CN118028375A - Application of ZBED6 gene in regulation and control of animal fat deposition and fat cell differentiation - Google Patents
Application of ZBED6 gene in regulation and control of animal fat deposition and fat cell differentiation Download PDFInfo
- Publication number
- CN118028375A CN118028375A CN202311838043.2A CN202311838043A CN118028375A CN 118028375 A CN118028375 A CN 118028375A CN 202311838043 A CN202311838043 A CN 202311838043A CN 118028375 A CN118028375 A CN 118028375A
- Authority
- CN
- China
- Prior art keywords
- gene
- zbed6
- fat
- enhanced
- pigs
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000008021 deposition Effects 0.000 title claims abstract description 39
- 210000001789 adipocyte Anatomy 0.000 title claims abstract description 35
- 235000019737 Animal fat Nutrition 0.000 title claims abstract description 11
- 101100489307 Homo sapiens ZBED6 gene Proteins 0.000 title claims description 83
- 101150107420 ZBED6 gene Proteins 0.000 title claims description 83
- 230000024245 cell differentiation Effects 0.000 title abstract description 3
- 230000033228 biological regulation Effects 0.000 title description 3
- 230000004069 differentiation Effects 0.000 claims abstract description 58
- 230000014509 gene expression Effects 0.000 claims abstract description 57
- 241000282887 Suidae Species 0.000 claims abstract description 56
- 241000699670 Mus sp. Species 0.000 claims abstract description 44
- 235000019197 fats Nutrition 0.000 claims abstract description 38
- 238000000034 method Methods 0.000 claims abstract description 16
- 230000001105 regulatory effect Effects 0.000 claims abstract description 11
- 238000010171 animal model Methods 0.000 claims abstract description 9
- 230000001965 increasing effect Effects 0.000 claims abstract description 9
- 108090000623 proteins and genes Proteins 0.000 claims description 64
- 239000013598 vector Substances 0.000 claims description 22
- 108020004459 Small interfering RNA Proteins 0.000 claims description 18
- 230000000476 thermogenic effect Effects 0.000 claims description 18
- 230000000694 effects Effects 0.000 claims description 17
- 102000004169 proteins and genes Human genes 0.000 claims description 15
- 241001465754 Metazoa Species 0.000 claims description 12
- 101100489308 Mus musculus Zbed6 gene Proteins 0.000 claims description 11
- 210000000349 chromosome Anatomy 0.000 claims description 10
- 238000011161 development Methods 0.000 claims description 9
- 238000010362 genome editing Methods 0.000 claims description 8
- 201000010099 disease Diseases 0.000 claims description 7
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 claims description 7
- 238000005516 engineering process Methods 0.000 claims description 7
- 239000003112 inhibitor Substances 0.000 claims description 7
- 102100039164 Acetyl-CoA carboxylase 1 Human genes 0.000 claims description 6
- 102100022089 Acyl-[acyl-carrier-protein] hydrolase Human genes 0.000 claims description 6
- 101000963424 Homo sapiens Acetyl-CoA carboxylase 1 Proteins 0.000 claims description 6
- 101000824278 Homo sapiens Acyl-[acyl-carrier-protein] hydrolase Proteins 0.000 claims description 6
- 230000009815 adipogenic differentiation Effects 0.000 claims description 6
- 235000004213 low-fat Nutrition 0.000 claims description 6
- 239000002773 nucleotide Substances 0.000 claims description 6
- 125000003729 nucleotide group Chemical group 0.000 claims description 6
- 230000008685 targeting Effects 0.000 claims description 6
- 101000782969 Homo sapiens ATP-citrate synthase Proteins 0.000 claims description 5
- 241000124008 Mammalia Species 0.000 claims description 5
- 238000009395 breeding Methods 0.000 claims description 5
- 230000001488 breeding effect Effects 0.000 claims description 5
- 238000010363 gene targeting Methods 0.000 claims description 5
- 239000002243 precursor Substances 0.000 claims description 5
- 230000002103 transcriptional effect Effects 0.000 claims description 5
- 239000003623 enhancer Substances 0.000 claims description 4
- 238000010353 genetic engineering Methods 0.000 claims description 4
- 239000013612 plasmid Substances 0.000 claims description 4
- 230000001737 promoting effect Effects 0.000 claims description 4
- 230000035924 thermogenesis Effects 0.000 claims description 4
- 102100035623 ATP-citrate synthase Human genes 0.000 claims description 3
- 108091033409 CRISPR Proteins 0.000 claims description 3
- 238000003745 diagnosis Methods 0.000 claims description 3
- 108091032973 (ribonucleotides)n+m Proteins 0.000 claims description 2
- 102000040650 (ribonucleotides)n+m Human genes 0.000 claims description 2
- 108020004491 Antisense DNA Proteins 0.000 claims description 2
- 108020005544 Antisense RNA Proteins 0.000 claims description 2
- 238000010354 CRISPR gene editing Methods 0.000 claims description 2
- 108091027967 Small hairpin RNA Proteins 0.000 claims description 2
- 238000010459 TALEN Methods 0.000 claims description 2
- 108010043645 Transcription Activator-Like Effector Nucleases Proteins 0.000 claims description 2
- 239000003816 antisense DNA Substances 0.000 claims description 2
- 239000002299 complementary DNA Substances 0.000 claims description 2
- 239000003184 complementary RNA Substances 0.000 claims description 2
- 230000002708 enhancing effect Effects 0.000 claims description 2
- 108091070501 miRNA Proteins 0.000 claims description 2
- 239000002679 microRNA Substances 0.000 claims description 2
- 102000004196 processed proteins & peptides Human genes 0.000 claims description 2
- 108090000765 processed proteins & peptides Proteins 0.000 claims description 2
- 239000004055 small Interfering RNA Substances 0.000 claims description 2
- 230000037361 pathway Effects 0.000 claims 2
- 150000001875 compounds Chemical class 0.000 claims 1
- 101000786335 Homo sapiens Zinc finger BED domain-containing protein 6 Proteins 0.000 abstract description 77
- 210000004027 cell Anatomy 0.000 abstract description 37
- 230000015572 biosynthetic process Effects 0.000 abstract description 21
- 238000004519 manufacturing process Methods 0.000 abstract description 14
- 238000011160 research Methods 0.000 abstract description 4
- 230000002401 inhibitory effect Effects 0.000 abstract description 2
- 230000001276 controlling effect Effects 0.000 abstract 2
- 102100025792 Zinc finger BED domain-containing protein 6 Human genes 0.000 description 75
- 210000000229 preadipocyte Anatomy 0.000 description 39
- 241000699666 Mus <mouse, genus> Species 0.000 description 26
- 241000282898 Sus scrofa Species 0.000 description 24
- 239000002609 medium Substances 0.000 description 17
- 230000002018 overexpression Effects 0.000 description 17
- 241000701161 unidentified adenovirus Species 0.000 description 17
- 238000003786 synthesis reaction Methods 0.000 description 14
- 230000006698 induction Effects 0.000 description 13
- UCSJYZPVAKXKNQ-HZYVHMACSA-N streptomycin Chemical compound CN[C@H]1[C@H](O)[C@@H](O)[C@H](CO)O[C@H]1O[C@@H]1[C@](C=O)(O)[C@H](C)O[C@H]1O[C@@H]1[C@@H](NC(N)=N)[C@H](O)[C@@H](NC(N)=N)[C@H](O)[C@H]1O UCSJYZPVAKXKNQ-HZYVHMACSA-N 0.000 description 12
- NPGIHFRTRXVWOY-UHFFFAOYSA-N Oil red O Chemical compound Cc1ccc(C)c(c1)N=Nc1cc(C)c(cc1C)N=Nc1c(O)ccc2ccccc12 NPGIHFRTRXVWOY-UHFFFAOYSA-N 0.000 description 11
- 208000008589 Obesity Diseases 0.000 description 10
- 238000011813 knockout mouse model Methods 0.000 description 10
- 235000020824 obesity Nutrition 0.000 description 10
- 238000010186 staining Methods 0.000 description 10
- 239000003550 marker Substances 0.000 description 9
- 210000000593 adipose tissue white Anatomy 0.000 description 8
- 238000004113 cell culture Methods 0.000 description 8
- 230000018109 developmental process Effects 0.000 description 8
- 210000000579 abdominal fat Anatomy 0.000 description 7
- 210000000577 adipose tissue Anatomy 0.000 description 7
- 239000006144 Dulbecco’s modified Eagle's medium Substances 0.000 description 6
- 229930182555 Penicillin Natural products 0.000 description 6
- JGSARLDLIJGVTE-MBNYWOFBSA-N Penicillin G Chemical compound N([C@H]1[C@H]2SC([C@@H](N2C1=O)C(O)=O)(C)C)C(=O)CC1=CC=CC=C1 JGSARLDLIJGVTE-MBNYWOFBSA-N 0.000 description 6
- YASAKCUCGLMORW-UHFFFAOYSA-N Rosiglitazone Chemical compound C=1C=CC=NC=1N(C)CCOC(C=C1)=CC=C1CC1SC(=O)NC1=O YASAKCUCGLMORW-UHFFFAOYSA-N 0.000 description 6
- NOESYZHRGYRDHS-UHFFFAOYSA-N insulin Chemical compound N1C(=O)C(NC(=O)C(CCC(N)=O)NC(=O)C(CCC(O)=O)NC(=O)C(C(C)C)NC(=O)C(NC(=O)CN)C(C)CC)CSSCC(C(NC(CO)C(=O)NC(CC(C)C)C(=O)NC(CC=2C=CC(O)=CC=2)C(=O)NC(CCC(N)=O)C(=O)NC(CC(C)C)C(=O)NC(CCC(O)=O)C(=O)NC(CC(N)=O)C(=O)NC(CC=2C=CC(O)=CC=2)C(=O)NC(CSSCC(NC(=O)C(C(C)C)NC(=O)C(CC(C)C)NC(=O)C(CC=2C=CC(O)=CC=2)NC(=O)C(CC(C)C)NC(=O)C(C)NC(=O)C(CCC(O)=O)NC(=O)C(C(C)C)NC(=O)C(CC(C)C)NC(=O)C(CC=2NC=NC=2)NC(=O)C(CO)NC(=O)CNC2=O)C(=O)NCC(=O)NC(CCC(O)=O)C(=O)NC(CCCNC(N)=N)C(=O)NCC(=O)NC(CC=3C=CC=CC=3)C(=O)NC(CC=3C=CC=CC=3)C(=O)NC(CC=3C=CC(O)=CC=3)C(=O)NC(C(C)O)C(=O)N3C(CCC3)C(=O)NC(CCCCN)C(=O)NC(C)C(O)=O)C(=O)NC(CC(N)=O)C(O)=O)=O)NC(=O)C(C(C)CC)NC(=O)C(CO)NC(=O)C(C(C)O)NC(=O)C1CSSCC2NC(=O)C(CC(C)C)NC(=O)C(NC(=O)C(CCC(N)=O)NC(=O)C(CC(N)=O)NC(=O)C(NC(=O)C(N)CC=1C=CC=CC=1)C(C)C)CC1=CN=CN1 NOESYZHRGYRDHS-UHFFFAOYSA-N 0.000 description 6
- 108020004999 messenger RNA Proteins 0.000 description 6
- 229940049954 penicillin Drugs 0.000 description 6
- 210000002027 skeletal muscle Anatomy 0.000 description 6
- 229960005322 streptomycin Drugs 0.000 description 6
- 238000001890 transfection Methods 0.000 description 6
- 210000003486 adipose tissue brown Anatomy 0.000 description 5
- 239000012620 biological material Substances 0.000 description 5
- 230000035755 proliferation Effects 0.000 description 5
- 238000013518 transcription Methods 0.000 description 5
- 230000035897 transcription Effects 0.000 description 5
- 238000013519 translation Methods 0.000 description 5
- 238000011746 C57BL/6J (JAX™ mouse strain) Methods 0.000 description 4
- 101001076292 Homo sapiens Insulin-like growth factor II Proteins 0.000 description 4
- 206010022489 Insulin Resistance Diseases 0.000 description 4
- 102100025947 Insulin-like growth factor II Human genes 0.000 description 4
- 230000004663 cell proliferation Effects 0.000 description 4
- 238000001514 detection method Methods 0.000 description 4
- 206010012601 diabetes mellitus Diseases 0.000 description 4
- 230000001605 fetal effect Effects 0.000 description 4
- 238000003209 gene knockout Methods 0.000 description 4
- 235000013372 meat Nutrition 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- FWMNVWWHGCHHJJ-SKKKGAJSSA-N 4-amino-1-[(2r)-6-amino-2-[[(2r)-2-[[(2r)-2-[[(2r)-2-amino-3-phenylpropanoyl]amino]-3-phenylpropanoyl]amino]-4-methylpentanoyl]amino]hexanoyl]piperidine-4-carboxylic acid Chemical compound C([C@H](C(=O)N[C@H](CC(C)C)C(=O)N[C@H](CCCCN)C(=O)N1CCC(N)(CC1)C(O)=O)NC(=O)[C@H](N)CC=1C=CC=CC=1)C1=CC=CC=C1 FWMNVWWHGCHHJJ-SKKKGAJSSA-N 0.000 description 3
- 241000289695 Eutheria Species 0.000 description 3
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 3
- 102000004877 Insulin Human genes 0.000 description 3
- 108090001061 Insulin Proteins 0.000 description 3
- 102100029820 Mitochondrial brown fat uncoupling protein 1 Human genes 0.000 description 3
- 101100233916 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) KAR5 gene Proteins 0.000 description 3
- 150000001413 amino acids Chemical class 0.000 description 3
- 230000027455 binding Effects 0.000 description 3
- 230000037396 body weight Effects 0.000 description 3
- 230000030944 contact inhibition Effects 0.000 description 3
- 229940079593 drug Drugs 0.000 description 3
- 239000003814 drug Substances 0.000 description 3
- 239000012091 fetal bovine serum Substances 0.000 description 3
- 238000003197 gene knockdown Methods 0.000 description 3
- 239000008103 glucose Substances 0.000 description 3
- 239000001963 growth medium Substances 0.000 description 3
- 238000000338 in vitro Methods 0.000 description 3
- 229940125396 insulin Drugs 0.000 description 3
- 229960004586 rosiglitazone Drugs 0.000 description 3
- 238000012216 screening Methods 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- 210000001519 tissue Anatomy 0.000 description 3
- 208000001072 type 2 diabetes mellitus Diseases 0.000 description 3
- YBJHBAHKTGYVGT-ZKWXMUAHSA-N (+)-Biotin Chemical compound N1C(=O)N[C@@H]2[C@H](CCCCC(=O)O)SC[C@@H]21 YBJHBAHKTGYVGT-ZKWXMUAHSA-N 0.000 description 2
- GHOKWGTUZJEAQD-ZETCQYMHSA-N (D)-(+)-Pantothenic acid Chemical compound OCC(C)(C)[C@@H](O)C(=O)NCCC(O)=O GHOKWGTUZJEAQD-ZETCQYMHSA-N 0.000 description 2
- APIXJSLKIYYUKG-UHFFFAOYSA-N 3 Isobutyl 1 methylxanthine Chemical compound O=C1N(C)C(=O)N(CC(C)C)C2=C1N=CN2 APIXJSLKIYYUKG-UHFFFAOYSA-N 0.000 description 2
- 241000283690 Bos taurus Species 0.000 description 2
- 108091003079 Bovine Serum Albumin Proteins 0.000 description 2
- 108091026890 Coding region Proteins 0.000 description 2
- 108010050258 Mitochondrial Uncoupling Proteins Proteins 0.000 description 2
- 108091081024 Start codon Proteins 0.000 description 2
- 241000700605 Viruses Species 0.000 description 2
- 230000003187 abdominal effect Effects 0.000 description 2
- UCTWMZQNUQWSLP-UHFFFAOYSA-N adrenaline Chemical compound CNCC(O)C1=CC=C(O)C(O)=C1 UCTWMZQNUQWSLP-UHFFFAOYSA-N 0.000 description 2
- 238000013459 approach Methods 0.000 description 2
- 230000022131 cell cycle Effects 0.000 description 2
- 238000010276 construction Methods 0.000 description 2
- CVSVTCORWBXHQV-UHFFFAOYSA-N creatine Chemical compound NC(=[NH2+])N(C)CC([O-])=O CVSVTCORWBXHQV-UHFFFAOYSA-N 0.000 description 2
- 230000001419 dependent effect Effects 0.000 description 2
- UREBDLICKHMUKA-CXSFZGCWSA-N dexamethasone Chemical compound C1CC2=CC(=O)C=C[C@]2(C)[C@]2(F)[C@@H]1[C@@H]1C[C@@H](C)[C@@](C(=O)CO)(O)[C@@]1(C)C[C@@H]2O UREBDLICKHMUKA-CXSFZGCWSA-N 0.000 description 2
- 229960003957 dexamethasone Drugs 0.000 description 2
- 230000029087 digestion Effects 0.000 description 2
- 238000005265 energy consumption Methods 0.000 description 2
- 230000037149 energy metabolism Effects 0.000 description 2
- 239000000194 fatty acid Substances 0.000 description 2
- 238000003208 gene overexpression Methods 0.000 description 2
- 230000004153 glucose metabolism Effects 0.000 description 2
- 230000036541 health Effects 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- CGIGDMFJXJATDK-UHFFFAOYSA-N indomethacin Chemical compound CC1=C(CC(O)=O)C2=CC(OC)=CC=C2N1C(=O)C1=CC=C(Cl)C=C1 CGIGDMFJXJATDK-UHFFFAOYSA-N 0.000 description 2
- 235000020997 lean meat Nutrition 0.000 description 2
- 238000012423 maintenance Methods 0.000 description 2
- 230000004060 metabolic process Effects 0.000 description 2
- 244000309715 mini pig Species 0.000 description 2
- 239000011259 mixed solution Substances 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000010369 molecular cloning Methods 0.000 description 2
- 210000000056 organ Anatomy 0.000 description 2
- 238000004806 packaging method and process Methods 0.000 description 2
- 239000008188 pellet Substances 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 238000007480 sanger sequencing Methods 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- 239000006228 supernatant Substances 0.000 description 2
- 230000009885 systemic effect Effects 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- 238000011144 upstream manufacturing Methods 0.000 description 2
- 208000010370 Adenoviridae Infections Diseases 0.000 description 1
- 206010060931 Adenovirus infection Diseases 0.000 description 1
- 102000007372 Ataxin-1 Human genes 0.000 description 1
- 108010032963 Ataxin-1 Proteins 0.000 description 1
- 206010003694 Atrophy Diseases 0.000 description 1
- 210000002237 B-cell of pancreatic islet Anatomy 0.000 description 1
- 102100027221 CD81 antigen Human genes 0.000 description 1
- GHOKWGTUZJEAQD-UHFFFAOYSA-N Chick antidermatitis factor Natural products OCC(C)(C)C(O)C(=O)NCCC(O)=O GHOKWGTUZJEAQD-UHFFFAOYSA-N 0.000 description 1
- 238000001353 Chip-sequencing Methods 0.000 description 1
- 102000029816 Collagenase Human genes 0.000 description 1
- 108060005980 Collagenase Proteins 0.000 description 1
- 229920000742 Cotton Polymers 0.000 description 1
- 108020004414 DNA Proteins 0.000 description 1
- 230000004568 DNA-binding Effects 0.000 description 1
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 1
- 102100024594 Histone-lysine N-methyltransferase PRDM16 Human genes 0.000 description 1
- 101000914479 Homo sapiens CD81 antigen Proteins 0.000 description 1
- 101000686942 Homo sapiens Histone-lysine N-methyltransferase PRDM16 Proteins 0.000 description 1
- 101000909641 Homo sapiens Transcription factor COE2 Proteins 0.000 description 1
- 101000788845 Homo sapiens Zinc finger CCCH domain-containing protein 11A Proteins 0.000 description 1
- 101150002416 Igf2 gene Proteins 0.000 description 1
- 102000000536 PPAR gamma Human genes 0.000 description 1
- 108010016731 PPAR gamma Proteins 0.000 description 1
- 102000001393 Platelet-Derived Growth Factor alpha Receptor Human genes 0.000 description 1
- 108010068588 Platelet-Derived Growth Factor alpha Receptor Proteins 0.000 description 1
- 101100012902 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) FIG2 gene Proteins 0.000 description 1
- 208000009415 Spinocerebellar Ataxias Diseases 0.000 description 1
- 108091027544 Subgenomic mRNA Proteins 0.000 description 1
- AUYYCJSJGJYCDS-LBPRGKRZSA-N Thyrolar Chemical compound IC1=CC(C[C@H](N)C(O)=O)=CC(I)=C1OC1=CC=C(O)C(I)=C1 AUYYCJSJGJYCDS-LBPRGKRZSA-N 0.000 description 1
- 108700009124 Transcription Initiation Site Proteins 0.000 description 1
- 108091023040 Transcription factor Proteins 0.000 description 1
- 102000040945 Transcription factor Human genes 0.000 description 1
- 102100024204 Transcription factor COE2 Human genes 0.000 description 1
- 102000004243 Tubulin Human genes 0.000 description 1
- 108090000704 Tubulin Proteins 0.000 description 1
- 101150022052 UCP1 gene Proteins 0.000 description 1
- 102100025402 Zinc finger CCCH domain-containing protein 11A Human genes 0.000 description 1
- 208000011589 adenoviridae infectious disease Diseases 0.000 description 1
- 230000003321 amplification Effects 0.000 description 1
- 230000037444 atrophy Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 1
- 229960002685 biotin Drugs 0.000 description 1
- 235000020958 biotin Nutrition 0.000 description 1
- 239000011616 biotin Substances 0.000 description 1
- 239000008004 cell lysis buffer Substances 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 230000001684 chronic effect Effects 0.000 description 1
- 229960002424 collagenase Drugs 0.000 description 1
- 210000000028 corpus adiposum pararenale Anatomy 0.000 description 1
- 229960003624 creatine Drugs 0.000 description 1
- 239000006046 creatine Substances 0.000 description 1
- 238000012258 culturing Methods 0.000 description 1
- 235000014113 dietary fatty acids Nutrition 0.000 description 1
- 230000000459 effect on growth Effects 0.000 description 1
- 238000004520 electroporation Methods 0.000 description 1
- 210000002257 embryonic structure Anatomy 0.000 description 1
- 230000002124 endocrine Effects 0.000 description 1
- 238000004146 energy storage Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 210000003743 erythrocyte Anatomy 0.000 description 1
- 230000010429 evolutionary process Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 229930195729 fatty acid Natural products 0.000 description 1
- 150000004665 fatty acids Chemical class 0.000 description 1
- 210000002950 fibroblast Anatomy 0.000 description 1
- 231100000221 frame shift mutation induction Toxicity 0.000 description 1
- 230000037433 frameshift Effects 0.000 description 1
- 235000021588 free fatty acids Nutrition 0.000 description 1
- 230000030279 gene silencing Effects 0.000 description 1
- 230000008303 genetic mechanism Effects 0.000 description 1
- 230000005182 global health Effects 0.000 description 1
- 239000006481 glucose medium Substances 0.000 description 1
- 238000007446 glucose tolerance test Methods 0.000 description 1
- 238000002744 homologous recombination Methods 0.000 description 1
- 230000006801 homologous recombination Effects 0.000 description 1
- 230000003832 immune regulation Effects 0.000 description 1
- 230000028993 immune response Effects 0.000 description 1
- 208000026278 immune system disease Diseases 0.000 description 1
- 229960000905 indomethacin Drugs 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 208000015181 infectious disease Diseases 0.000 description 1
- 210000003734 kidney Anatomy 0.000 description 1
- 150000002632 lipids Chemical class 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 208000030159 metabolic disease Diseases 0.000 description 1
- 210000003470 mitochondria Anatomy 0.000 description 1
- 230000002438 mitochondrial effect Effects 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 230000037257 muscle growth Effects 0.000 description 1
- 230000035772 mutation Effects 0.000 description 1
- 238000010449 nuclear transplantation Methods 0.000 description 1
- 238000003199 nucleic acid amplification method Methods 0.000 description 1
- 235000016709 nutrition Nutrition 0.000 description 1
- 230000035764 nutrition Effects 0.000 description 1
- 229940055726 pantothenic acid Drugs 0.000 description 1
- 235000019161 pantothenic acid Nutrition 0.000 description 1
- 239000011713 pantothenic acid Substances 0.000 description 1
- 230000008506 pathogenesis Effects 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 238000011002 quantification Methods 0.000 description 1
- 210000001991 scapula Anatomy 0.000 description 1
- 210000002966 serum Anatomy 0.000 description 1
- 150000003384 small molecules Chemical class 0.000 description 1
- 210000001082 somatic cell Anatomy 0.000 description 1
- 201000003624 spinocerebellar ataxia type 1 Diseases 0.000 description 1
- 210000000952 spleen Anatomy 0.000 description 1
- 210000004003 subcutaneous fat Anatomy 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 210000001042 thoracic artery Anatomy 0.000 description 1
- 238000003151 transfection method Methods 0.000 description 1
- 150000003626 triacylglycerols Chemical class 0.000 description 1
- 238000005199 ultracentrifugation Methods 0.000 description 1
- 210000001631 vena cava inferior Anatomy 0.000 description 1
- 210000001835 viscera Anatomy 0.000 description 1
- -1 αSMA Proteins 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/87—Introduction of foreign genetic material using processes not otherwise provided for, e.g. co-transformation
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01K—ANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
- A01K67/00—Rearing or breeding animals, not otherwise provided for; New or modified breeds of animals
- A01K67/027—New or modified breeds of vertebrates
- A01K67/0275—Genetically modified vertebrates, e.g. transgenic
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01K—ANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
- A01K67/00—Rearing or breeding animals, not otherwise provided for; New or modified breeds of animals
- A01K67/027—New or modified breeds of vertebrates
- A01K67/0275—Genetically modified vertebrates, e.g. transgenic
- A01K67/0276—Knock-out vertebrates
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/435—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
- C07K14/46—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates
- C07K14/47—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals
- C07K14/4701—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals not used
- C07K14/4702—Regulators; Modulating activity
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/11—DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
- C12N15/113—Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/79—Vectors or expression systems specially adapted for eukaryotic hosts
- C12N15/85—Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
- C12N15/86—Viral vectors
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N5/00—Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
- C12N5/06—Animal cells or tissues; Human cells or tissues
- C12N5/0602—Vertebrate cells
- C12N5/0652—Cells of skeletal and connective tissues; Mesenchyme
- C12N5/0653—Adipocytes; Adipose tissue
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/14—Hydrolases (3)
- C12N9/16—Hydrolases (3) acting on ester bonds (3.1)
- C12N9/22—Ribonucleases RNAses, DNAses
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01K—ANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
- A01K2217/00—Genetically modified animals
- A01K2217/07—Animals genetically altered by homologous recombination
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01K—ANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
- A01K2217/00—Genetically modified animals
- A01K2217/07—Animals genetically altered by homologous recombination
- A01K2217/075—Animals genetically altered by homologous recombination inducing loss of function, i.e. knock out
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01K—ANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
- A01K2227/00—Animals characterised by species
- A01K2227/10—Mammal
- A01K2227/105—Murine
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01K—ANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
- A01K2227/00—Animals characterised by species
- A01K2227/10—Mammal
- A01K2227/108—Swine
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01K—ANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
- A01K2267/00—Animals characterised by purpose
- A01K2267/03—Animal model, e.g. for test or diseases
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2310/00—Structure or type of the nucleic acid
- C12N2310/10—Type of nucleic acid
- C12N2310/20—Type of nucleic acid involving clustered regularly interspaced short palindromic repeats [CRISPRs]
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2510/00—Genetically modified cells
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2710/00—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA dsDNA viruses
- C12N2710/00011—Details
- C12N2710/10011—Adenoviridae
- C12N2710/10041—Use of virus, viral particle or viral elements as a vector
- C12N2710/10043—Use of virus, viral particle or viral elements as a vector viral genome or elements thereof as genetic vector
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Genetics & Genomics (AREA)
- Chemical & Material Sciences (AREA)
- Zoology (AREA)
- Biomedical Technology (AREA)
- Organic Chemistry (AREA)
- Biotechnology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Wood Science & Technology (AREA)
- General Health & Medical Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Molecular Biology (AREA)
- Biochemistry (AREA)
- Microbiology (AREA)
- Environmental Sciences (AREA)
- Biophysics (AREA)
- Physics & Mathematics (AREA)
- Plant Pathology (AREA)
- Animal Husbandry (AREA)
- Medicinal Chemistry (AREA)
- Biodiversity & Conservation Biology (AREA)
- Animal Behavior & Ethology (AREA)
- Veterinary Medicine (AREA)
- Cell Biology (AREA)
- Rheumatology (AREA)
- Toxicology (AREA)
- Gastroenterology & Hepatology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Virology (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
Abstract
Description
技术领域Technical Field
本发明涉及基因工程技术领域,具体地说,涉及ZBED6基因在调控动物脂肪沉积及脂肪细胞分化中的应用。The present invention relates to the field of gene engineering technology, in particular to the application of ZBED6 gene in regulating animal fat deposition and adipocyte differentiation.
背景技术Background technique
2型糖尿病已成为全球性的严重的健康问题。2型糖尿病是一种与肥胖高度相关的慢性代谢紊乱,与脂肪沉积密切相关。哺乳动物脂肪组织是重要的储能和能量代谢内分泌器官,在葡萄糖代谢、胰岛素敏感性、产热、免疫调节等方面发挥重要作用。哺乳动物的脂肪组织根据功能可分为白色脂肪组织和米色脂肪组织。白色脂肪组织作为机体的主要脂肪组织,在营养充足的条件下主要负责储存能量,当机体缺乏能量时则会形成脂肪动员,白色脂肪组织中的甘油三酯被分解为游离的脂肪酸,用于全身的能量消耗。棕色脂肪组织因富含线粒体,通过消耗脂肪酸和葡萄糖等底物产生热量,主要分布在肩胛间、脊椎两侧、肾周、胸部动脉和下腔静脉周围。棕色脂肪产热的方式主要有UCP1依赖性产热(线粒体解偶联)和非UCP1依赖性产热(Ca2+无效循环、肌酸底物循环、TAG-脂肪酸循环),棕色脂肪通过消耗热量达到抵抗肥胖、治疗免疫疾病的作用。当机体受到寒冷、肾上腺素等刺激时,一方面白色脂肪中的UCP+细胞被诱导激活为米色脂肪,米色脂肪具有棕色脂肪产热的特征,如存在多房脂滴并表达UCP1基因。另一方面在PDGFRα、SCA1、CD81、αSMA、PPARγ、PRDM16、EBF2等基因的诱导下,脂肪前体细胞会从头合成为米色脂肪细胞。脂肪细胞的异质性及快速响应环境变化的能力对维持机体能量代谢平衡和健康发挥不可或缺的作用。越来越多的证据表明,诱导米色脂肪细胞的形成对维持身体健康和治疗疾病具有重要贡献,但目前对调控米色脂肪细胞形成的靶点研究仍十分有限,迫切需要新的分子靶标开发治疗肥胖及糖尿病的药物。因此,有必要进一步筛选并鉴定调控哺乳动物脂肪沉积和产热脂肪细胞生成的分子靶标。Type 2 diabetes has become a serious global health problem. Type 2 diabetes is a chronic metabolic disorder that is highly associated with obesity and is closely related to fat deposition. Mammalian adipose tissue is an important endocrine organ for energy storage and energy metabolism, and plays an important role in glucose metabolism, insulin sensitivity, heat production, and immune regulation. Mammalian adipose tissue can be divided into white adipose tissue and beige adipose tissue according to its function. As the main adipose tissue of the body, white adipose tissue is mainly responsible for storing energy under the condition of adequate nutrition. When the body lacks energy, fat mobilization will occur, and triglycerides in white adipose tissue will be broken down into free fatty acids for energy consumption throughout the body. Brown adipose tissue is rich in mitochondria and generates heat by consuming substrates such as fatty acids and glucose. It is mainly distributed between the scapula, on both sides of the spine, around the kidneys, around the thoracic artery, and around the inferior vena cava. The main ways of brown fat heat production are UCP1-dependent heat production (mitochondrial uncoupling) and non-UCP1-dependent heat production (Ca 2+ ineffective cycle, creatine substrate cycle, TAG-fatty acid cycle). Brown fat achieves the effect of resisting obesity and treating immune diseases by consuming calories. When the body is stimulated by cold, adrenaline, etc., on the one hand, UCP+ cells in white fat are induced to activate beige fat, which has the characteristics of brown fat thermogenesis, such as the presence of multilocular lipid droplets and the expression of UCP1 gene. On the other hand, under the induction of genes such as PDGFRα, SCA1, CD81, αSMA, PPARγ, PRDM16, EBF2, adipocyte precursor cells will synthesize into beige adipocytes from scratch. The heterogeneity of adipocytes and their ability to respond quickly to environmental changes play an indispensable role in maintaining the body's energy metabolism balance and health. More and more evidence shows that inducing the formation of beige adipocytes makes an important contribution to maintaining physical health and treating diseases, but the current research on targets for regulating the formation of beige adipocytes is still very limited, and new molecular targets are urgently needed to develop drugs for the treatment of obesity and diabetes. Therefore, it is necessary to further screen and identify molecular targets that regulate mammalian fat deposition and thermogenic adipocyte generation.
发明内容Summary of the invention
本发明的目的是提供ZBED6基因在调控动物脂肪沉积及脂肪细胞分化中的应用。The purpose of the present invention is to provide application of ZBED6 gene in regulating animal fat deposition and adipocyte differentiation.
为了实现本发明目的,第一方面,本发明提供ZBED6基因的以下任一应用:In order to achieve the purpose of the present invention, in a first aspect, the present invention provides any of the following applications of the ZBED6 gene:
1)用于调控动物脂肪沉积;1) Used to regulate animal fat deposition;
2)用于调控动物脂肪细胞分化;2) Used to regulate animal adipocyte differentiation;
3)用于构建脂肪发育和/或产热动物模型(用于研究肥胖及相关疾病的动物模型);3) Used to construct animal models of fat development and/or thermogenesis (animal models for studying obesity and related diseases);
4)用于低脂高瘦肉率猪的育种。4) Used for breeding low-fat and high-lean meat pigs.
本发明中,来源于猪的ZBED6基因在NCBI上的参考序列编号为NM_001394675.1,来源于小鼠的ZBED6基因在NCBI上的参考序列编号为NM_001166552.2。In the present invention, the reference sequence number of the ZBED6 gene derived from pig on NCBI is NM_001394675.1, and the reference sequence number of the ZBED6 gene derived from mouse on NCBI is NM_001166552.2.
进一步地,从转录或翻译水平上抑制ZBED6基因或其编码蛋白的表达或活性,或者从动物基因组中敲除ZBED6基因,以减少动物脂肪沉积,降低动物前体脂肪细胞的成脂分化效率,降低产热基因表达(降低前体脂肪细胞的产热能力);Furthermore, the expression or activity of the ZBED6 gene or its encoded protein is inhibited at the transcriptional or translational level, or the ZBED6 gene is knocked out from the animal genome to reduce animal fat deposition, reduce the adipogenic differentiation efficiency of animal preadipocytes, and reduce the expression of thermogenic genes (reduce the thermogenic capacity of preadipocytes);
更进一步地,通过抑制剂从转录或翻译水平上抑制ZBED6基因或其编码蛋白的表达或活性;所述抑制剂可选自shRNA、siRNA、dsRNA、miRNA、cDNA、反义RNA/DNA、低分子化合物、肽、抗体、ZBED6基因打靶载体等中的至少一种。Furthermore, the expression or activity of the ZBED6 gene or its encoded protein is inhibited at the transcription or translation level by an inhibitor; the inhibitor can be selected from at least one of shRNA, siRNA, dsRNA, miRNA, cDNA, antisense RNA/DNA, low molecular weight compounds, peptides, antibodies, ZBED6 gene targeting vectors, etc.
所述ZBED6基因打靶载体可以是基于CRISPR、TALEN或ZFN等基因组编辑技术构建而成的。The ZBED6 gene targeting vector can be constructed based on genome editing technologies such as CRISPR, TALEN or ZFN.
在本发明的一个具体实施方式中,所述抑制剂为siRNA,其核苷酸序列如SEQ IDNO:1或2所示。In a specific embodiment of the present invention, the inhibitor is siRNA, and its nucleotide sequence is shown in SEQ ID NO: 1 or 2.
进一步地,从转录或翻译水平上增强ZBED6基因或其编码蛋白的表达或活性,以增加动物脂肪沉积,增加动物前体脂肪细胞的成脂分化效率,促进产热基因表达(增加前体脂肪细胞的产热能力)。Furthermore, the expression or activity of the ZBED6 gene or its encoded protein is enhanced at the transcriptional or translational level to increase animal fat deposition, increase the adipogenic differentiation efficiency of animal precursor adipocytes, and promote the expression of thermogenic genes (increase the thermogenic capacity of precursor adipocytes).
更进一步地,所述增强的途径选自以下1)~5),或任选的组合:Furthermore, the enhanced approach is selected from the following 1) to 5), or an optional combination:
1)通过导入具有所述基因的质粒而增强;1) Enhanced by introducing a plasmid carrying the gene;
2)通过增加染色体上所述基因的拷贝数而增强;2) Enhanced by increasing the copy number of the gene on the chromosome;
3)通过改变染色体上所述基因的启动子序列而增强;3) Enhanced by changing the promoter sequence of the gene on the chromosome;
4)通过将强启动子与所述基因可操作地连接而增强;4) Enhanced by operably linking a strong promoter to the gene;
5)通过导入增强子而增强。5) Enhancement by introduction of enhancers.
本发明所述产热基因可选自FASN、ACACA、ACLY等。来源于猪的FASN、ACACA、ACLY基因在NCBI上的参考序列编号分别为NM_001099930.1、NM_001114269.1、NM_001105302.1,来源于小鼠的FASN、ACACA、ACLY基因在NCBI上的参考序列编号分别为NM_007988.3、NM_133360.3、NM_001199296.1。The thermogenic gene of the present invention can be selected from FASN, ACACA, ACLY, etc. The reference sequence numbers of FASN, ACACA, and ACLY genes from pigs on NCBI are NM_001099930.1, NM_001114269.1, and NM_001105302.1, respectively, and the reference sequence numbers of FASN, ACACA, and ACLY genes from mice on NCBI are NM_007988.3, NM_133360.3, and NM_001199296.1, respectively.
本发明所述的应用包含非疾病诊断和治疗目的。The applications described in the present invention include non-disease diagnosis and treatment purposes.
本发明所述的动物为哺乳动物,例如猪、小鼠。The animal described in the present invention is a mammal, such as a pig or a mouse.
第二方面,本发明提供一种靶向小鼠ZBED6基因的siRNA,其核苷酸序列如SEQ IDNO:1或SEQ ID NO:2所示。In a second aspect, the present invention provides a siRNA targeting the mouse ZBED6 gene, the nucleotide sequence of which is shown in SEQ ID NO: 1 or SEQ ID NO: 2.
第三方面,本发明提供一种促进猪和小鼠米色脂肪分化效率和/或产热功能的方法,所述方法包括:通过基因工程技术增强ZBED6基因的表达。In a third aspect, the present invention provides a method for promoting the differentiation efficiency and/or heat production function of beige fat in pigs and mice, the method comprising: enhancing the expression of the ZBED6 gene by genetic engineering technology.
进一步地,所述增强的途径可选自以下1)~5),或任选的组合:Furthermore, the enhanced approach may be selected from the following 1) to 5), or an optional combination:
1)通过导入具有所述基因的质粒而增强;1) Enhanced by introducing a plasmid carrying the gene;
2)通过增加染色体上所述基因的拷贝数而增强;2) Enhanced by increasing the copy number of the gene on the chromosome;
3)通过改变染色体上所述基因的启动子序列而增强;3) Enhanced by changing the promoter sequence of the gene on the chromosome;
4)通过将强启动子与所述基因可操作地连接而增强;4) Enhanced by operably linking a strong promoter to the gene;
5)通过导入增强子而增强。5) Enhancement by introduction of enhancers.
本发明的目的还可以采用以下的技术措施来进一步实现。The purpose of the present invention can be further achieved by adopting the following technical measures.
本发明提供含有ZBED6基因的生物材料在以下任一方面的应用:The present invention provides the use of a biomaterial containing a ZBED6 gene in any of the following aspects:
1)调控猪和小鼠脂肪细胞的形成;1) Regulate the formation of fat cells in pigs and mice;
2)研究动物脂肪发育和代谢;2) Study animal fat development and metabolism;
3)猪品种的培育;3) Breeding of pig breeds;
4)制备预防/治疗肥胖、糖尿病相关的药物;4) Preparation of drugs for the prevention/treatment of obesity and diabetes;
5)构建低脂高瘦肉率动物模型。5) Construct a low-fat and high-lean meat ratio animal model.
所述生物材料包括但不限于宿主动物、宿主细胞、腺病毒载体。The biological materials include but are not limited to host animals, host cells, and adenovirus vectors.
本发明还提供ZBED6基因敲除猪及其原代脂肪细胞和ZBED6基因敲除小鼠的以下任一方面应用:The present invention also provides any of the following applications of ZBED6 gene knockout pigs and primary adipocytes thereof and ZBED6 gene knockout mice:
1)减少猪和小鼠脂肪沉积;1) Reduce fat deposition in pigs and mice;
2)减少猪和小鼠脂肪细胞的分化效率;2) Reduced differentiation efficiency of pig and mouse adipocytes;
3)减少猪和小鼠脂肪细胞的产热效率3) Reduce the thermogenic efficiency of fat cells in pigs and mice
4)研究猪和小鼠脂肪性状的特征;4) Study the characteristics of fat traits in pigs and mice;
5)培育低脂高瘦肉率猪品种;5) Cultivate low-fat and high-lean meat pig breeds;
6)提供肥胖、糖尿病机制研究平台。6) Provide a platform for studying the mechanisms of obesity and diabetes.
本发明还提供ZBED6基因过表达腺病毒或可提升ZBED6基因表达的靶向ZBED6基因的编辑系统的以下任一方面的应用:The present invention also provides any of the following applications of a ZBED6 gene overexpression adenovirus or an editing system targeting the ZBED6 gene that can enhance ZBED6 gene expression:
1)增加脂肪沉积;1) Increased fat deposition;
2)增加脂肪细胞的分化效率;2) Increase the differentiation efficiency of adipocytes;
3)研究脂肪发育的特征。3) Study the characteristics of fat development.
例如,所述ZBED6基因的编辑系统为腺病毒包裹的过表达载体促进ZBED6基因表达的操作系统。For example, the editing system of the ZBED6 gene is an operating system for promoting the expression of the ZBED6 gene by an overexpression vector encapsulated by an adenovirus.
本发明还提供ZBED6基因抑制剂可降低ZBED6基因表达的基因编辑系统的以下任一方面的应用:The present invention also provides the use of any of the following aspects of a gene editing system in which a ZBED6 gene inhibitor can reduce ZBED6 gene expression:
1)降低3T3前体脂肪细胞系的分化效率;1) Reduce the differentiation efficiency of 3T3 preadipocyte cell line;
2)改善动物脂肪沉积;2) Improve animal fat deposition;
3)用于研究肥胖及相关疾病。3) Used for the study of obesity and related diseases.
例如,所述ZBED6基因的编辑系统为siRNA抑制小鼠ZBED6基因表达的操作系统。For example, the editing system of the ZBED6 gene is an operating system for siRNA to inhibit the expression of the mouse ZBED6 gene.
本发明还提供一种靶向小鼠ZBED6基因的siRNA,其核苷酸序列如下:The present invention also provides a siRNA targeting the mouse ZBED6 gene, the nucleotide sequence of which is as follows:
SEQ ID NO:1:5′-CCAGCUUCCAUGGAAGAAU-3′SEQ ID NO: 1: 5′-CCAGCUUCCAUGGAAGAAU-3′
SEQ ID NO:2:5′-AUUCUUCCAUGGAAGCUGG-3′SEQ ID NO:2:5′-AUUCUUCCAUGGAAGCUGG-3′
本发明还提供一种降低猪和小鼠脂肪沉积的动物模型,通过基因编辑技术敲除猪和小鼠的ZBED6基因,并分离出猪原代脂肪细胞;通过对ZBED6基因的敲低、沉默降低小鼠ZBED6基因的表达。The present invention also provides an animal model for reducing fat deposition in pigs and mice, wherein the ZBED6 gene of pigs and mice is knocked out by gene editing technology, and primary pig fat cells are isolated; and the expression of the mouse ZBED6 gene is reduced by knocking down and silencing the ZBED6 gene.
例如,通过基因编辑技术敲除ZBED6基因,使猪和小鼠全身性缺乏ZBED6基因;或者,利用siRNA敲低ZBED6基因的表达。For example, the ZBED6 gene can be knocked out through gene editing technology, causing pigs and mice to lack the ZBED6 gene systemically; or, siRNA can be used to knock down the expression of the ZBED6 gene.
本发明还提供一种促进猪和小鼠米色脂肪分化效率和/或产热功能的方法,通过基因工程技术增加ZBED6基因的表达。The present invention also provides a method for promoting the differentiation efficiency and/or heat production function of beige fat in pigs and mice, which increases the expression of ZBED6 gene through genetic engineering technology.
借由上述技术方案,本发明至少具有下列优点及有益效果:By means of the above technical solution, the present invention has at least the following advantages and beneficial effects:
本发明提供一种增加ZBED6基因的表达促进猪和小鼠米色脂肪细胞分化及产热的方法,并提供一种抑制猪和小鼠脂肪沉积及产热的动物模型,为调控猪和小鼠脂肪沉积和脂肪产热细胞的形成提供了研究平台和理论基础。The present invention provides a method for increasing the expression of ZBED6 gene to promote the differentiation and heat production of beige adipocytes in pigs and mice, and provides an animal model for inhibiting fat deposition and heat production in pigs and mice, thereby providing a research platform and theoretical basis for regulating fat deposition and the formation of fat thermogenic cells in pigs and mice.
附图说明BRIEF DESCRIPTION OF THE DRAWINGS
图1为本发明实施例1中ZBED6基因敲除猪脂肪沉积表型。其中,一共收集了17头F4代巴马猪脂肪表型(公猪野生型与ZBED6敲除猪各3头;母猪野生型5头,ZBED6敲除猪6头),A:公母猪的脂肪重,单位为kg;B:公母猪脂肪重占体重的比率;C:公母猪背部脂肪厚度,单位为mm;D:公母猪腹部脂肪重量,单位为kg;E:公猪野生型和ZBED6敲除猪背部脂肪、腹部脂肪HE切片,比例尺为50μm;F:背部脂肪和腹部脂肪细胞横截面积量化统计。图中*P<0.05表示显著性。Figure 1 shows the fat deposition phenotype of ZBED6 knockout pigs in Example 1 of the present invention. Among them, a total of 17 F4 generation Bama pigs were collected (3 wild-type boars and 3 ZBED6 knockout pigs; 5 wild-type sows and 6 ZBED6 knockout pigs), A: fat weight of boars and sows, in kg; B: ratio of fat weight to body weight of boars and sows; C: back fat thickness of boars and sows, in mm; D: abdominal fat weight of boars and sows, in kg; E: HE sections of back fat and abdominal fat of wild-type boars and ZBED6 knockout pigs, with a scale of 50 μm; F: quantitative statistics of cross-sectional areas of back fat and abdominal fat cells. *P<0.05 in the figure indicates significance.
图2为本发明实施例2中ZBED6基因敲除小鼠脂肪沉积表型,其中,一共收集了24只雄性小鼠数据,野生型和ZBED6敲除鼠各12只。A:高脂饲喂12周的条件下野生型和ZBED6敲除鼠体重;B:高脂饲喂12周后,野生型和ZBED6敲除鼠腹部白色脂肪重量;C:高脂或高糖饲喂12周后,野生型和ZBED6敲除鼠腹部白色脂肪HE切片;D:正常饲喂或高脂饲喂12周后,野生型和ZBED6敲除鼠葡萄糖耐量实验;E:胰岛素敏感性实验。图中*P<0.05、**P<0.01、***P<0.001表示显著性,ns表示无显著性差异。Figure 2 shows the fat deposition phenotype of ZBED6 knockout mice in Example 2 of the present invention, wherein a total of 24 male mice data were collected, including 12 wild-type and 12 ZBED6 knockout mice. A: Body weight of wild-type and ZBED6 knockout mice under high-fat feeding for 12 weeks; B: Abdominal white fat weight of wild-type and ZBED6 knockout mice after 12 weeks of high-fat feeding; C: HE sections of abdominal white fat of wild-type and ZBED6 knockout mice after 12 weeks of high-fat or high-sugar feeding; D: Glucose tolerance test of wild-type and ZBED6 knockout mice after 12 weeks of normal feeding or high-fat feeding; E: Insulin sensitivity test. In the figure, *P<0.05, **P<0.01, ***P<0.001 indicate significance, and ns indicates no significant difference.
图3为本发明实施例3中的巴马香猪敲除ZBED6后分离原代前体脂肪细胞,对脂肪细胞分化效率的影响情况,以及实施例4中的使用SiRNA干扰ZBED6后对3T3小鼠前体脂肪细胞系分化效率的影响情况,以及本发明实施例6中的过表达小鼠ZBED6基因后对小鼠原代前体脂肪细胞分化效率及标志基因表达情况。其中,A:野生型和ZBED6敲除型原代脂肪细胞诱导分化8天后脂肪合成标志基因蛋白表达情况;B:野生型和ZBED6敲除型原代脂肪细胞诱导分化8天后油红O染色及量化情况;C:敲低ZBED6后,3T3前体脂肪细胞诱导分化8天后脂肪合成标志基因mRNA表达情况;D:敲低ZBED6后,3T3前体脂肪细胞诱导分化8天后,ZBED6及脂肪合成标志基因蛋白表达情况;E:敲低ZBED6后,诱导分化8天后进行油红O染色及染色结果量化;F:干扰ZBED6后,细胞周期变化;G:过表达ZBED6后,3T3前体脂肪细胞诱导分化8天后,ZBED6及脂肪合成标志基因mRNA表达情况;H:过表达ZBED6后,3T3前体脂肪细胞诱导分化8天后,ZBED6及脂肪合成标志基因蛋白表达情况;I:过表达ZBED6后,诱导分化8天后进行油红O染色及染色结果量化;J:过表达ZBED6后,细胞增殖情况检测。Figure 3 shows the effect of knocking out ZBED6 in Bama Xiang pigs in Example 3 of the present invention on the differentiation efficiency of adipocytes, as well as the effect of using SiRNA to interfere with ZBED6 on the differentiation efficiency of 3T3 mouse preadipocytes in Example 4, and the differentiation efficiency and marker gene expression of mouse primary preadipocytes after overexpressing the mouse ZBED6 gene in Example 6 of the present invention. A: protein expression of fat synthesis marker genes in wild-type and ZBED6 knockout primary adipocytes after 8 days of induction and differentiation; B: Oil red O staining and quantification of wild-type and ZBED6 knockout primary adipocytes after 8 days of induction and differentiation; C: mRNA expression of fat synthesis marker genes in 3T3 preadipocytes after 8 days of induction and differentiation after knocking down ZBED6; D: protein expression of ZBED6 and fat synthesis marker genes in 3T3 preadipocytes after 8 days of induction and differentiation after knocking down ZBED6; E: protein expression of ZBED6 and fat synthesis marker genes in 3T3 preadipocytes after 8 days of induction and differentiation after knocking down ZBED6. Oil red O staining was performed and the staining results were quantified after 8 days; F: Changes in cell cycle after interference with ZBED6; G: After overexpression of ZBED6, the mRNA expression of ZBED6 and fat synthesis marker genes in 3T3 preadipocytes induced for 8 days after differentiation; H: After overexpression of ZBED6, the protein expression of ZBED6 and fat synthesis marker genes in 3T3 preadipocytes induced for 8 days after differentiation; I: After overexpression of ZBED6, Oil red O staining was performed and the staining results were quantified after 8 days of differentiation; J: Detection of cell proliferation after overexpression of ZBED6.
具体实施方式Detailed ways
本发明旨在提供一种ZBED6基因的新用途,具体提供其在调控猪和小鼠脂肪沉积以及脂肪细胞分化效率和产热功能中的应用。The present invention aims to provide a new use of the ZBED6 gene, specifically to provide its use in regulating fat deposition in pigs and mice as well as adipocyte differentiation efficiency and heat production function.
本发明所述ZBED6基因为本领域公知的,如在NCBI上其编号为100622313(猪)、667118(小鼠)。The ZBED6 gene of the present invention is well known in the art, such as its number on NCBI is 100622313 (pig) and 667118 (mouse).
本发明采用如下技术方案:The present invention adopts the following technical solution:
第一方面,本发明提供ZBED6编码基因、或含有其编码基因的生物材料在以下任一方面的应用:In a first aspect, the present invention provides a ZBED6 encoding gene, or a biomaterial containing the ZBED6 encoding gene, for use in any of the following aspects:
1)调控猪和小鼠脂肪沉积;1) Regulate fat deposition in pigs and mice;
2)调控猪和小鼠前体脂肪细胞分化的效率;2) Regulate the efficiency of porcine and mouse preadipocyte differentiation;
3)研究哺乳动物脂肪发育和代谢;3) Study mammalian fat development and metabolism;
4)猪品种的培育;4) Breeding of pig breeds;
5)制备预防、缓解和/或治疗肥胖相关疾病的药物;5) Preparation of drugs for preventing, alleviating and/or treating obesity-related diseases;
6)构建脂肪发育和/或产热动物模型。6) Construct animal models of fat development and/or thermogenesis.
所述生物材料包括但不限于宿主细胞、巴马香猪或C57BL/6J小鼠。The biological materials include but are not limited to host cells, Bama Xiang pigs or C57BL/6J mice.
本发明的ZBED6编码基因、或含有其编码基因的生物材料还可应用在研究糖尿病和肥胖发病机制、低脂高瘦肉率猪品种的培育、猪和小鼠脂肪沉积相关基因的筛选与鉴定、猪和小鼠米色脂肪基因的筛选与鉴定中。The ZBED6 encoding gene of the present invention, or the biological material containing the encoding gene thereof, can also be used in studying the pathogenesis of diabetes and obesity, breeding low-fat and high-lean meat pig breeds, screening and identifying genes related to fat deposition in pigs and mice, and screening and identifying beige fat genes in pigs and mice.
本发明通过在巴马猪和C57BL/6J小鼠体内敲除ZBED6基因发现脂肪沉积显著降低并使棕色脂肪白色化,分离野生型和ZBED6-/-原代SVF细胞进行体外培养,发现敲除ZBED6能够显著降低SVF细胞成脂分化效率并降低产热基因表达。升高ZBED6基因的表达能够促进猪和小鼠SVF细胞成脂分化为米色脂肪细胞并增加产热基因的表达,进而提出了ZBED6基因在猪和小鼠脂肪沉积及SVF细胞成脂分化中的应用。The present invention knocks out the ZBED6 gene in Bama pigs and C57BL/6J mice and finds that fat deposition is significantly reduced and brown fat is whitened. Wild-type and ZBED6-/- primary SVF cells are separated for in vitro culture and it is found that knocking out ZBED6 can significantly reduce the adipogenic differentiation efficiency of SVF cells and reduce the expression of thermogenic genes. Increasing the expression of the ZBED6 gene can promote the adipogenic differentiation of pig and mouse SVF cells into beige fat cells and increase the expression of thermogenic genes, thereby proposing the application of the ZBED6 gene in fat deposition in pigs and mice and adipogenic differentiation of SVF cells.
研究发现,IGF2基因(NCBI编号为NM_213883.2)的突变破坏了与某未知的核因子的结合,引起骨骼肌中IGF2的表达上调3倍,最终导致骨骼肌质量增加,瘦肉量增加3-4%。IGF2的这种结合只发生在产后,在胎儿时期和IGF2高甲基化区域不结合。2009年发现了这个未知的核因子是一个转录因子,通过调控IGF2的表达进而调控肌肉生长发育,被命名为ZBED6。ZBED6是从DNA转座子进化而来的,它在所有胎盘哺乳动物的ZC3H11A内含子1中的相同位置。ZBED6在进化过程中具备一个基本功能,该基因有2个DNA结合区域,且在26种胎盘哺乳动物中显示出接近100%的氨基酸同一性。此外,在猪和小鼠体内敲除ZBED6能够显著促进骨骼肌、脾脏等组织和器官的发育,证明ZBED6具备重要的功能。The study found that mutations in the IGF2 gene (NCBI number NM_213883.2) disrupted binding to an unknown nuclear factor, causing a 3-fold increase in IGF2 expression in skeletal muscle, ultimately leading to an increase in skeletal muscle mass and a 3-4% increase in lean meat. This binding of IGF2 only occurs postpartum, and does not bind to the hypermethylated region of IGF2 during the fetal period. In 2009, it was discovered that this unknown nuclear factor is a transcription factor that regulates muscle growth and development by regulating the expression of IGF2, and was named ZBED6. ZBED6 evolved from a DNA transposon and is located in the same position in intron 1 of ZC3H11A in all placental mammals. ZBED6 has a basic function in the evolutionary process. The gene has two DNA binding regions and shows nearly 100% amino acid identity in 26 placental mammals. In addition, knocking out ZBED6 in pigs and mice can significantly promote the development of tissues and organs such as skeletal muscle and spleen, proving that ZBED6 has an important function.
猪的骨骼肌以及C2C12细胞的ChIP-seq揭示了ZBED6调节的靶基因,这些靶基因都有ZBED6结合的motify序列GCTCG,大多数结合位点发生在转录起始位点附近。猪ZBED6基因定位于9号染色体上,编码区为2946nt,编码981个氨基酸。小鼠ZBED6基因定位于1号染色体上,编码区为2943nt,编码980个氨基酸。目前对于ZBED6的研究主要集中在骨骼肌发育和萎缩、胰岛β细胞功能、免疫反应等方面。对于ZBED6调控脂肪沉积及米色脂肪细胞的形成有何作用鲜有报道。ChIP-seq of pig skeletal muscle and C2C12 cells revealed target genes regulated by ZBED6. These target genes all have the motify sequence GCTCG bound by ZBED6, and most of the binding sites occur near the transcription start site. The pig ZBED6 gene is located on chromosome 9, with a coding region of 2946nt, encoding 981 amino acids. The mouse ZBED6 gene is located on chromosome 1, with a coding region of 2943nt, encoding 980 amino acids. At present, the research on ZBED6 mainly focuses on skeletal muscle development and atrophy, pancreatic β-cell function, immune response, etc. There are few reports on the role of ZBED6 in regulating fat deposition and the formation of beige adipocytes.
本发明利用基因编辑手段对ZBED6基因进行敲除,从转录和翻译水平消除ZBED6基因的表达,从脂肪组织、原代细胞及标志基因mRNA、蛋白水平验证了其可抑制脂肪沉积及米色脂肪细胞的生成。The present invention utilizes gene editing to knock out the ZBED6 gene, thereby eliminating the expression of the ZBED6 gene at the transcription and translation levels, and verifies that it can inhibit fat deposition and the formation of beige adipocytes at the levels of adipose tissue, primary cells, and marker gene mRNA and protein.
本发明利用基因工程手段构建了ZBED6基因过表达腺病毒载体,对ZBED6基因进行过表达,从转录和翻译水平上促进或提高ZBED6基因的表达,从原代细胞及标志基因mRNA、蛋白水平验证了其可促进米色脂肪细胞的生成。The present invention utilizes genetic engineering means to construct a ZBED6 gene overexpression adenovirus vector, overexpresses the ZBED6 gene, promotes or improves the expression of the ZBED6 gene at the transcription and translation levels, and verifies that it can promote the generation of beige adipocytes at the primary cell and marker gene mRNA and protein levels.
本发明中,猪ZBED6基因在NCBI上的参考序列编号为NM_001394675.1,小鼠ZBED6基因在NCBI上的参考序列编号为NM_001166552.2。In the present invention, the reference sequence number of the pig ZBED6 gene on NCBI is NM_001394675.1, and the reference sequence number of the mouse ZBED6 gene on NCBI is NM_001166552.2.
第二方面,本发明提供猪和小鼠ZBED6过表达腺病毒载体或可提升ZBED6基因表达的以下任一方面的应用:In a second aspect, the present invention provides a pig and mouse ZBED6 overexpression adenovirus vector or any of the following applications that can enhance ZBED6 gene expression:
1)增加猪和小鼠前体脂肪细胞的分化效率;1) Increase the differentiation efficiency of porcine and mouse preadipocytes;
2)增加猪和小鼠前体脂肪细胞的产热能力;2) Increase the thermogenic capacity of preadipocytes in pigs and mice;
3)研究猪和小鼠脂肪性状的特征;3) Study the characteristics of fat traits in pigs and mice;
4)减少哺乳动物脂肪沉积;4) Reduce fat deposition in mammals;
5)培育低脂高瘦肉率优质猪品种。5) Cultivate high-quality pig breeds with low fat and high lean meat ratio.
其中,所述ZBED6过表达腺病毒载体能够从转录和翻译水平提高猪和小鼠ZBED6基因的表达。Among them, the ZBED6 overexpression adenovirus vector can increase the expression of pig and mouse ZBED6 genes at the transcription and translation levels.
第三方面,通过基因编辑技术在猪和小鼠体内敲除ZBED6基因并分离出原代SVF细胞,能够在体外验证ZBED6在脂肪细胞中以下任一方面的应用:Thirdly, by knocking out the ZBED6 gene in pigs and mice through gene editing technology and isolating primary SVF cells, it is possible to verify in vitro the application of ZBED6 in any of the following aspects of adipocytes:
1)降低猪和小鼠前体脂肪细胞的分化效率;1) Reduce the differentiation efficiency of porcine and mouse preadipocytes;
2)降低猪和小鼠前体脂肪细胞的产热能力;2) Reduce the thermogenic capacity of preadipocytes in pigs and mice;
3)改善哺乳动物脂肪沉积;3) Improve fat deposition in mammals;
4)用于研究肥胖及2型糖尿病遗传机制。4) Used to study the genetic mechanisms of obesity and type 2 diabetes.
其中,所述原代SVF细胞为敲除ZBED6基因的原代细胞,能够从转录和翻译水平消除ZBED6基因表达的物质。The primary SVF cells are primary cells with the ZBED6 gene knocked out, and are substances capable of eliminating the expression of the ZBED6 gene at the transcription and translation levels.
第四方面,本发明提供一种能够降低猪和小鼠脂肪沉积和/或产热能力的动物模型,其通过基因编辑技术敲除了ZBED6基因的表达。In a fourth aspect, the present invention provides an animal model capable of reducing fat deposition and/or heat production capacity in pigs and mice, wherein the expression of the ZBED6 gene is knocked out by gene editing technology.
第五方面,本发明提供一种能够提升猪和小鼠前体脂肪细胞分化效率和/或产热能力的方法,其通过腺病毒过表达载体增加猪和小鼠的ZBED6基因的表达。In a fifth aspect, the present invention provides a method capable of improving the differentiation efficiency and/or heat production capacity of pig and mouse preadipocytes, which increases the expression of the ZBED6 gene of pigs and mice through an adenovirus overexpression vector.
第六方面,本发明提供一种靶向ZBED6基因的siRNA,其核苷酸序列如下:In a sixth aspect, the present invention provides a siRNA targeting the ZBED6 gene, the nucleotide sequence of which is as follows:
SEQ ID NO:1:5′-CCAGCUUCCAUGGAAGAAU-3′SEQ ID NO: 1: 5′-CCAGCUUCCAUGGAAGAAU-3′
SEQ ID NO:2:5′-AUUCUUCCAUGGAAGCUGG-3′SEQ ID NO:2:5′-AUUCUUCCAUGGAAGCUGG-3′
本发明的方法中,通过对ZBED6基因的敲除,消融ZBED6基因的表达。通过siRNA敲低ZBED6基因的表达。In the method of the present invention, the expression of ZBED6 gene is eliminated by knocking out the ZBED6 gene. The expression of ZBED6 gene is knocked down by siRNA.
以下实施例用于说明本发明,但不用来限制本发明的范围。若未特别指明,实施例均按照常规实验条件,如Sambrook等分子克隆实验手册(Sambrook J&Russell DW,Molecular Cloning:a Laboratory Manual,2001),或按照制造厂商说明书建议的条件。The following examples are used to illustrate the present invention, but are not intended to limit the scope of the present invention. Unless otherwise specified, the examples are all based on conventional experimental conditions, such as Sambrook et al. Molecular Cloning Laboratory Manual (Sambrook J & Russell DW, Molecular Cloning: a Laboratory Manual, 2001), or the conditions recommended by the manufacturer's instructions.
实施例1 ZBED6基因敲除猪脂肪沉积表型Example 1 Fat deposition phenotype in ZBED6 knockout pigs
本实施例获得巴马香猪野生型和敲除ZBED6基因后背部脂肪、腹部脂肪的表型数据,并对其进行量化,以显示ZBED6对猪脂肪沉积的影响。观测结果见图1。从图中可知巴马香猪敲除ZBED6后能够显著减少背部脂肪和腹部脂肪沉积。说明ZBED6基因在猪脂肪沉积过程中具有重要作用。This example obtains the phenotypic data of back fat and abdominal fat in wild-type Bama Xiang pigs and after knocking out the ZBED6 gene, and quantifies them to show the effect of ZBED6 on pig fat deposition. The observation results are shown in Figure 1. It can be seen from the figure that knocking out ZBED6 in Bama Xiang pigs can significantly reduce back fat and abdominal fat deposition. This shows that the ZBED6 gene plays an important role in the process of pig fat deposition.
ZBED6基因敲除猪的构建方法如下:The construction method of ZBED6 knockout pig is as follows:
1、通过电穿孔分别将sgRNA Zg1、Zg2、Zg3、Zg4(构建到pX330-Cas9载体上,pX330-Cas9是在PX330载体中插入Cas9蛋白编码基因构建而成),转染到猪胎儿成纤维细胞中;1. Transfect sgRNA Zg1, Zg2, Zg3, and Zg4 (constructed into pX330-Cas9 vector, pX330-Cas9 is constructed by inserting Cas9 protein coding gene into PX330 vector) into porcine fetal fibroblasts by electroporation;
Zg1:5′-aagaaaagaaagaagggtttgcgaattaagGGGaaaaggc-3′Zg1:5′-aagaaaagaaagaagggtttgcgaattaagGGGaaaaggc-3′
Zg2:5′-aaaaagtttagtaaggatttgggatctgggAGGcctgttg-3′Zg2: 5′-aaaaagtttagtaaggatttgggatctgggaggcctgttg-3′
Zg3:5′-cctagtactagagcaaagacttccattgtgTGGcacttct-3′Zg3: 5′-cctagtactagagcaaagacttccattgtgtggcacttct-3′
Zg4:3′-ttgacccCCAgtatacctggcgggcaatttgtaacctctg-5′Zg4: 3′-ttgacccccagtatacctggcgggcaatttgtaacctctg-5′
2、通过一代sanger测序筛选最佳的基因靶向效率(Zg3,靶向效率为7.5%);2. Screening the best gene targeting efficiency (Zg3, targeting efficiency is 7.5%) through first-generation Sanger sequencing;
3、筛选出3个阳性细胞克隆Z17、Z23、Z28;3. Three positive cell clones Z17, Z23, and Z28 were screened;
4、将阳性细胞进行体细胞核移植,构建重构胚胎并移植到供体母猪;4. Perform somatic cell nuclear transplantation on positive cells to construct reconstructed embryos and transplant them into donor sows;
5、对基因编辑仔猪进行一代sanger测序,鉴定在1320-T位点发生移码突变,说明ZBED6基因敲除猪构建成功。5. The gene-edited piglets were subjected to first-generation Sanger sequencing, and a frameshift mutation was identified at the 1320-T site, indicating that the ZBED6 gene knockout pig was successfully constructed.
实施例2 ZBED6基因敲除小鼠脂肪沉积表型Example 2 Fat deposition phenotype in ZBED6 knockout mice
本实施例获得C57BL/6J小鼠野生型和敲除ZBED6基因后体重、腹部脂肪重量、腹部脂肪HE切片等表型数据,并对其进行量化,以显示ZBED6对小鼠脂肪沉积的影响。观测结果见图2。In this example, phenotypic data such as body weight, abdominal fat weight, and abdominal fat HE sections of wild-type C57BL/6J mice and mice with ZBED6 knockout were obtained and quantified to show the effect of ZBED6 on fat deposition in mice. The observation results are shown in FIG2 .
本实施例进一步检测了正常饲喂状态下及高脂饲喂状态下野生型和ZBED6敲除鼠葡萄糖耐量和胰岛素敏感性。从中可知,C57BL/6J小鼠敲除ZBED6后,在高脂、高糖状态下均能够显著减少脂肪重量,并促进小鼠的葡萄糖耐量和胰岛素敏感性。说明敲除ZBED6能够显著提高小鼠的糖代谢能力,增加能量消耗进而减少脂肪沉积。This example further tests the glucose tolerance and insulin sensitivity of wild-type and ZBED6 knockout mice under normal feeding conditions and high-fat feeding conditions. It can be seen that after knocking out ZBED6 in C57BL/6J mice, fat weight can be significantly reduced under high-fat and high-sugar conditions, and glucose tolerance and insulin sensitivity of mice can be improved. This shows that knocking out ZBED6 can significantly improve the glucose metabolism ability of mice, increase energy consumption and reduce fat deposition.
ZBED6基因敲除小鼠的构建方法如下:The method for constructing ZBED6 knockout mice is as follows:
1、构建ZBED6-flox小鼠,在ZBED6基因ATG上游230bp插入LoxP位点,在TAA下游370bp插入FRT-Neo-FRT-LoxP位点。1. Construct ZBED6-flox mice, insert a LoxP site 230 bp upstream of the ATG of the ZBED6 gene, and insert a FRT-Neo-FRT-LoxP site 370 bp downstream of the TAA.
2、在LoxP位点两端插入6kb的同源臂;其中,左同源臂位于ZBED6基因起始密码子上游230bp起开始计,向上延伸6kb,右同源臂位于ZBED6基因起始密码子下游370bp起开始计,向下延伸6kb。2. Insert 6kb homology arms at both ends of the LoxP site; the left homology arm is located 230bp upstream of the start codon of the ZBED6 gene and extends 6kb upward, and the right homology arm is located 370bp downstream of the start codon of the ZBED6 gene and extends 6kb downward.
3、将ZBED6-flox小鼠与PGK-Cre小鼠杂交,产生ZBED6全身性敲除小鼠(PGK-Cre小鼠为全身性敲除工具鼠,由瑞典乌普萨拉大学Leif Andersson教授惠赠。PGK-Cre小鼠可参见Younis S,M,Massart J,et al.,The ZBED6-IGF2 axis has a major effecton growth of skeletal muscle and internal organs in placental mammals.ProcNatl Acad Sci U S A.2018 Feb 27;115(9):E2048-E2057.)。3. ZBED6-flox mice were hybridized with PGK-Cre mice to generate ZBED6 systemic knockout mice (PGK-Cre mice are systemic knockout tool mice, kindly provided by Professor Leif Andersson of Uppsala University, Sweden. PGK-Cre mice can be found in Younis S, M, Massart J, et al., The ZBED6-IGF2 axis has a major effect on growth of skeletal muscle and internal organs in placental mammals. Proc Natl Acad Sci US A. 2018 Feb 27; 115(9): E2048-E2057.).
实施例3敲除ZBED6基因对猪前体脂肪细胞分化的调节Example 3 Regulation of ZBED6 gene knockout on porcine preadipocyte differentiation
本实施例从野生型巴马香猪和ZBED6敲除巴马香猪腹股沟皮下脂肪和肾周脂肪分离得到前体脂肪细胞,对其进行诱导分化,并通过油红O观测野生型和ZBED6敲除型在体外向脂肪细胞方向分化的差异情况。观测结果见图3中的A和B。In this example, preadipocytes were isolated from the inguinal subcutaneous fat and perirenal fat of wild-type Bama Xiang pigs and ZBED6 knockout Bama Xiang pigs, induced to differentiate, and the difference in differentiation into adipocytes in vitro between the wild-type and ZBED6 knockout types was observed by Oil Red O. The observation results are shown in A and B in Figure 3.
本实施例进一步检测野生型与ZBED6敲除型猪前体脂肪细胞分化8天后脂肪从头合成基因的蛋白表达量,FASN、ACACA、均显著下调。油红O染色结果表明敲除ZBED6能够极显著抑制猪原代前体脂肪细胞的分化效率。说明敲除ZBED6能够抑制猪脂肪从头合成进而抑制猪原代脂肪细胞分化。This example further detected the protein expression of de novo fat synthesis genes in wild-type and ZBED6 knockout pig preadipocytes after 8 days of differentiation, and FASN, ACACA, were significantly downregulated. The results of Oil Red O staining showed that knocking out ZBED6 could significantly inhibit the differentiation efficiency of primary pig preadipocytes. This indicates that knocking out ZBED6 can inhibit de novo fat synthesis in pigs and thus inhibit the differentiation of primary pig adipocytes.
具体巴马香猪野生型与ZBED6敲除型前体脂肪细胞分离和培养的过程如下:The specific process of isolating and culturing wild-type and ZBED6 knockout preadipocytes of Bama Xiang pigs is as follows:
1)取1月龄野生型巴马香猪与ZBED6敲除型巴马香猪各一头,处死后使用酒精棉进行全身消毒,在无菌工作台上取出腹股沟白色脂肪和肾周白色脂肪浸泡于含有2%青霉素/链霉素预冷的PBS中,转移至超净工作台;1) One-month-old wild-type Bama miniature pig and one ZBED6 knockout Bama miniature pig were killed and disinfected with alcohol cotton. The inguinal white fat and perirenal white fat were taken out on a sterile workbench and soaked in pre-cooled PBS containing 2% penicillin/streptomycin, and then transferred to an ultra-clean workbench;
2)使用含有2%青霉素/链霉素预冷的PBS洗涤脂肪组织3次,使用剪刀将脂肪组织剪碎为肉糜状,加入2倍体积的含有2mg/ml I型胶原酶的DMEM/F12培养基,置于37℃恒温摇床消化60分钟;2) Wash the adipose tissue three times with precooled PBS containing 2% penicillin/streptomycin, mince the adipose tissue with scissors, add 2 volumes of DMEM/F12 medium containing 2 mg/ml type I collagenase, and place in a 37°C constant temperature shaker for digestion for 60 minutes;
3)在消化好的组织中加入等体积的DMEM/F12完全培养基终止消化,用70μm细胞滤器过滤组织悬浮液,室温1500r/min离心10min;3) Add an equal volume of DMEM/F12 complete medium to the digested tissue to terminate digestion, filter the tissue suspension with a 70 μm cell filter, and centrifuge at 1500 rpm for 10 min at room temperature;
4)吸弃上清液,加入3-5ml红细胞裂解液重悬细胞沉淀,4℃静置10min后,1500r/min离心10min;4) Aspirate and discard the supernatant, add 3-5 ml of red blood cell lysis buffer to resuspend the cell pellet, let stand at 4°C for 10 min, and centrifuge at 1500 rpm for 10 min;
5)吸弃上清液,加入1-2ml DMEM/F12完全培养基重悬细胞沉淀,接种于T75细胞培养瓶中,补足至15ml培养基,摇匀后,放于37℃含5% CO2的细胞培养箱培养,每2d换液一次,长满后进行传代。5) Aspirate the supernatant, add 1-2 ml DMEM/F12 complete medium to resuspend the cell pellet, inoculate it into a T75 cell culture flask, make up to 15 ml of medium, shake well, and culture in a cell culture incubator at 37°C with 5% CO2 . Change the medium every 2 days and subculture after confluence.
猪前体脂肪细胞的诱导分化过程如下:The induction and differentiation process of porcine preadipocytes is as follows:
1)猪前体脂肪细胞长满后进行铺板,一个T75培养瓶的猪前体脂肪细胞可以铺3个12孔细胞培养板;1) After the porcine preadipocytes have grown to full size, they are plated. The porcine preadipocytes in one T75 culture flask can be plated on three 12-well cell culture plates;
2)细胞长满后接触抑制两天后开始诱导分化(分化0天);2) After the cells have grown confluent, differentiation induction begins after two days of contact inhibition (differentiation day 0);
3)接触抑制两天后更换为诱导分化培养基,每两天更换一次培养基。3) After two days of contact inhibition, the culture medium was replaced with differentiation induction medium. The culture medium was replaced every two days.
4)分化培养基配比:DMEM高糖培养基,0.5mM 3-异丁基-1-甲基黄嘌呤(IBMX)、0.1μM地塞米松、0.5μM胰岛素、2nM三碘甲状腺原氨酸(T3)、30μM吲哚美辛(indomethacin)、17μM泛酸、33μM生物素,1μM罗格列酮、2% FBS。4) Differentiation medium ratio: DMEM high glucose medium, 0.5 mM 3-isobutyl-1-methylxanthine (IBMX), 0.1 μM dexamethasone, 0.5 μM insulin, 2 nM triiodothyronine (T3), 30 μM indomethacin, 17 μM pantothenic acid, 33 μM biotin, 1 μM rosiglitazone, and 2% FBS.
实施例4敲低ZBED6基因对小鼠前体脂肪细胞分化的调节Example 4 Regulation of ZBED6 gene knockdown on mouse preadipocyte differentiation
本实施例在3T3小鼠前体脂肪细胞中使用siRNA干扰ZBED6,对其进行诱导分化,并通过油红O观测3T3小鼠前体脂肪细胞分化的差异情况。观测结果见图3中的C、D、E、F。In this example, siRNA was used to interfere with ZBED6 in 3T3 mouse preadipocytes to induce differentiation, and the difference in differentiation of 3T3 mouse preadipocytes was observed by Oil Red O. The observation results are shown in C, D, E, and F in FIG3 .
本实施例进一步检测了敲低ZBED6对3T3小鼠前体脂肪细胞增殖分化的影响,结果说明敲低ZBED6能够显著抑制3T3小鼠前体脂肪细胞增殖与分化。进一步检测了敲低ZBED6对3T3小鼠前体脂肪细胞脂肪从头合成基因表达的影响,结果表明敲低ZBED6能够显著抑制脂肪从头合成基因的表达。说明敲低ZBED6的表达量能够抑制脂肪合成。This example further detected the effect of knocking down ZBED6 on the proliferation and differentiation of 3T3 mouse preadipocytes. The results showed that knocking down ZBED6 could significantly inhibit the proliferation and differentiation of 3T3 mouse preadipocytes. The effect of knocking down ZBED6 on the expression of de novo fat synthesis genes in 3T3 mouse preadipocytes was further detected. The results showed that knocking down ZBED6 could significantly inhibit the expression of de novo fat synthesis genes. This shows that knocking down the expression of ZBED6 can inhibit fat synthesis.
具体实验过程如下:待T75细胞培养瓶内细胞汇合度达到90%后,接种到12孔细胞培养板,细胞汇合度达到40%时进行siRNA转染,其中6个孔使用RNAiMAX转染siRNA-NC,另外6个孔转染siRNA-ZBED6,转染所用siRNA为在序列SEQ ID NO:1或SEQ ID NO:2后分别连接两个碱基T的两条siRNA(在SEQ ID NO:1或SEQ ID NO:2的3′端分别添加TT悬垂,形成粘性末端,便于解链);The specific experimental process is as follows: After the cell confluence in the T75 cell culture flask reaches 90%, the cells are inoculated into a 12-well cell culture plate. When the cell confluence reaches 40%, siRNA transfection is performed, of which 6 wells are transfected with siRNA-NC using RNAiMAX, and the other 6 wells are transfected with siRNA-ZBED6. The siRNA used for transfection is two siRNAs with two bases T connected after the sequence SEQ ID NO: 1 or SEQ ID NO: 2 (TT overhangs are added to the 3′ end of SEQ ID NO: 1 or SEQ ID NO: 2 to form sticky ends for easy melting);
转染方法为:The transfection method is:
1.将细胞接种到12孔板中,待细胞汇合度达到40%进行转染;1. Inoculate cells into 12-well plates and transfect when the cell confluence reaches 40%;
2.向①管中加入300μL OPTI-MEM和60μM siRNA,向②管中加入300μLOPTI-MEM和15μL RNAiMAX,此为12孔板6个孔的量;2. Add 300 μL OPTI-MEM and 60 μM siRNA to tube ①, and add 300 μL OPTI-MEM and 15 μL RNAiMAX to tube ②. This is the amount for 6 wells of a 12-well plate.
3.将管①中的混合液转移至管②中,轻微混匀静置10分钟;将混合液均匀加入细胞培养板中。细胞长满后再接触抑制两天后(分化第0天)换成米色脂肪诱导分化培养液(89% DMEM/F12培养基、10%胎牛血清、1μM地塞米松、1μM罗格列酮、850nM胰岛素、0.5mMIBMX、1%青霉素/链霉素),换液的同时进行转染(此后每72小时转染一次);分化48小时后更换为维持培养基(89% DMEM/F12培养基、10%胎牛血清、1μM罗格列酮、850nM胰岛素、1%青霉素/链霉素),之后每48小时更换一次维持培养基,共分化8天。3. Transfer the mixed solution in tube ① to tube ②, mix lightly and let stand for 10 minutes; add the mixed solution evenly to the cell culture plate. After the cells are full, contact inhibition for two days (differentiation day 0) is replaced with beige fat induction differentiation medium (89% DMEM/F12 medium, 10% fetal bovine serum, 1μM dexamethasone, 1μM rosiglitazone, 850nM insulin, 0.5mM IBMX, 1% penicillin/streptomycin), and transfection is performed at the same time as the medium is changed (transfection is performed every 72 hours thereafter); after 48 hours of differentiation, it is replaced with maintenance medium (89% DMEM/F12 medium, 10% fetal bovine serum, 1μM rosiglitazone, 850nM insulin, 1% penicillin/streptomycin), and the maintenance medium is replaced every 48 hours thereafter, for a total of 8 days of differentiation.
具体转染siRNA-ZBED6 48小时后,本实施例对ZBED6基因的mRNA表达量进行检测(内参为18S),检测结果见图3中的A,表明使用siRNA-ZBED6能显著(*P<0.05)降低ZBED6基因的mRNA表达量;对ZBED6基因的蛋白表达量进行检测(内参为Tubulin),结果见图3中的B,表明使用siRNA-ZBED6能极显著(***P<0.01)降低ZBED6基因的蛋白表达量。Specifically, 48 hours after transfection of siRNA-ZBED6, the present example detected the mRNA expression level of the ZBED6 gene (the internal reference was 18S), and the detection results were shown in A of FIG. 3 , indicating that the use of siRNA-ZBED6 can significantly (*P<0.05) reduce the mRNA expression level of the ZBED6 gene; the protein expression level of the ZBED6 gene was detected (the internal reference was Tubulin), and the results were shown in B of FIG. 3 , indicating that the use of siRNA-ZBED6 can extremely significantly (***P<0.01) reduce the protein expression level of the ZBED6 gene.
转染siRNA,待细胞密度达到90%左右时,本实施例通过EDU细胞增殖检测实验、细胞周期检测、细胞划痕实验检测敲低ZBED6基因后对细胞增殖的影响,实验结果见图3中的C/D/E,表明敲低ZBED6基因表达量能够极显著(***P<0.01)抑制细胞增殖。After transfection of siRNA, when the cell density reached about 90%, the present embodiment detected the effect of knocking down the ZBED6 gene on cell proliferation through EDU cell proliferation detection experiment, cell cycle detection, and cell scratch test. The experimental results are shown in C/D/E in FIG3 , indicating that knocking down the expression of the ZBED6 gene can significantly (***P<0.01) inhibit cell proliferation.
诱导分化8天后,本实施例采用油红O染色验证3T3小鼠前体脂肪细胞诱导分化过程中敲低ZBED6基因后细胞分化效率,油红O然测结果见图3中的G和H(G为油红O染色结果,H图为油红O染色定量结果),其显示敲低ZBED6基因后,3T3小鼠前体脂肪细胞分化效率显著降低。After 8 days of induction of differentiation, this example uses Oil Red O staining to verify the cell differentiation efficiency after knocking down the ZBED6 gene during the induction and differentiation of 3T3 mouse preadipocytes. The Oil Red O staining results are shown in G and H in Figure 3 (G is the Oil Red O staining result, and H is the Oil Red O staining quantitative result), which shows that after knocking down the ZBED6 gene, the differentiation efficiency of 3T3 mouse preadipocytes is significantly reduced.
从上述结果可知敲低ZBED6基因的表达量后3T3小鼠前体脂肪细胞的增殖和分化效率显著降低(敲降效率达到50%以上)。From the above results, it can be seen that the proliferation and differentiation efficiency of 3T3 mouse preadipocytes were significantly reduced after knocking down the expression level of the ZBED6 gene (the knockdown efficiency reached more than 50%).
实施例5过表达小鼠ZBED6基因对小鼠前体脂肪细胞的分化效率及产热基因表达的影响Example 5 Effect of overexpression of mouse ZBED6 gene on differentiation efficiency and thermogenic gene expression of mouse preadipocytes
本实施例在3T3小鼠前体脂肪细胞中使用ZBED6腺病毒过表达载体过表达ZBED6,对其进行诱导分化,并通过油红O观测3T3小鼠前体脂肪细胞分化的差异情况。观测结果见图3中的G、H、I、J。In this example, ZBED6 was overexpressed in 3T3 mouse preadipocytes using a ZBED6 adenovirus overexpression vector, differentiation was induced, and the differentiation of 3T3 mouse preadipocytes was observed using Oil Red O. The observation results are shown in G, H, I, and J in FIG3 .
本实施例进一步检测了过表达ZBED6对3T3小鼠前体脂肪细胞增殖分化的影响,结果说明过表达ZBED6能够显著促进3T3小鼠前体脂肪细胞增殖与分化。进一步检测了过表达ZBED6对3T3小鼠前体脂肪细胞脂肪从头合成基因表达的影响,结果表明过表达ZBED6能够显著抑制脂肪从头合成基因的表达。说明升高ZBED6的表达量能够促进脂肪合成。This example further detected the effect of overexpression of ZBED6 on the proliferation and differentiation of 3T3 mouse preadipocytes, and the results showed that overexpression of ZBED6 can significantly promote the proliferation and differentiation of 3T3 mouse preadipocytes. The effect of overexpression of ZBED6 on the expression of de novo fat synthesis genes in 3T3 mouse preadipocytes was further detected, and the results showed that overexpression of ZBED6 can significantly inhibit the expression of de novo fat synthesis genes. It shows that increasing the expression of ZBED6 can promote fat synthesis.
具体实验过程如下:待T75细胞培养瓶内细胞汇合度达到90%后,接种到12孔细胞培养板,细胞汇合度达到40%时进行腺病毒感染,其中6个孔使用ZBED6腺病毒过表达载体,另外6个孔使用腺病毒过表达阴性载体,构建载体所用的CDS区为NM_001166552.2。The specific experimental process is as follows: After the cell confluence in the T75 cell culture flask reaches 90%, it is inoculated into a 12-well cell culture plate. When the cell confluence reaches 40%, adenovirus infection is performed. Six wells use the ZBED6 adenovirus overexpression vector, and the other six wells use the adenovirus overexpression negative vector. The CDS region used to construct the vector is NM_001166552.2.
ZBED6腺病毒过表达载体的构建方法如下:The construction method of ZBED6 adenovirus overexpression vector is as follows:
1、将ZBED6基因CDS区构建至工具载体PSB50上;1. Construct the CDS region of ZBED6 gene onto the tool vector PSB50;
2、通过同源重组将ZBED6基因CDS区转移至PSE6041载体上,用于后续腺病毒包装;2. Transfer the CDS region of the ZBED6 gene to the PSE6041 vector through homologous recombination for subsequent adenovirus packaging;
3、使用辅助载体pBHG loxΔE1,3Cre,通过AdMax腺病毒包装系统进行腺病毒包装;3. Use the auxiliary vector pBHG loxΔE1,3Cre to package adenovirus using the AdMax adenovirus packaging system;
4、将载体转染至HEK293细胞中进行病毒扩增,收集细胞并通过超速离心收集纯化腺病毒;4. Transfect the vector into HEK293 cells for virus amplification, collect the cells and purify the adenovirus by ultracentrifugation;
5、纯化腺病毒滴度检测,病毒滴度为1.14×1011IFU/mL。5. The titer of purified adenovirus was tested and the virus titer was 1.14×10 11 IFU/mL.
以上所用载体均购自上海生工生物有限公司。All the vectors used above were purchased from Shanghai Shenggong Biological Co., Ltd.
细胞感染方法如下:The cell infection method is as follows:
1)细胞密度达到40%时,更换为5%胎牛血清的无青霉素/链霉素培养基(12孔板加500μL);1) When the cell density reaches 40%, replace with 5% fetal bovine serum-free penicillin/streptomycin medium (add 500 μL to 12-well plate);
2)加入OPTI-MEM减血清培养基(购自Gibco)稀释后的腺病毒(MOI=100);2) Add adenovirus diluted in OPTI-MEM reduced serum medium (purchased from Gibco) (MOI = 100);
3)4小时后添加5%胎牛血清的无青霉素/链霉素培养基至1mL;3) 4 hours later, add 5% fetal bovine serum-free penicillin/streptomycin medium to 1 mL;
4)8小时后更换为完全培养基,培养至后续诱导分化。4) After 8 hours, the culture medium was replaced with complete medium and cultured until subsequent differentiation induction.
虽然,上文中已经用一般性说明及具体实施方案对本发明作了详尽的描述,但在本发明基础上,可以对之做一些修改或改进,这对本领域技术人员而言是显而易见的。因此,在不偏离本发明精神的基础上所做的这些修改或改进,均属于本发明要求保护的范围。Although the present invention has been described in detail above with general descriptions and specific embodiments, it is obvious to those skilled in the art that some modifications or improvements can be made based on the present invention. Therefore, these modifications or improvements made without departing from the spirit of the present invention all fall within the scope of protection claimed by the present invention.
参考文献:references:
[1]Markljung E,Jiang L,Jaffe JD,et al.,ZBED6,a novel transcriptionfactor derived from a domesticated DNA transposon regulates IGF2 expressionand muscle growth.PLoS Biol.2009 Dec;7(12):e1000256.[1]Markljung E, Jiang L, Jaffe JD, et al., ZBED6, a novel transcription factor derived from a domesticated DNA transposon regulates IGF2 expression and muscle growth. PLoS Biol. 2009 Dec;7(12):e1000256.
[2]Wang D,Pan D,Xie B,et al.,Porcine ZBED6 regulates growth ofskeletal muscle and internal organs via multiple targets.PLoS Genet.2021 Oct28;17(10):e1009862.[2] Wang D, Pan D, Xie B, et al., Porcine ZBED6 regulates growth of skeletal muscle and internal organs via multiple targets. PLoS Genet. 2021 Oct28; 17(10): e1009862.
[3]Younis S,M,Massart J,et al.,The ZBED6-IGF2 axis has a majoreffect on growth of skeletal muscle and internal organs in placentalmammals.Proc Natl Acad Sci U S A.2018 Feb 27;115(9):E2048-E2057.[3] Younis S, M, Massart J, et al., The ZBED6-IGF2 axis has a major effect on growth of skeletal muscle and internal organs in placental mammals. Proc Natl Acad Sci US A. 2018 Feb 27; 115(9): E2048-E2057.
[4]Wang X,Younis S,Cen J,et al.,ZBED6 counteracts high-fat diet-induced glucose intolerance by maintaining beta cell area and reducing excessmitochondrial activation.Diabetologia.2021 Oct;64(10):2292-2305.[4] Wang X, Younis S, Cen J, et al., ZBED6 counteracts high-fat diet-induced glucose intolerance by maintaining beta cell area and reducing excess mitochondrial activation. Diabetologia. 2021 Oct; 64(10): 2292-2305.
[5]Wang W,Seale P.Control of brown and beige fat development.Nat RevMol Cell Biol.2016 Nov;17(11):691-702.[5] Wang W, Seale P. Control of brown and beige fat development. Nat Rev Mol Cell Biol. 2016 Nov;17(11):691-702.
[6]Cohen P,Kajimura S.The cellular and functional complexity ofthermogenic fat.Nat Rev Mol Cell Biol.2021 Jun;22(6):393-409。[6] Cohen P, Kajimura S. The cellular and functional complexity of thermogenic fat. Nat Rev Mol Cell Biol. 2021 Jun; 22(6): 393-409.
Claims (10)
- Any of the following applications of zbed6 gene:1) For modulating animal fat deposition;2) For regulating the differentiation of animal fat cells;3) For constructing a fat development and/or thermogenesis animal model;4) Used for breeding low-fat high-lean-percentage pigs;The reference sequence number of the ZBED6 gene derived from pigs on NCBI is NM_001394675.1, and the reference sequence number of the ZBED6 gene derived from mice on NCBI is NM_001166552.2.
- 2. The use according to claim 1, wherein the expression or activity of ZBED6 gene or its encoded protein is suppressed at the transcriptional or translational level, or the ZBED6 gene is knocked out from the animal genome to reduce fat deposition in animals, to reduce the adipogenic differentiation efficiency of animal precursor adipocytes, to reduce thermogenic gene expression;The thermogenic gene is selected from FASN, ACACA, ACLY;the use is for non-disease diagnosis and treatment purposes.
- 3. Use according to claim 2, characterized in that the expression or activity of the ZBED6 gene or its encoded protein is inhibited at the transcriptional or translational level by an inhibitor; the inhibitor is at least one selected from shRNA, siRNA, dsRNA, miRNA, cDNA, antisense RNA/DNA, low-molecular compounds, peptides, antibodies and ZBED6 gene targeting vectors;the ZBED6 gene targeting vector is constructed based on CRISPR, TALEN or ZFN genome editing technology.
- 4. The use according to claim 3, wherein the inhibitor is an siRNA, the nucleotide sequence of which is shown in SEQ ID No. 1 or 2.
- 5. The use according to claim 1, wherein the expression or activity of ZBED6 gene or its encoded protein is enhanced at the transcriptional or translational level to increase fat deposition in animals, increase the lipid-forming differentiation efficiency of animal precursor adipocytes, and promote thermogenic gene expression;The thermogenic gene is selected from FASN, ACACA, ACLY;the use is for non-disease diagnosis and treatment purposes.
- 6. The use according to claim 5, wherein the enhanced pathway is selected from the following 1) to 5), or optionally in combination:1) Enhanced by introducing a plasmid having the gene;2) Enhanced by increasing the copy number of the gene on the chromosome;3) Enhanced by altering the promoter sequence of said gene on the chromosome;4) Enhanced by operably linking a strong promoter to the gene;5) Enhanced by the introduction of enhancers.
- 7. The use according to any one of claims 1 to 6, wherein the animal is a mammal.
- 8. The use according to claim 7, wherein the mammal is selected from the group consisting of pigs, mice.
- 9. The siRNA targeting the mouse ZBED6 gene is characterized in that the nucleotide sequence is shown as SEQ ID NO. 1 or SEQ ID NO. 2.
- 10. A method of promoting the efficiency of differentiation and/or thermogenic function of a beige fat in pigs and mice, the method comprising: enhancing expression of ZBED6 gene by genetic engineering techniques;The reference sequence number of the ZBED6 gene from pigs on NCBI is NM_001394675.1, and the reference sequence number of the ZBED6 gene from mice on NCBI is NM_001166552.2;The enhanced pathway is selected from the following 1) to 5), or an optional combination:1) Enhanced by introducing a plasmid having the gene;2) Enhanced by increasing the copy number of the gene on the chromosome;3) Enhanced by altering the promoter sequence of said gene on the chromosome;4) Enhanced by operably linking a strong promoter to the gene;5) Enhanced by the introduction of enhancers.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202311838043.2A CN118028375A (en) | 2023-12-28 | 2023-12-28 | Application of ZBED6 gene in regulation and control of animal fat deposition and fat cell differentiation |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202311838043.2A CN118028375A (en) | 2023-12-28 | 2023-12-28 | Application of ZBED6 gene in regulation and control of animal fat deposition and fat cell differentiation |
Publications (1)
Publication Number | Publication Date |
---|---|
CN118028375A true CN118028375A (en) | 2024-05-14 |
Family
ID=90983045
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202311838043.2A Pending CN118028375A (en) | 2023-12-28 | 2023-12-28 | Application of ZBED6 gene in regulation and control of animal fat deposition and fat cell differentiation |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN118028375A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN118272547A (en) * | 2024-06-03 | 2024-07-02 | 中国农业科学院北京畜牧兽医研究所 | Cell subset for identifying germplasm characteristics of Tibetan pigs, and marker gene and application thereof |
CN118685412A (en) * | 2024-08-28 | 2024-09-24 | 中国农业科学院北京畜牧兽医研究所 | Application of ZBED6 gene in regulating animal skeletal muscle atrophy |
CN118909932A (en) * | 2024-10-09 | 2024-11-08 | 中国农业科学院北京畜牧兽医研究所 | Application of acetyl-CoA carboxylase gene in regulating pig fat metabolism |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019184937A1 (en) * | 2018-03-28 | 2019-10-03 | 中国科学院动物研究所 | Method for producing pig having improved properties |
CN117363650A (en) * | 2023-08-04 | 2024-01-09 | 中山大学 | Method for improving intramuscular fat content of pigs |
-
2023
- 2023-12-28 CN CN202311838043.2A patent/CN118028375A/en active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019184937A1 (en) * | 2018-03-28 | 2019-10-03 | 中国科学院动物研究所 | Method for producing pig having improved properties |
CN117363650A (en) * | 2023-08-04 | 2024-01-09 | 中山大学 | Method for improving intramuscular fat content of pigs |
Non-Patent Citations (11)
Title |
---|
CAIPING ZHOU等: "IGF2 Overexpression Promotes Lipogenesis and IGF2 Knockdown Inhibits Lipolysis, Both Resulting in Lipidosis", AVAILABLE AT SSRN 4533561, 9 August 2023 (2023-08-09), pages 1 - 2 * |
DUO T等: "Single-base editing in IGF2 improves meat production and intramuscular fat deposition in Liang Guang Small Spotted pigs. J Anim Sci Biotechnol", J ANIM SCI BIOTECHNOL, vol. 14, no. 1, 2 November 2023 (2023-11-02), pages 141 * |
HANG W等: "Knockdown of ZBED6 is not associated with changes in murine preadipocyte proliferation or differentiation", ADIPOCYTE, vol. 2, no. 4, 1 October 2013 (2013-10-01), pages 251 - 255 * |
WANG D等: "Porcine ZBED6 regulates growth of skeletal muscle and internal organs via multiple targets", PLOS GENET, vol. 17, no. 10, 28 October 2021 (2021-10-28), pages 2 * |
YOUNIS S等: "The importance of the ZBED6-IGF2 axis for metabolic regulation in mouse myoblast cells", FASEB J, vol. 34, no. 8, 31 August 2020 (2020-08-31), pages 10250 - 10266 * |
YOUNIS S等: "The ZBED6-IGF2 axis has a major effect on growth of skeletal muscle and internal organs in placental mammals", PROC NATL ACAD SCI U S A, vol. 115, no. 9, 12 February 2018 (2018-02-12), pages 2049 * |
刘铃等: "Zbed6基因敲除对小鼠骨骼肌生长发育的影响及其分子作用机制研究", 中国畜牧兽医, vol. 50, no. 9, 30 September 2023 (2023-09-30), pages 3641 - 3651 * |
姚顺: "利用CRISPR/Cas9技术制备牛IGF2基因编辑胚胎", 中国学术论文全文数据库, 8 December 2020 (2020-12-08) * |
张悫;蔡瑞;庞卫军;: "长链非编码RNA调控动物脂肪沉积研究进展与趋势", 家畜生态学报, no. 07, 15 July 2020 (2020-07-15), pages 1 - 6 * |
解文雅;张传海;潘登科;贺晓云;: "锌指蛋白6(ZBED6)研究进展", 生物技术通报, no. 11, 26 November 2018 (2018-11-26), pages 52 * |
解文雅等: "锌指蛋白6 (ZBED6)研究进展", 生物技术通报, vol. 34, no. 11, 30 November 2018 (2018-11-30), pages 2 - 3 * |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN118272547A (en) * | 2024-06-03 | 2024-07-02 | 中国农业科学院北京畜牧兽医研究所 | Cell subset for identifying germplasm characteristics of Tibetan pigs, and marker gene and application thereof |
CN118685412A (en) * | 2024-08-28 | 2024-09-24 | 中国农业科学院北京畜牧兽医研究所 | Application of ZBED6 gene in regulating animal skeletal muscle atrophy |
CN118909932A (en) * | 2024-10-09 | 2024-11-08 | 中国农业科学院北京畜牧兽医研究所 | Application of acetyl-CoA carboxylase gene in regulating pig fat metabolism |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN118028375A (en) | Application of ZBED6 gene in regulation and control of animal fat deposition and fat cell differentiation | |
Chen et al. | MiR-16a regulates milk fat metabolism by targeting large tumor suppressor kinase 1 (LATS1) in bovine mammary epithelial cells | |
Beranger et al. | In vitro brown and “brite”/“beige” adipogenesis: human cellular models and molecular aspects | |
Xu et al. | Lipid accumulation is ahead of epithelial-to-mesenchymal transition and therapeutic intervention by acetyl-CoA carboxylase 2 silence in diabetic nephropathy | |
Zhang et al. | Acetyl‐coenzyme A acyltransferase 2 promote the differentiation of sheep precursor adipocytes into adipocytes | |
Jiang et al. | Histone H3K9 demethylase JMJD1A modulates hepatic stellate cells activation and liver fibrosis by epigenetically regulating peroxisome proliferator‐activated receptor γ | |
Qing et al. | MiR-144-3p targets STC1 to activate PI3K/AKT pathway to induce cell apoptosis and cell cycle arrest in selenium deficiency broilers | |
CN111154763B (en) | The application of long non-coding RNA lncMGPF in the regulation of porcine muscle development | |
Xu et al. | Establishment and characterization of the gonadal cell lines derived from large yellow croaker (Larimichthys crocea) for gene expression studies | |
Markan et al. | Adipose TBX1 regulates β-adrenergic sensitivity in subcutaneous adipose tissue and thermogenic capacity in vivo | |
Wang et al. | The differentiation of preadipocytes and gene expression related to adipogenesis in ducks (Anas platyrhynchos) | |
Wang et al. | Characterization and biological function analysis of the TRIM47 gene from common carp (Cyprinus carpio) | |
CN112143705B (en) | A double gene-modified stem cell and its use | |
JP7165979B2 (en) | Skeletal muscle cell and its induction method | |
Xu et al. | Bovine enhancer-regulated circSGCB acts as a ceRNA to regulate skeletal muscle development via enhancing KLF3 expression | |
Li et al. | Adipose-specific knockout of Protein Kinase D1 suppresses de novo lipogenesis in mice via SREBP1c-dependent signaling | |
CN110423812B (en) | Application of Skiv2l2 (MTR4) gene in tumor therapy | |
Yang et al. | Pigment epithelium-derived factor improves TNFα-induced hepatic steatosis in grass carp (Ctenopharyngodon idella) | |
CN117551183A (en) | TMEM100 gene regulates energy metabolism of porcine adipocytes | |
Yang et al. | Characterization of Kruppel-like factor 6 in Epinephelus coioides: The role in viral infection and the transcriptional regulation on Peroxisome proliferator-activated receptor δ | |
Zhao et al. | TDP-43 is Required for mammary gland repopulation and proliferation of mammary epithelial cells | |
Du et al. | MiR-25-3p regulates the differentiation of intramuscular preadipocytes in goat via targeting KLF4 | |
CN117448334A (en) | A kind of siRNA targeting chicken demethylase gene FTO and its application | |
CN114196676B (en) | Application of ITGA2 Gene in Regulation of Porcine Beige Fat Formation | |
Fu et al. | Increase of fatty acid oxidation and VLDL assembly and secretion overexpression of PTEN in cultured hepatocytes of newborn calf |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |