CN118010104A - A method and system for detecting aging degree of electrical circuits - Google Patents
A method and system for detecting aging degree of electrical circuits Download PDFInfo
- Publication number
- CN118010104A CN118010104A CN202410426176.7A CN202410426176A CN118010104A CN 118010104 A CN118010104 A CN 118010104A CN 202410426176 A CN202410426176 A CN 202410426176A CN 118010104 A CN118010104 A CN 118010104A
- Authority
- CN
- China
- Prior art keywords
- electrical circuit
- aging
- target electrical
- influence coefficient
- target
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000032683 aging Effects 0.000 title claims abstract description 136
- 238000000034 method Methods 0.000 title claims abstract description 14
- 239000011241 protective layer Substances 0.000 claims abstract description 16
- 238000001514 detection method Methods 0.000 claims abstract description 15
- 230000007547 defect Effects 0.000 claims description 20
- 238000004364 calculation method Methods 0.000 claims description 16
- 238000004458 analytical method Methods 0.000 claims description 14
- 238000005516 engineering process Methods 0.000 description 2
- 101001121408 Homo sapiens L-amino-acid oxidase Proteins 0.000 description 1
- 102100026388 L-amino-acid oxidase Human genes 0.000 description 1
- 230000005856 abnormality Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000010835 comparative analysis Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01D—MEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
- G01D21/00—Measuring or testing not otherwise provided for
- G01D21/02—Measuring two or more variables by means not covered by a single other subclass
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Testing Electric Properties And Detecting Electric Faults (AREA)
Abstract
本发明公开了一种电气线路老化程度检测方法及系统,实时获取由目标电气线路供电的电力设备的工作参数以及目标电气线路的外观参数;基于电力设备实时的工作参数与标准的工作参数对比,得到目标电气线路的第一老化影响系数;基于目标电气线路实时的外观参数与标准的外观参数对比,得到目标电气线路的第二老化影响系数;第一老化影响系数和第二老化影响系数结合得到综合老化影响系数;基于综合老化影响系数得到目标电气线路的老化程度。通过电气线路上各电力设备的工作参数结合电气线路的外保护层外观情况,对电气线路老化程度进行分析,提高了对电气线路老化检测的准确性,保障了电气线路沿线各电气设备的正常使用,避免了火灾的发生。
The present invention discloses a method and system for detecting the degree of aging of an electrical circuit, which can obtain the working parameters of the power equipment powered by the target electrical circuit and the appearance parameters of the target electrical circuit in real time; obtain the first aging influence coefficient of the target electrical circuit based on the comparison between the real-time working parameters of the power equipment and the standard working parameters; obtain the second aging influence coefficient of the target electrical circuit based on the comparison between the real-time appearance parameters of the target electrical circuit and the standard appearance parameters; obtain the comprehensive aging influence coefficient by combining the first aging influence coefficient and the second aging influence coefficient; and obtain the degree of aging of the target electrical circuit based on the comprehensive aging influence coefficient. The degree of aging of the electrical circuit is analyzed by combining the working parameters of each power equipment on the electrical circuit with the appearance of the outer protective layer of the electrical circuit, thereby improving the accuracy of the aging detection of the electrical circuit, ensuring the normal use of each electrical equipment along the electrical circuit, and avoiding the occurrence of fire.
Description
技术领域Technical Field
本发明涉及电气线路检测,具体是涉及一种电气线路老化程度检测方法及系统。The invention relates to electrical circuit detection, and in particular to an electrical circuit aging degree detection method and system.
背景技术Background technique
随着电气化程度越来越高,电气设备的适用范围不断扩大,为了维护电气设备的正常运行和使用寿命,对电气线路老化检测的重要性日益凸显,现有的技术还有以下不足之处;As the degree of electrification increases, the application scope of electrical equipment continues to expand. In order to maintain the normal operation and service life of electrical equipment, the importance of electrical line aging detection has become increasingly prominent. The existing technology still has the following shortcomings;
现有的技术通常通过线路巡查人员电气线路进行巡查,降低了对电气线路老化检测的检测效率,同时由于巡查人员不能对多种类数据同时进行详细分析,降低了对电气线路老化检测的准确性;现有的巡查方式,通常针对电气线路外保护层是否出现明显破损和异常,分析手段单一,分析数据单一,导致了对电气线路老化检测的不全面性,进一步降低了对电气线路老化检测的准确性,影响了电气线路沿线各电气设备的正常使用,甚至会引发火灾。Existing technologies usually inspect electrical lines through line inspectors, which reduces the efficiency of electrical line aging detection. At the same time, since inspectors cannot conduct detailed analysis on multiple types of data at the same time, the accuracy of electrical line aging detection is reduced. Existing inspection methods usually focus on whether there is obvious damage and abnormality in the outer protective layer of the electrical line. The analysis method and analysis data are single, which leads to incomplete electrical line aging detection, further reduces the accuracy of electrical line aging detection, affects the normal use of various electrical equipment along the electrical line, and even causes fire.
发明内容Summary of the invention
发明目的:针对以上缺点,本发明提供一种准确性高的电气线路老化程度检测方法及系统。Purpose of the invention: In view of the above shortcomings, the present invention provides a method and system for detecting the aging degree of electrical circuits with high accuracy.
技术方案:为解决上述问题,本发明采用一种电气线路老化程度检测方法,包括以下步骤:Technical solution: To solve the above problems, the present invention adopts a method for detecting the aging degree of an electrical circuit, comprising the following steps:
(1)实时获取由目标电气线路供电的电力设备的工作参数以及目标电气线路的外观图像,通过目标电气线路的外观图像获得目标电气线路的外观参数;(1) Acquire in real time the operating parameters of the electric equipment powered by the target electrical circuit and the appearance image of the target electrical circuit, and obtain the appearance parameters of the target electrical circuit through the appearance image of the target electrical circuit;
(2)基于电力设备实时的工作参数与标准的工作参数对比,分析得到目标电气线路的第一老化影响系数;基于目标电气线路实时的外观参数与标准的外观参数对比,分析得到目标电气线路的第二老化影响系数/>;(2) Based on the comparison between the real-time working parameters of the power equipment and the standard working parameters, the first aging influence coefficient of the target electrical line is analyzed and obtained. ; Based on the comparison between the real-time appearance parameters of the target electrical circuit and the standard appearance parameters, the second aging influence coefficient of the target electrical circuit is obtained by analysis/> ;
(3)第一老化影响系数和第二老化影响系数/>结合得到综合老化影响系数;(3) First aging influence coefficient and the second aging influence coefficient/> Combined to get the comprehensive aging influence coefficient;
(4)基于得到的综合老化影响系数与预设的标准综合老化影响系数,分析得到目标电气线路的老化程度。(4) Based on the obtained comprehensive aging influence coefficient and the preset standard comprehensive aging influence coefficient, the aging degree of the target electrical circuit is analyzed and obtained.
进一步的,所述电力设备的工作参数包括实时的电压、电流和电功率;所述目标电气线路的外观参数包括外保护层对应的缺损总体积和裂痕总长度。Furthermore, the operating parameters of the electric equipment include real-time voltage, current and electric power; the appearance parameters of the target electrical circuit include the total defect volume and total crack length corresponding to the outer protective layer.
进一步的,所述第一老化影响系数的计算公式为:Furthermore, the first aging influence coefficient The calculation formula is:
; ;
其中,为由目标电气线路供电的电力设备的总数,/>为第/>个电力设备的电力负荷系数;/>为预设的第一老化影响系数影响因子。in, is the total number of electrical devices powered by the target electrical circuit, /> For the first/> The power load factor of each power equipment; /> It is the preset first aging influence coefficient influence factor.
进一步的,所述电力负荷系数的计算公式为:Furthermore, the power load factor The calculation formula is:
; ;
其中,为第/>个电力设备的电压负荷系数;/>为第/>个电力设备的电流负荷系数;/>为第/>个电力设备的电功率负荷系数;/>为电力设备的电力均衡系数;/>为预设的电力负荷系数影响因子。in, For the first/> Voltage load factor of each power equipment;/> For the first/> Current load factor of each electrical equipment;/> For the first/> The electric power load factor of each electric equipment;/> is the power balance coefficient of the power equipment;/> It is the preset power load factor influencing factor.
进一步的,通过获取的电力设备实时的工作电压、工作电流、工作电功率得到电力设备的工作电压曲线、工作电流曲线和工作电功率曲线;Furthermore, the working voltage curve, working current curve and working power curve of the power equipment are obtained by acquiring the real-time working voltage, working current and working power of the power equipment;
将实时的电力设备的工作电压曲线、工作电流曲线和工作电功率曲线分别与电力设备在目标电气线路稳定电力供应下的标准工作电压曲线、标准工作电流曲线和标准工作电功率曲线进行对比分析,分别得到电力设备的电压符合系数、电流负荷系数和电功率负荷系数。The real-time working voltage curve, working current curve and working electric power curve of the power equipment are compared and analyzed with the standard working voltage curve, standard working current curve and standard working electric power curve of the power equipment under the stable power supply of the target electrical line, and the voltage compliance coefficient, current load factor and electric power load factor of the power equipment are obtained respectively.
进一步的,所述第二老化影响系数的计算公式为:Furthermore, the second aging influence coefficient The calculation formula is:
; ;
其中,为目标电气线路标准的缺损总体积;/>为目标电气线路标准的裂痕总长度;/>为目标电气线路实时的缺损总体积;/>为目标电气线路实时的裂痕总长度;/>为预设的缺损总体积影响因子;/>为预设的裂痕总长度影响因子;/>为预设的第二老化影响系数影响因子。in, is the total defect volume of the target electrical circuit standard;/> The total length of the crack of the target electrical circuit standard; /> The total defect volume of the target electrical circuit in real time;/> The real-time total length of cracks in the target electrical circuit;/> is the preset total defect volume influencing factor;/> is the preset total crack length influencing factor;/> It is the preset second aging influence coefficient influence factor.
进一步的,所述综合老化影响系数的计算公式为:Furthermore, the comprehensive aging influence coefficient The calculation formula is:
; ;
其中,为由目标电气线路供电的电力设备的总数,/>为第/>个电力设备工作时间内的故障次数,/>为预设的故障次数权重,/>为预设的综合老化影响系数影响因子。in, is the total number of electrical devices powered by the target electrical circuit, /> For the first/> Number of failures of each power equipment during working hours,/> is the preset failure number weight, /> It is the preset comprehensive aging influence coefficient influencing factor.
进一步的,所述步骤(4)具体包括:将实时计算得到综合老化影响系数与预设的标准综合老化影响系数进行对比分析;若目标电气线路实时的综合老化影响系数小于预设的标准综合老化影响系数,则表示目标电气线路对应的线路老化在安全范围内,若目标电气线路实时的综合老化影响系数大于或等于预设的标准综合老化影响系数,则表示目标电气线路对应的线路老化到达危险范围。Furthermore, the step (4) specifically includes: comparing and analyzing the comprehensive aging influence coefficient calculated in real time with the preset standard comprehensive aging influence coefficient; if the real-time comprehensive aging influence coefficient of the target electrical circuit is less than the preset standard comprehensive aging influence coefficient, it means that the line aging corresponding to the target electrical circuit is within a safe range; if the real-time comprehensive aging influence coefficient of the target electrical circuit is greater than or equal to the preset standard comprehensive aging influence coefficient, it means that the line aging corresponding to the target electrical circuit has reached a dangerous range.
本发明还采用一种电气线路老化程度检测系统,包括数据获取模块、计算模块和分析模块;The present invention also adopts an electrical circuit aging degree detection system, including a data acquisition module, a calculation module and an analysis module;
所述数据获取模块,用于实时获取由目标电气线路供电的电力设备的工作参数以及目标电气线路的外观图像,通过目标电气线路的外观图像获得目标电气线路的外观参数;The data acquisition module is used to acquire in real time the operating parameters of the electric equipment powered by the target electrical circuit and the appearance image of the target electrical circuit, and obtain the appearance parameters of the target electrical circuit through the appearance image of the target electrical circuit;
所述计算模块,用于基于电力设备实时的工作参数与标准的工作参数对比,分析得到目标电气线路的第一老化影响系数;基于目标电气线路实时的外观参数与标准的外观参数对比,分析得到目标电气线路的第二老化影响系数; 第一老化影响系数和第二老化影响系数结合得到综合老化影响系数;The calculation module is used to analyze and obtain a first aging influence coefficient of the target electrical circuit based on a comparison between the real-time working parameters of the power equipment and the standard working parameters; analyze and obtain a second aging influence coefficient of the target electrical circuit based on a comparison between the real-time appearance parameters of the target electrical circuit and the standard appearance parameters; and combine the first aging influence coefficient and the second aging influence coefficient to obtain a comprehensive aging influence coefficient;
所述分析模块,用于基于得到的综合老化影响系数与预设的标准综合老化影响系数,分析得到目标电气线路的老化程度。The analysis module is used to analyze and obtain the aging degree of the target electrical circuit based on the obtained comprehensive aging influence coefficient and the preset standard comprehensive aging influence coefficient.
进一步的,通过在目标电气线路沿线预设的高精度万用表对目标电气线路沿线的电力设备进行检测,得到目标电气线路沿线电力设备的工作参数;所述电力设备的工作参数包括实时的电压、电流和电功率;通过在目标电气线路沿线预设的高清摄像仪对目标电气线路进行信息采集,得到目标电气线路的外观图像;由目标电气线路的外观图像得到的目标电气线路的外观参数包括外保护层对应的缺损总体积和裂痕总长度。Furthermore, by detecting the power equipment along the target electrical line with a high-precision multimeter preset along the target electrical line, the operating parameters of the power equipment along the target electrical line are obtained; the operating parameters of the power equipment include real-time voltage, current and electric power; by collecting information on the target electrical line with a high-definition camera preset along the target electrical line, the appearance image of the target electrical line is obtained; the appearance parameters of the target electrical line obtained from the appearance image of the target electrical line include the total defect volume and the total crack length corresponding to the outer protective layer.
有益效果:本发明相对于现有技术,其显著优点是通过电气线路上各电力设备的工作参数结合电气线路的外保护层外观情况,对电气线路老化程度进行分析,提高了对电气线路老化检测的准确性,保障了电气线路沿线各电气设备的正常使用,避免了火灾的发生。Beneficial effect: Compared with the prior art, the significant advantage of the present invention is that the aging degree of the electrical circuit is analyzed by combining the working parameters of each power equipment on the electrical circuit with the appearance of the outer protective layer of the electrical circuit, thereby improving the accuracy of the aging detection of the electrical circuit, ensuring the normal use of each electrical equipment along the electrical circuit, and avoiding the occurrence of fire.
附图说明BRIEF DESCRIPTION OF THE DRAWINGS
图1是本发明电气线路老化程度检测方法的工作流程示意图。FIG. 1 is a schematic diagram of the working process of the method for detecting the aging degree of an electrical circuit according to the present invention.
具体实施方式Detailed ways
如图1所示,本实施例中一种电气线路老化程度检测方法,包括以下步骤:As shown in FIG1 , a method for detecting the aging degree of an electrical circuit in this embodiment includes the following steps:
通过在目标电气线路沿线预设的高精度万用表对目标电气线路沿线的各种类电力设备进行检测,得到目标电气线路沿线各种类电力设备的设备工作参数。By testing various types of electrical equipment along the target electrical line with a high-precision multimeter preset along the target electrical line, the equipment working parameters of various types of electrical equipment along the target electrical line are obtained.
对各种类电力设备的设备工作参数进行分析,得到目标电气线路对应的第一老化影响系数;具体如下:The equipment working parameters of various types of power equipment are analyzed to obtain the first aging influence coefficient corresponding to the target electrical circuit; the details are as follows:
提取数据库中存储的各种类电力设备在目标电气线路稳定电力供应下的标准工作电流变化曲线、标准工作电压变化曲线和标准工作电功率变化曲线;Extracting standard working current change curves, standard working voltage change curves and standard working electric power change curves of various types of electric equipment stored in the database under the stable power supply of the target electric line;
目标电气线路沿线各种类电力设备的设备工作参数包括目标电气线路沿线各种类电力设备的实时电压、电流和电功率,通过对目标电气线路沿线各种类电力设备的实时工作电压进行图像绘制得到目标电气线路沿线各种类电力设备的工作电压曲线,绘制得到目标电气线路沿线各种类电力设备的工作电流曲线和工作电功率曲线;The equipment working parameters of various types of electric equipment along the target electric line include the real-time voltage, current and electric power of various types of electric equipment along the target electric line, and the working voltage curves of various types of electric equipment along the target electric line are obtained by drawing images of the real-time working voltages of various types of electric equipment along the target electric line, and the working current curves and working electric power curves of various types of electric equipment along the target electric line are obtained;
将目标电气线路沿线各种类电力设备的工作电压曲线与各种类电力设备在目标电气线路稳定电力供应下的标准工作电压变化曲线进行对比分析,得到目标电气线路沿线各种类电力设备的电压符合系数,同理通过对比分析得到目标电气线路沿线各种类电力设备的电流负荷系数和电功率负荷系数。The operating voltage curves of various types of power equipment along the target electrical line are compared and analyzed with the standard operating voltage change curves of various types of power equipment under the stable power supply of the target electrical line to obtain the voltage compliance coefficient of various types of power equipment along the target electrical line. Similarly, the current load factor and electric power load factor of various types of power equipment along the target electrical line are obtained through comparative analysis.
根据目标电气线路沿线各种类电力设备的电压符合系数、电流负荷系数和电功率负荷系数得到目标电气线路沿线各种类电力设备的电力负荷系数;计算公式为:;According to the voltage compliance coefficient, current load coefficient and electric power load coefficient of various types of electric equipment along the target electric line, the electric load coefficient of various types of electric equipment along the target electric line is obtained. ; The calculation formula is: ;
其中,、/>、/>分别为目标电气线路沿线各种类电力设备的电压符合系数、电流负荷系数和电功率负荷系数;/>,/>为正整数,/>表示为目标电气线路沿线各种类电力设备的编号,/>为电力设备的总数;/>表示为预设的各种类电力设备的电力均衡系数,/>表示为预设的各种类电力设备的电力负荷系数影响因子;in, 、/> 、/> They are respectively the voltage compliance factor, current load factor and electric power load factor of various types of electric equipment along the target electric line;/> ,/> is a positive integer, /> Indicates the serial numbers of various types of electrical equipment along the target electrical line,/> is the total number of electrical equipment;/> It is expressed as the preset power balance coefficient of various types of power equipment,/> It is expressed as the influence factor of power load factor of various types of power equipment that are preset;
根据目标电气线路沿线各种类电力设备的电力负荷系数,得到目标电气线路对应的第一老化影响系数/>;计算公式为:According to the power load factor of various types of power equipment along the target electrical line , obtain the first aging influence coefficient corresponding to the target electrical circuit/> ; The calculation formula is:
; ;
其中,表示为预设的第一老化影响系数影响因子。in, Expressed as the preset first aging influence coefficient influence factor.
需要说明的是;公式中目标电气线路沿线各种类电力设备的电压符合系数、电流负荷系数/>和电功率负荷系数/>越大,目标电气线路沿线各种类电力设备的电力负荷系数/>越大;It should be noted that the voltage compliance coefficient of various types of power equipment along the target electrical line in the formula , current load factor/> and electrical power load factor/> The larger the value, the greater the power load factor of various types of power equipment along the target power line/> The bigger;
目标电气线路沿线各种类电力设备的电压符合系数、电流负荷系数/>和电功率负荷系数/>不会进行互相影响。Voltage compliance coefficients of various types of power equipment along the target electrical lines , current load factor/> and electrical power load factor/> There will be no mutual impact.
通过在目标电气线路沿线预设的高清摄像仪对目标电气线路进行信息采集,得到目标电气线路的图像信息。The target electrical circuit is collected by using a high-definition camera preset along the target electrical circuit to obtain image information of the target electrical circuit.
对目标电气线路对应的图像信息进行分析,得到目标电气线路的外观参数,根据目标电气线路的外观参数得到目标电气线路对应的第二老化影响系数;具体如下:The image information corresponding to the target electrical circuit is analyzed to obtain the appearance parameters of the target electrical circuit, and the second aging influence coefficient corresponding to the target electrical circuit is obtained according to the appearance parameters of the target electrical circuit; specifically, as follows:
提取数据库中存储的目标电气线路对应正常工作状况下外保护层的标准缺损总体积和裂痕总长度标准/>;Extract the standard total defect volume of the outer protective layer of the target electrical circuit stored in the database under normal working conditions and total crack length standard/> ;
通过预设的高精度轮廓扫描仪对目标电气线路对应的图像信息进行全方位扫描,建立目标电气线路的三维模型,通过对目标电气线路的三维模型进行信息提取,得到目标电气线路的外保护层对应的缺损总体积和裂痕总长度,将到目标电气线路的外保护层对应的缺损总体积和裂痕总长度分别标记为、/>;The image information corresponding to the target electrical circuit is scanned in all directions by a preset high-precision contour scanner, and a three-dimensional model of the target electrical circuit is established. By extracting information from the three-dimensional model of the target electrical circuit, the total defect volume and total crack length corresponding to the outer protective layer of the target electrical circuit are obtained, and the total defect volume and total crack length corresponding to the outer protective layer of the target electrical circuit are marked as 、/> ;
通过目标电气线路对应正常工作状况下外保护层的标准缺损总体积、裂痕总长度标准/>和目标电气线路的外保护层对应的缺损总体积/>和裂痕总长度/>,得到目标电气线路对应的老化影响系数二/>,计算公式为:The standard total defect volume of the outer protective layer under normal working conditions of the target electrical circuit , Total crack length standard/> The total defect volume corresponding to the outer protective layer of the target electrical circuit/> and the total length of the crack/> , get the aging influence coefficient corresponding to the target electrical circuit 2/> , the calculation formula is:
; ;
其中,表示为预设的缺损总体积影响因子,/>表示为预设的裂痕总长度影响因子,/>表示为预设的老化影响系数二影响因子。in, It is expressed as the preset total defect volume impact factor, /> Expressed as the preset total crack length influence factor, /> Expressed as the preset aging influence coefficient × influence factor.
需要说明的是,目标电气线路对应正常工作状况下外保护层的标准缺损总体积、裂痕总长度标准/>与对应目标电气线路的外保护层对应的缺损总体积/>和裂痕总长度/>之间的差值越小,则目标电气线路对应的第二老化影响系数/>越小;目标电气线路的外保护层对应的缺损总体积/>和裂痕总长度/>之间不会互相影响。It should be noted that the standard total defect volume of the outer protective layer of the target electrical circuit under normal working conditions , Total crack length standard/> The total defect volume corresponding to the outer protective layer of the corresponding target electrical circuit/> and the total length of the crack/> The smaller the difference between the two, the higher the second aging influence coefficient corresponding to the target electrical circuit. The smaller the defect volume of the outer protective layer of the target electrical circuit is, the smaller the defect volume of the outer protective layer of the target electrical circuit is. and the total length of the crack/> There will be no impact on each other.
通过对目标电气线路对应的第一老化影响系数和第二老化影响系数进行综合分析,得到目标电气线路对应的综合老化影响系数;具体如下:By comprehensively analyzing the first aging influence coefficient and the second aging influence coefficient corresponding to the target electrical circuit, the comprehensive aging influence coefficient corresponding to the target electrical circuit is obtained; the details are as follows:
提取数据库中存储的目标电气线路沿线的各种类电力设备单位工作时间内对应的故障次数;Extract the corresponding number of failures per unit working time of various types of power equipment along the target electrical line stored in the database ;
通过目标电气线路对应的第一老化影响系数、目标电气线路对应的第二老化影响系数/>和目标电气线路沿线的各种类电力设备单位工作时间内对应的故障次数/>,得到目标电气线路对应的综合老化影响系数/>,计算公式为:The first aging influence coefficient corresponding to the target electrical circuit , the second aging influence coefficient corresponding to the target electrical circuit/> The number of failures per unit working time of various types of power equipment along the target electrical line/> , get the comprehensive aging influence coefficient corresponding to the target electrical circuit/> , the calculation formula is:
; ;
其中,表示为预设的故障次数权重,/>表示为预设的综合老化影响系数影响因子。in, It is represented by the preset failure number weight,/> Expressed as the preset comprehensive aging influence coefficient influence factor.
对目标电气线路对应的综合老化影响系数进行分析,得到目标电气线路的老化程度分析结果,具体如下:The comprehensive aging influence coefficient corresponding to the target electrical circuit is analyzed to obtain the aging degree analysis results of the target electrical circuit, as follows:
将目标电气线路对应的综合老化影响系数与预设的标准综合老化影响系数进行对比分析,若目标电气线路对应的综合老化影响系数小于预设的标准综合老化影响系数,则表示目标电气线路对应的线路老化在安全范围内,将目标电气线路对应的线路老化在安全范围内作为目标电气线路的老化分析结果,若目标电气线路对应的综合老化影响系数大于或等于预设的标准综合老化影响系数,则表示目标电气线路对应的线路老化到达危险范围,将目标电气线路对应的线路老化到达危险范围作为目标电气线路的老化分析结果。The comprehensive aging influence coefficient corresponding to the target electrical circuit is compared and analyzed with the preset standard comprehensive aging influence coefficient. If the comprehensive aging influence coefficient corresponding to the target electrical circuit is less than the preset standard comprehensive aging influence coefficient, it means that the line aging of the target electrical circuit is within a safe range, and the line aging of the target electrical circuit within the safe range is taken as the aging analysis result of the target electrical circuit. If the comprehensive aging influence coefficient corresponding to the target electrical circuit is greater than or equal to the preset standard comprehensive aging influence coefficient, it means that the line aging of the target electrical circuit has reached a dangerous range, and the line aging of the target electrical circuit reaching a dangerous range is taken as the aging analysis result of the target electrical circuit.
若综合老化影响系数为0.54,标准综合老化影响系数1,此时综合老化影响系数小于预设的标准综合老化影响系数,则表示目标电气线路对应的线路老化在安全范围内,并将目标电气线路对应的线路老化在安全范围内作为目标电气线路的老化分析结果,若综合老化影响系数为1.09,标准综合老化影响系数1,此时综合老化影响系数大于预设的标准综合老化影响系数,则表示目标电气线路对应的线路老化在危险范围内,将目标电气线路对应的线路老化在危险范围内作为目标电气线路的老化分析结果。If the comprehensive aging influence coefficient is 0.54, and the standard comprehensive aging influence coefficient is 1, and the comprehensive aging influence coefficient is less than the preset standard comprehensive aging influence coefficient, it means that the line aging corresponding to the target electrical circuit is within a safe range, and the line aging corresponding to the target electrical circuit within the safe range is taken as the aging analysis result of the target electrical circuit; if the comprehensive aging influence coefficient is 1.09, and the standard comprehensive aging influence coefficient is 1, and the comprehensive aging influence coefficient is greater than the preset standard comprehensive aging influence coefficient, it means that the line aging corresponding to the target electrical circuit is within a dangerous range, and the line aging corresponding to the target electrical circuit within the dangerous range is taken as the aging analysis result of the target electrical circuit.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202410426176.7A CN118010104B (en) | 2024-04-10 | 2024-04-10 | Electrical circuit aging degree detection method and system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202410426176.7A CN118010104B (en) | 2024-04-10 | 2024-04-10 | Electrical circuit aging degree detection method and system |
Publications (2)
Publication Number | Publication Date |
---|---|
CN118010104A true CN118010104A (en) | 2024-05-10 |
CN118010104B CN118010104B (en) | 2024-07-02 |
Family
ID=90956588
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202410426176.7A Active CN118010104B (en) | 2024-04-10 | 2024-04-10 | Electrical circuit aging degree detection method and system |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN118010104B (en) |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108598527A (en) * | 2018-05-17 | 2018-09-28 | 中车青岛四方机车车辆股份有限公司 | Fuel cell for pneumatic control method, device and system and rail vehicle |
KR102008472B1 (en) * | 2018-12-19 | 2019-08-07 | (주)대신피아이씨 | Real Time Remote Management and Alarm Call out System of Electrical Consumers Type based on IoT |
CN111159650A (en) * | 2020-01-03 | 2020-05-15 | 上海枫昱能源科技有限公司 | Artificial intelligence electric line aging degree detection method and system |
CN213424901U (en) * | 2020-10-22 | 2021-06-11 | 浙江弘锐物联科技有限公司 | Intelligent circuit breaker with line aging detection function |
CN113255203A (en) * | 2020-09-06 | 2021-08-13 | 诸暨市迪朗物联科技有限公司 | Online electric line aging degree identification system and method based on ANFIS |
CN117216956A (en) * | 2023-08-22 | 2023-12-12 | 广州番禺电缆集团有限公司 | Device, method and equipment for correcting thermal-oxidative aging model of XLPE cable |
CN117787664A (en) * | 2024-02-26 | 2024-03-29 | 智慧(东营)大数据有限公司 | Intelligent enterprise management platform based on big data |
-
2024
- 2024-04-10 CN CN202410426176.7A patent/CN118010104B/en active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108598527A (en) * | 2018-05-17 | 2018-09-28 | 中车青岛四方机车车辆股份有限公司 | Fuel cell for pneumatic control method, device and system and rail vehicle |
KR102008472B1 (en) * | 2018-12-19 | 2019-08-07 | (주)대신피아이씨 | Real Time Remote Management and Alarm Call out System of Electrical Consumers Type based on IoT |
CN111159650A (en) * | 2020-01-03 | 2020-05-15 | 上海枫昱能源科技有限公司 | Artificial intelligence electric line aging degree detection method and system |
CN113255203A (en) * | 2020-09-06 | 2021-08-13 | 诸暨市迪朗物联科技有限公司 | Online electric line aging degree identification system and method based on ANFIS |
CN213424901U (en) * | 2020-10-22 | 2021-06-11 | 浙江弘锐物联科技有限公司 | Intelligent circuit breaker with line aging detection function |
CN117216956A (en) * | 2023-08-22 | 2023-12-12 | 广州番禺电缆集团有限公司 | Device, method and equipment for correcting thermal-oxidative aging model of XLPE cable |
CN117787664A (en) * | 2024-02-26 | 2024-03-29 | 智慧(东营)大数据有限公司 | Intelligent enterprise management platform based on big data |
Non-Patent Citations (1)
Title |
---|
柯天进: "基于环境累积效应的架空输电线路老化模糊风险评估", 《 工程科技Ⅱ辑》, 15 January 2023 (2023-01-15) * |
Also Published As
Publication number | Publication date |
---|---|
CN118010104B (en) | 2024-07-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN117172624B (en) | Intelligent monitoring management system of wire harness production line | |
WO2018028005A1 (en) | Fault detection algorithm for battery panel in large-scale photovoltaic power station | |
CN111624229B (en) | Intelligent charged equipment fault diagnosis method based on infrared imaging | |
CN102135593B (en) | Insulation of large electrical machines state inline diagnosis appraisal procedure | |
CN103792238A (en) | Porcelain suspension type insulator fault diagnosis method | |
CN114088212B (en) | Diagnostic method and diagnostic device based on temperature vision | |
CN108181560A (en) | A kind of high voltage cable insulation defect Partial Discharge Detection diagnostic method | |
CN111289874A (en) | Robustness testing method, system and device for power semiconductor chip | |
CN116030021B (en) | Automatic detection system for hidden crack characteristics of photovoltaic module | |
CN102540025B (en) | Ultraviolet photon counting method based on width ratio module | |
WO2024164735A1 (en) | Inspection method and apparatus based on augmented reality (ar) device | |
CN106599780A (en) | Power grid polling image intelligent identification method and device | |
CN118010104B (en) | Electrical circuit aging degree detection method and system | |
CN112132811A (en) | A Comprehensive Evaluation System of Cable Use Status | |
CN114839269B (en) | Nondestructive testing method and device for internal defect stress of GIS solid insulator | |
JP3556509B2 (en) | Defect analysis system and method | |
CN106841839A (en) | A kind of automotive wire bundle detection means and detection method | |
CN118688253A (en) | An automatic infrared detection method for heating of tension clamp crimping defects | |
CN111179213A (en) | Casing fault diagnosis method and system | |
CN117406048A (en) | A transformer discharge fault diagnosis method and device | |
CN115471453A (en) | A Fault Diagnosis Method of Power Equipment Based on Image Processing | |
CN114565581A (en) | Detection method, recording medium and system for low-value insulator of distribution line | |
CN115578332A (en) | Optimization method for discharge detection of unmanned aerial vehicle | |
CN114236308A (en) | Feeder line information-based power distribution network fault detection and positioning method | |
CN114998180A (en) | Abnormality detection method, computer device, and storage medium |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant |