炼直流电流开关,用130A电流条件下熔炼2min,再在190A电流条件下熔炼1min,得到铸锭。Step (22): evacuate to 3×10 -5 Pa, then introduce argon protective gas to 5×10 2 Pa, then turn on the smelting DC current switch, smelt at 130A for 2 minutes, and then smelt at 190A for 1 minute to obtain an ingot.
步骤(23):将步骤(22)得到的铸锭重复翻转熔炼4次,得到组织均匀的铝合金铸锭。Step (23): Repeat the ingot obtained in step (22) by flipping and smelting for 4 times to obtain an aluminum alloy ingot with uniform structure.
步骤(24):将步骤(23)得到的铝合金铸锭与铝磷中间合金置于同一水冷坩埚中;抽真空至3×10-5Pa,然后通入氩气保护气体至5×102Pa,打开熔炼直流电流开关,熔炼铝合金铸锭和铝磷中间合金,熔炼时先用130A电流条件下熔炼6min,再在180~190A电流条件下熔炼5min,重复翻转熔炼4次,得到磷化钛颗粒增强Al-Si基复合材料。其具体成分为Al-17.65Si-12.74TiP,TiP的平均尺寸为1~8μm。Step (24): placing the aluminum alloy ingot obtained in step (23) and the aluminum-phosphorus master alloy in the same water-cooled crucible; evacuating to 3×10 -5 Pa, then introducing argon protective gas to 5×10 2 Pa, turning on the smelting DC current switch, smelting the aluminum alloy ingot and the aluminum-phosphorus master alloy, first smelting for 6 minutes under 130A current conditions, then smelting for 5 minutes under 180-190A current conditions, repeating the flip smelting 4 times, and obtaining a titanium phosphide particle reinforced Al-Si based composite material. The specific composition is Al-17.65Si-12.74TiP, and the average size of TiP is 1-8μm.
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202410049352.XA CN118048543A (en) | 2024-01-12 | 2024-01-12 | Titanium phosphide particle reinforced Al-Si based composite material and preparation method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202410049352.XA CN118048543A (en) | 2024-01-12 | 2024-01-12 | Titanium phosphide particle reinforced Al-Si based composite material and preparation method thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
CN118048543A true CN118048543A (en) | 2024-05-17 |
Family
ID=91043959
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202410049352.XA Pending CN118048543A (en) | 2024-01-12 | 2024-01-12 | Titanium phosphide particle reinforced Al-Si based composite material and preparation method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN118048543A (en) |
-
2024
- 2024-01-12 CN CN202410049352.XA patent/CN118048543A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN109108298B (en) | Preparation method of hierarchical structure metal matrix composite material | |
CN108486431B (en) | Al-Si-Mg series aluminum alloy composition for selective laser melting technology and preparation method of formed part | |
CN111206166B (en) | Preparation method of in-situ ternary nanoparticle reinforced aluminum matrix composite | |
CN110273092B (en) | CoCrNi particle reinforced magnesium-based composite material and preparation method thereof | |
CN106435299B (en) | A kind of SiC particulate reinforced aluminum matrix composites and preparation method thereof | |
CN107904439A (en) | A kind of in-situ nano multiphase composite toughening titanium matrix composite and preparation method thereof | |
CN112143925A (en) | Preparation method of high-strength high-plasticity titanium-magnesium composite material | |
CN117026003B (en) | A stir-casting preparation method for aluminum-based composite materials based on composite modification and refinement | |
CN114672686A (en) | Preparation method of additional nano-particle reinforced cast aluminum-lithium alloy | |
CN105886853A (en) | Nano ceramic particle reinforced aluminum silicon alloy, preparation method and application thereof | |
CN1325681C (en) | Ceramic granule reinforced aluminium-base composite material and its preparing method | |
CN108384977B (en) | A dual-phase particle reinforced Al-based composite material and its preparation method | |
CN116024452B (en) | A method for in-situ synthesis of nanoparticle-reinforced aluminum-based composite materials | |
CN114411031B (en) | Micron titanium particle reinforced magnesium rare earth based composite material | |
CN114277277A (en) | AlN/Al particle reinforced magnesium-aluminum rare earth based composite material and preparation method thereof | |
CN112281009B (en) | A method for preparing titanium-based composite material by sintering pre-dispersed graphite composite titanium hydride | |
CN110079710B (en) | In-situ nano TiC particle reinforced Al-Si-based composite material and preparation method thereof | |
CN118048543A (en) | Titanium phosphide particle reinforced Al-Si based composite material and preparation method thereof | |
CN111074109A (en) | Biphase ceramic particle reinforced aluminum-based composite material, brake drum and preparation method thereof | |
CN114318067B (en) | Multi-carbide particle reinforced aluminum matrix composite and preparation method thereof | |
CN1396291A (en) | Process for preparing steel-base composite feinforced by particles generated in-situ locally | |
CN114134302B (en) | Layered magnesium-magnesium matrix composite plate and preparation method and application thereof | |
CN113249686B (en) | A kind of reinforcement modification method for casting aluminum-lithium matrix composites | |
CN108374099A (en) | A kind of preparation method of long-periodic structure particle reinforced Mg-base/aluminum matrix composite | |
CN1297682C (en) | Preparation method for reinforced aluminum base composite material composed by in situ alpha-Al2O3 crystal whisker and TiC grain |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |