CN118047960A - 一种聚多巴胺生物凝胶电极及其制备方法和应用 - Google Patents

一种聚多巴胺生物凝胶电极及其制备方法和应用 Download PDF

Info

Publication number
CN118047960A
CN118047960A CN202410153556.8A CN202410153556A CN118047960A CN 118047960 A CN118047960 A CN 118047960A CN 202410153556 A CN202410153556 A CN 202410153556A CN 118047960 A CN118047960 A CN 118047960A
Authority
CN
China
Prior art keywords
electrode
polydopamine
biogel
solution
pda
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202410153556.8A
Other languages
English (en)
Inventor
胡斌
蔡然
郑凯
杨碧海
田福泽
朱立贤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing Institute of Technology BIT
Original Assignee
Beijing Institute of Technology BIT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Institute of Technology BIT filed Critical Beijing Institute of Technology BIT
Priority to CN202410153556.8A priority Critical patent/CN118047960A/zh
Publication of CN118047960A publication Critical patent/CN118047960A/zh
Pending legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/25Bioelectric electrodes therefor
    • A61B5/251Means for maintaining electrode contact with the body
    • A61B5/257Means for maintaining electrode contact with the body using adhesive means, e.g. adhesive pads or tapes
    • A61B5/259Means for maintaining electrode contact with the body using adhesive means, e.g. adhesive pads or tapes using conductive adhesive means, e.g. gels
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/25Bioelectric electrodes therefor
    • A61B5/263Bioelectric electrodes therefor characterised by the electrode materials
    • A61B5/268Bioelectric electrodes therefor characterised by the electrode materials containing conductive polymers, e.g. PEDOT:PSS polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/52Amides or imides
    • C08F220/54Amides, e.g. N,N-dimethylacrylamide or N-isopropylacrylamide
    • C08F220/56Acrylamide; Methacrylamide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/0666Polycondensates containing five-membered rings, condensed with other rings, with nitrogen atoms as the only ring hetero atoms
    • C08G73/0672Polycondensates containing five-membered rings, condensed with other rings, with nitrogen atoms as the only ring hetero atoms with only one nitrogen atom in the ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/02Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques
    • C08J3/03Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in aqueous media
    • C08J3/075Macromolecular gels
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2333/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers
    • C08J2333/24Homopolymers or copolymers of amides or imides
    • C08J2333/26Homopolymers or copolymers of acrylamide or methacrylamide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2479/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen, or carbon only, not provided for in groups C08J2461/00 - C08J2477/00
    • C08J2479/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/001Conductive additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/08Metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/05Alcohols; Metal alcoholates
    • C08K5/053Polyhydroxylic alcohols

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Pathology (AREA)
  • Molecular Biology (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Biophysics (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)

Abstract

本发明涉及一种聚多巴胺生物凝胶电极及其制备方法和应用,属于导电水凝胶技术领域。该方法以聚丙烯酰胺、盐酸多巴胺、液态金属镓铟合金和甘油为主要原料,液态金属镓铟合金为导电组份,通过交联剂形成三维网络,获得具有优异的导电性、低皮肤接触阻抗、良好韧性和黏附性的生物凝胶电极。本发明制得的水凝胶可用作生物电极贴片用于心电测试系统;在信号的采集方面,该电极展现出高的信噪比,信号精度高,还具有更低的阻抗和皮肤界面阻抗。此外,本发明制备方法简单,适合大规模生产和推广应用。

Description

一种聚多巴胺生物凝胶电极及其制备方法和应用
技术领域
本发明涉及一种聚多巴胺生物凝胶电极及其制备方法和应用,属于导电水凝胶技术领域。
背景技术
生物电信号是伴随着生物体内的生命活动产生的,例如心电信号、脑电信号、肌电信号等。生物电极是一种用于测量生物电信号的传感器,被广泛应用于医疗、生理学研究、神经科学、人机交互等领域。生物电信号十分微弱(mv、μV级别),目前的生物电极在使用中不能长时间保证和皮肤之间的接触阻抗的稳定性,这严重影响了信号质量。此外,使用起来也有一些不便之处,比如难以清理。为了解决这些问题,凝胶湿电极成为了越来越多人的关注焦点。然而,凝胶电极的强度普遍较低,黏性也不理想,这导致无法确保水凝胶和皮肤之间的良好耦合,接触阻抗不稳定。另外,凝胶的拉伸强度低,粘弹性差,无法独立固定在皮肤上,所以需要在电极周围增加大面积的压敏胶来辅助固定电极,但却显得更加笨重。
此外,目前大多数的生物凝胶电极往往只表现出单一的粘附性,在佩戴的同时往往会与衣物造成不必要的粘附,运动过程中可能会发生不可避免的移位,造成生物信号的失真以及长期使用过程中的不便。并且在使用后难以去除或重新粘附力差等问题。
发明内容
本发明的技术解决问题是:克服现有技术的不足,提出一种聚多巴胺生物凝胶电极及其制备方法和应用,为一种具有优良粘附性、生物相容性、耐汗耐湿性、高拉伸性能、低阻抗的聚多巴胺生物凝胶电极,且制备过程更加简单易操作,且可重复性高,克服了常用电极的接触阻抗不能长时间保持稳定的缺点,具有接触阻抗稳定、结构简单、保水性好和生物相容性好等优点,同时具有janus双面不对称粘附性,可以按需重复附着和分离,用于生理电信号监测。
本发明的技术解决方案是:
一种聚多巴胺生物凝胶电极,为一种多孔水凝胶,主要成分包括聚丙烯酰胺、盐酸多巴胺、液态金属和甘油;聚丙烯酰胺作为框架,盐酸多巴胺提供粘附性,液态金属用于降低材料阻抗,提供导电性能,甘油用于保湿;
以该聚多巴胺生物凝胶电极的总质量为100%计算,各组分的质量百分含量为:
聚丙烯酰胺 54%-61%
盐酸多巴胺 3%-4%
液态金属 6%-18%
甘油 26%-30%
一种聚多巴胺生物凝胶电极的制备方法,包括以下步骤:
步骤1,配置PDA@EGaIn溶液,具体方法为:将盐酸多巴胺和液态金属在缓冲溶液中进行混合,混合时先进行超声分散,然后进行磁力搅拌,得到PDA@EGaIn溶液;
步骤2,配置PDA@EGaIn-PAM预聚体溶液,具体方法为:将丙烯酰胺和甘油加入到步骤1得到的PDA@EGaIn溶液中,搅拌,然后再加入引发剂和交联剂,得到PDA@EGaIn-PAM预聚体溶液;
步骤3,将步骤2得到的PDA@EGaIn-PAM预聚体溶液倒入到电极模具中,密封,放置于烘箱中加热发生交联反应,反应结束后降温,待温度降低至室温后,取出产品在产品表面滴加AlCl3溶液进行浸泡,浸泡结束后得到具有双面不对称粘附性的聚多巴胺生物凝胶电极。
所述步骤1中,缓冲溶液为磷酸盐缓冲溶液、硼酸盐缓冲溶液、盐酸缓冲溶液中的至少一种,缓冲溶液的pH值为7-9;缓冲溶液的浓度为30-60mM/L;盐酸多巴胺的浓度为1-15mg/ml,盐酸多巴胺和液态金属的质量比为0.21-0.64:1;盐酸多巴胺和液态金属的质量和与缓冲溶液的比例关系为0.2-0.8g:10ml;进行混合时的温度为20-30℃,超声分散时的功率为200-400W,超声分散时间20-30min,磁力搅拌时间为10-30h;液态金属为镓、汞、镓铟合金、镓铟锡合金、铋锡合金、铋锡铅铟合金中的至少一种;更优选地,液态金属为镓铟合金,镓铟合金中镓质量分数为75.5%,铟质量分数为24.5%;
所述步骤2中,丙烯酰胺和甘油的质量比为1.6-2:1g,PDA@EGaIn溶液与甘油的比例关系为10-12ml:1g;引发剂与甘油的质量比为20mg-25mg:1g,引发剂与交联剂的质量比为1:1;搅拌时间为0.5-2h,引发剂为过氧化苯甲酰、过氧化苯甲酰叔丁酯、过氧化甲乙酮、过硫酸铵、过硫酸钾中的至少一种;交联剂为二甲胺基丙胺、四甲基乙二胺、N,N'-亚甲基双丙烯酰胺中的至少一种;
所述步骤3中,加热温度为60-80℃,最优为75℃,加热时间为0.5-1h,最优为50min;AlCl3溶液的浓度范围为20-40wt%,浸泡时间为5-20min。
一种聚多巴胺生物凝胶电极的应用,将制备得到的双面不对称粘附性的聚多巴胺生物凝胶电极贴附到皮肤上作为传感器,用于测量心电信号、脑电信号或肌电信号等生物电信号。
由于采用了上述技术方案,本发明取得的有益效果是:
(1)本发明使用盐酸多巴胺来使液态金属镓铟合金液滴稳定分散在水凝胶中,通过盐酸多巴胺单体在液态金属液滴上原位聚合形成聚多巴胺,有效的防止液态金属镓铟合金液滴的聚集,在保证了凝胶电极具有一定粘附强度和力学性能的同时,进一步提升了凝胶的导电性能。
(2)本发明使用多巴胺和丙烯酰胺为合成原料,制得的凝胶具有较好的拉伸性能、粘附性和生物相容性,与皮肤组织贴合性高、不产生刺激。通过AlCl3对多巴胺的络合作用,改变了凝胶表面的粘附性能,赋予了多巴胺凝胶双面不对称粘附的特性,并且撕除后无胶粘连,不会造成皮肤疼痛。
(3)本发明在原料成分中加入液态金属镓铟合金导电分子,可以将心脏产生的生物电信号快速精确的传递到电极片,通过外接信号采集和数据模块可实现心电信号的实时采集;同时凝胶与皮肤组织的直接接触可以实现高信噪比的信号传感,灵敏度高。
(4)应用本发明制备方法制得的高粘附性生物凝胶电极,所用材料均是无危化药品,保证了优异的生物相容性。并且本发明中高粘附性生物凝胶电极的制备方法,所需原料中的聚合物材料明胶价格低廉,容易获得,且材料绿色环保,有利于工业化推广。
(5)本发明涉及一种制备高粘附性多巴胺生物凝胶电极的方法,属于生物电极技术领域。该方法以聚丙烯酰胺、盐酸多巴胺、液态金属镓铟合金和甘油为主要原料,液态金属为导电组份,通过交联剂形成三维网络,获得具有优异的导电性、低皮肤接触阻抗、良好韧性和黏附性的生物凝胶电极。本发明制得的水凝胶可用作生物电极贴片用于心电测试系统;在信号的采集方面,该电极展现出高的信噪比,信号精度高,还具有更低的阻抗和皮肤界面阻抗。此外,本发明制备方法简单,适合大规模生产和推广应用。
附图说明
图1是本发明聚多巴胺生物凝胶电极的制备方法过程示意图;
图2是本发明制备方法制得的聚多巴胺生物凝胶实物照片;
图3是本发明制备方法制得的聚多巴胺生物凝胶微观结构照片;
图4是本发明制备方法制得的聚多巴胺生物凝胶XPS光谱及其Ga 2p高分辨率谱图;
图5是本发明制备方法制得的聚多巴胺生物凝胶拉伸和粘附力测试数据图;
图6是本发明制备方法制得的聚多巴胺生物凝胶频率阻抗曲线和商业化电极阻抗对比图;
图7是本发明制备方法制得的聚多巴胺生物凝胶电极阻抗图;
图8是本发明制备方法制得的聚多巴胺生物凝胶电极界面阻抗测试示意图及测试曲线;
图9是本发明制备方法制得的聚多巴胺生物凝胶电极心电信号图以及噪音数据图;
图10是本发明制备方法制得的聚多巴胺生物凝胶电极心电信号、噪音及信噪比柱状图;
图11是本发明制备方法制得的聚多巴胺生物凝胶电极阻抗-时间曲线。
具体实施方式
下面结合附图以及具体实施例对本发明作进一步的说明,但本发明的保护范围并不限于此。
如图1所示,一种聚多巴胺生物凝胶电极的制备方法,包括以下步骤:
步骤1,配置PDA@EGaIn溶液,具体方法为:将盐酸多巴胺和液态金属在缓冲溶液中进行混合,混合时先进行超声分散,然后进行磁力搅拌,得到PDA@EGaIn溶液;
步骤2,配置PDA@EGaIn-PAM预聚体溶液,具体方法为:将丙烯酰胺和甘油加入到步骤1得到的PDA@EGaIn溶液中,搅拌,然后再加入引发剂和交联剂,得到PDA@EGaIn-PAM预聚体溶液;
步骤3,将步骤2得到的PDA@EGaIn-PAM预聚体溶液倒入到电极模具中,密封,放置于烘箱中加热发生交联反应,反应结束后降温,待温度降低至室温后,取出产品在产品表面滴加AlCl3溶液进行浸泡,浸泡结束后得到具有双面不对称粘附性的聚多巴胺生物凝胶电极。
实施例1
一种聚多巴胺生物凝胶电极的制备方法,具体包括以下步骤:
步骤1:称取0.128g(0.04wt%)盐酸多巴胺、0.2g(0.06wt%)液态金属镓铟合金加入到10ml盐酸缓冲溶液中,使用超声功率为300w的细胞破碎仪在冰浴下超声25min,然后在室温下搅拌12h使多巴胺单体完全聚合后得到PDA@0.2LM溶液;镓铟合金中镓质量分数为75.5%,铟质量分数为24.5%;盐酸缓冲溶液的浓度为0.05mol/L,pH值为8.5;
步骤2:称取2g(0.60wt%)丙烯酰胺和1g(0.30wt%)甘油加入步骤1配置得到的溶液中,恒温搅拌1h,使其充分溶解。然后再依次加入20mg引发剂过硫酸钾和20mg的交联剂N,N'-亚甲基双丙烯酰胺,充分搅拌后得到PDA@0.2LM-PAM预聚体溶液;
步骤3:将步骤2得到的预聚体溶液倒入电极模具中密封好后放置于烘箱中75℃静置50min。待温度降低至室温后,在表面滴加3滴30%wt AlCl3溶液,浸泡10min后得到双面不对称粘附性的聚多巴胺生物凝胶电极,其命名为PDA-0.2LM水凝胶。
实施例2
与实施例1不同之处在于,步骤1中加入的液态金属镓铟合金的质量为0.4g(0.11wt%),得到的产品命名为PDA-0.4LM水凝胶。
实施例3
与实施例1不同之处在于,步骤1中加入的液态金属镓铟合金的质量为0.6g(0.17wt%),得到的产品命名为PDA-0.6LM水凝胶。
采用美国MARK-10仪器有限公司F105IM型高级型电动力学测量台测试水凝胶电极的力学性能,将多巴胺生物凝胶电极(20mm×10mm×1mm)放在拉伸夹具中以10mm/min的速度进行拉伸性能测试;粘附测试是将水凝胶置于两块粘附基板之间,基板与凝胶的接触面为直径10mm的圆形,用高级型电动力学测量台测试水凝胶的粘附性能;
采用上海辰华有限公司CHI760E型电化学工作站测量水凝胶电极的电学性能,将多巴胺生物凝胶电极(10mm×10mm×2mm)胶对胶连接组成电极对,工作电极连接其中一个电极的公抠,参比电极与对电极短接接在另一个电极的公扣,通过两电极体系测量电极对的阻抗,阻抗频率曲线。皮肤界面阻抗测试方法如图9所示,将工作电极(WE),参考电极(RE)和对电极(CE)分别放置在皮肤间距相同的位置上进行测试。
图2为本实施例1中的PDA-0.2LM凝胶电极实物照片,由图2可知,PDA-0.2LM凝胶电极可以很好的在皮肤表面的贴合。
图3a和图3b图示本发明实施例1水凝胶的SEM图,比例尺分别为(10μm,1μm)图中可以看出,水凝胶内部具有均匀的多孔结构,结构平滑,内部交联分布良好,并且PDA@EGaIn颗粒均匀的分散在水凝胶多孔间隙中。
图4a和图4b为实施例3中制备得到的PDA-0.6LM水凝胶的XPS光谱及其C1s、O 1s和Ga 2p高分辨率谱图,主要含有C1s(284eV)、N 1s(398eV)和O 1s(530eV)三个信号峰,其中Ga 2p(530eV)的高分辨率XPS谱图中可以看出Ga(III)的特征峰信号更高,以上结果证明了Ga元素主要以氧化态存在。
对实施例1得到的产品进行拉伸测试结果如图5a所示,该凝胶电极的最大拉伸强度为234kPa,断裂伸长率为250%。并且对实施例1得到的产品进行粘附力测试如图7所示,其粘附强度最大为5.9KPa。
对实施例1-3得到的产品与商业化电极(丹麦安保(AMBU)N-00-S/25凝胶电极)进行阻抗测试如图6和图7所示,在10-105Hz频率内,不同镓铟合金导电粒子含量的多巴胺凝胶电极均比商业化电极的阻抗值要低得多。在100Hz下,多巴胺凝胶电极的阻抗值均在100Ω以下,最优为41.5Ω,而商业化电极的阻抗则达到了1310Ω。此外,对实施例2得到的产品PDA-0.4LM与商业化电极进行皮肤界面阻抗测试结果如图8b所示,在图8b的界面阻抗数据结果可以看出,多巴胺凝胶电极在1-105Hz频率内的阻抗值依旧优于商业化电极,同样证明了该水凝胶具有优异的导电性。
利用柔性电路结合水凝胶将心电信号读取、传输、处理,通过水凝胶电极上的多巴胺羧基基团与鞣酸羧基基团与人体皮肤可以形成强力黏附从而实现长久佩戴;而需要剥离时也可以轻松撕掉,实现可控穿戴与脱离。
如图9所示,使用一次性商业化电极贴片进行心电信号采集实验作为对照组,与实施例2得到的产品PDA-0.4LM进行相同的心电信号采集实验,实施例2测试得到的心电图与商业化电极得到的心电图基本相似。从图10可以看出,实施例1-3得到的产品的信噪比要更优于传统商用电极,信噪比值最高为21.0dB。此外,该多巴胺凝胶电极在7天内仍能保持较低的电化学阻抗,从图11可以看出,其阻值一直低于120Ω,一周后仍具有较好的导电性。
综上所述,本发明研发了一种高粘附性聚多巴胺生物凝胶电极。该生物凝胶电极能够提供长时间高质量的心电图记录。此外,该生物凝胶电极还具备良好的生物相容性和长时间稳定的信号采集性能,为心电信号采集系统提供了长期稳定的保证,应用本发明制备方法制得的高粘附性生物凝胶电极,电导率高,生物适应性好,其采集信号性能良好,可匹配目前常见的心电信号采集设备。
尽管通过参考附图并结合优选实施例的方式对本发明进行了详细描述,但本发明并不限于此。在不脱离本发明的精神和实质的前提下,本领域普通技术人员可以对本发明的实施例进行各种等效的修改或替换,而这些修改或替换都应在本发明的涵盖范围内/任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。

Claims (8)

1.一种聚多巴胺生物凝胶电极,其特征在于:
包括聚丙烯酰胺、盐酸多巴胺、液态金属和甘油;
以该聚多巴胺生物凝胶电极的总质量为100%计算,各组分的质量百分含量为:
聚丙烯酰胺 54%-61%
盐酸多巴胺 3%-4%
液态金属 6%-18%
甘油26%-30%。
2.一种聚多巴胺生物凝胶电极的制备方法,其特征在于包括以下步骤:
步骤1,配置PDA@EGaIn溶液,具体方法为:将盐酸多巴胺和液态金属在缓冲溶液中进行混合,混合时先进行超声分散,然后进行磁力搅拌,得到PDA@EGaIn溶液;
步骤2,配置PDA@EGaIn-PAM预聚体溶液,具体方法为:将丙烯酰胺和甘油加入到步骤1得到的PDA@EGaIn溶液中,搅拌,然后再加入引发剂和交联剂,得到PDA@EGaIn-PAM预聚体溶液;
步骤3,将步骤2得到的PDA@EGaIn-PAM预聚体溶液倒入到电极模具中,密封,放置于烘箱中加热发生交联反应,反应结束后降温,待温度降低至室温后,取出产品在产品表面滴加AlCl3溶液进行浸泡,浸泡结束后得到具有双面不对称粘附性的聚多巴胺生物凝胶电极。
3.根据权利要求2所述的一种聚多巴胺生物凝胶电极的制备方法,其特征在于:
所述步骤1中,缓冲溶液为磷酸盐缓冲溶液、硼酸盐缓冲溶液、盐酸缓冲溶液中的至少一种,缓冲溶液的pH值为7-9;缓冲溶液的浓度为30-60mM/L;盐酸多巴胺的浓度为1-15mg/ml,盐酸多巴胺和液态金属的质量比为0.21-0.64:1;盐酸多巴胺和液态金属的质量和与缓冲溶液的比例关系为0.2-0.8g:10ml;进行混合时的温度为20-30℃,超声分散时的功率为200-400W,超声分散时间20-30min,磁力搅拌时间为10-30h;液态金属为镓、汞、镓铟合金、镓铟锡合金、铋锡合金、铋锡铅铟合金中的至少一种。
4.根据权利要求3所述的一种聚多巴胺生物凝胶电极的制备方法,其特征在于:
所述液态金属为镓铟合金,镓铟合金中镓质量分数为75.5%,铟质量分数为24.5%。
5.根据权利要求2所述的一种聚多巴胺生物凝胶电极的制备方法,其特征在于:
所述步骤2中,丙烯酰胺和甘油的质量比为1.6-2:1g,PDA@EGaIn溶液与甘油的比例关系为10-12ml:1g;引发剂与甘油的质量比为20mg-25mg:1g,引发剂与交联剂的质量比为1:1;搅拌时间为0.5-2h,引发剂为过氧化苯甲酰、过氧化苯甲酰叔丁酯、过氧化甲乙酮、过硫酸铵、过硫酸钾中的至少一种;交联剂为二甲胺基丙胺、四甲基乙二胺、N,N'-亚甲基双丙烯酰胺中的至少一种。
6.根据权利要求2所述的一种聚多巴胺生物凝胶电极的制备方法,其特征在于:
所述步骤3中,加热温度为60-80℃,加热时间为0.5-1h,AlCl3溶液的浓度范围为20wt%-40wt%,浸泡时间为5-20min。
7.根据权利要求6所述的一种聚多巴胺生物凝胶电极的制备方法,其特征在于:
所述步骤3中,加热温度为75℃,加热时间为50min。
8.一种聚多巴胺生物凝胶电极的应用,其特征在于:
将制备得到的双面不对称粘附性的聚多巴胺生物凝胶电极贴附到皮肤上作为传感器,用于测量心电信号、脑电信号或肌电信号等生物电信号。
CN202410153556.8A 2024-02-02 2024-02-02 一种聚多巴胺生物凝胶电极及其制备方法和应用 Pending CN118047960A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202410153556.8A CN118047960A (zh) 2024-02-02 2024-02-02 一种聚多巴胺生物凝胶电极及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202410153556.8A CN118047960A (zh) 2024-02-02 2024-02-02 一种聚多巴胺生物凝胶电极及其制备方法和应用

Publications (1)

Publication Number Publication Date
CN118047960A true CN118047960A (zh) 2024-05-17

Family

ID=91047775

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202410153556.8A Pending CN118047960A (zh) 2024-02-02 2024-02-02 一种聚多巴胺生物凝胶电极及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN118047960A (zh)

Similar Documents

Publication Publication Date Title
US11517234B2 (en) Electrode systems, devices and methods
US6592898B2 (en) Bioadhesive compositions comprising hydrophobic polymers
CA1194647A (en) Conductive adhesive and biomedical electrode
JPH06181894A (ja) 導電性高分子ゲルおよびその製法
EP3693435B1 (en) Adhesive hydrogel and medical electrode using same
Ma et al. Self-healing electrical bioadhesive interface for electrophysiology recording
Shi et al. A transparent, anti-fatigue, flexible multifunctional hydrogel with self-adhesion and conductivity for biosensors
Luo et al. On‐Skin Paintable Water‐Resistant Biohydrogel for Wearable Bioelectronics
CN118047960A (zh) 一种聚多巴胺生物凝胶电极及其制备方法和应用
Shi et al. High performance zwitterionic hydrogels for ECG/EMG signals monitoring
CN114196044A (zh) 导电仿生水凝胶及便携式心电监测智能装置
CN116041740B (zh) 一种抗干粘性低共熔溶剂凝胶电极的制备方法及其应用
CN111839532B (zh) 一种基于导电水凝胶的柔性表皮电化学生物传感器
Wang et al. Flexible cellulose-based assembled with PEDOT: PSS electrodes for ECG monitoring
CN116458889A (zh) 一种具有低皮肤接触阻抗的自粘附电极及其应用
Zhao et al. High Performance Conductive Composite Hydrogel Interface for Epidermal Electrophysiological Monitoring
CN111839532A (zh) 一种基于导电水凝胶的柔性表皮电化学生物传感器
He et al. Mussel-inspired sticky self-healing conductive hydrogels composites for physiological electrical sensing
CN118252505A (zh) 一种海藻酸钠水凝胶电极及其制备方法和应用
CN117717345A (zh) 一种自粘附共晶凝胶电极贴片及其制备方法和应用
EP1559437A2 (en) Bioadhesive compositions comprising hydrophobic polymers
CN117659307A (zh) 一种单面黏附水凝胶及其制备方法和应用
WO2023040088A1 (zh) 一种柔性自粘的高熵干电极及其制备方法
Pan et al. Wearable Heart Rate Variability Analysis System Based on Ionic Conductive Hydrogels
JPH0947437A (ja) 生体用電極

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination