CN118006667A - 水稻基因gwy10在粒形、产量和品质育种中的应用 - Google Patents

水稻基因gwy10在粒形、产量和品质育种中的应用 Download PDF

Info

Publication number
CN118006667A
CN118006667A CN202410216607.7A CN202410216607A CN118006667A CN 118006667 A CN118006667 A CN 118006667A CN 202410216607 A CN202410216607 A CN 202410216607A CN 118006667 A CN118006667 A CN 118006667A
Authority
CN
China
Prior art keywords
rice
gwy10
gene
grain
yield
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202410216607.7A
Other languages
English (en)
Inventor
李一博
阿里
孙琪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Huazhong Agricultural University
Original Assignee
Huazhong Agricultural University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huazhong Agricultural University filed Critical Huazhong Agricultural University
Priority to CN202410216607.7A priority Critical patent/CN118006667A/zh
Publication of CN118006667A publication Critical patent/CN118006667A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8261Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/415Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from plants
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/113Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/10Type of nucleic acid
    • C12N2310/20Type of nucleic acid involving clustered regularly interspaced short palindromic repeats [CRISPRs]

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Microbiology (AREA)
  • Plant Pathology (AREA)
  • Botany (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Medicinal Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Cell Biology (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

本发明涉及植物功能基因组和基因工程技术领域。具体涉及到水稻基因GWY10在粒形、产量和品质育种中的应用,该基因位于水稻第10染色体19.6Mb处,为水稻育种中控制粒宽、粒重、产量和外观品质的主效QTL。其功能缺失的等位基因在增加水稻谷粒粒宽、粒重和产量的同时降低垩白度,为水稻的产量和品质育种提供新的基因资源,也为作物的进化研究提供线索。

Description

水稻基因GWY10在粒形、产量和品质育种中的应用
技术领域
本发明涉及植物功能基因组和基因工程技术领域。具体涉及到水稻基因GWY10在粒形、产量和品质育种中的应用,该基因位于水稻第10染色体19.6Mb处,为水稻育种中控制粒宽、粒重、产量和外观品质的主效QTL。
背景技术
种子粒形调控的机理对培育高产优质的水稻新品种具有重要作用。(1)粒形是一个由粒长、粒宽和粒厚组成的复杂的数量性状,通过决定千粒重来影响水稻谷粒产量。(2)粒形和稻米外观品质是密切相关的,也间接构成产量和品质之间的联系。粒形被消费者直观地感知为长宽比的差异,消费者对细长型和短圆型大米有不同的偏好。垩白是稻米最重要和最受关注的外观品质性状,同时影响稻米加工等品质性状。(3)粒形是水稻驯化过程中重要的靶标形状,粒形基因的发现与克隆可以为禾本科进化中的一些关键问题提供新线索,包括进化过程如何将分子水平的中性选择和达尔文选择与性状的表型变化联系起来(Doebley等,2006,Cell 127,1309-1321;Takeda等,2008,Nat Rev Genet 9:444-57;Zeng等,2017,Nat Plants 3:17031;Ren等,2023,Sci Bull 68:314-350)。
水稻粒形是性状典型的数量性状,迄今为止的研究已经鉴定到数十个水稻粒形数量性状位点(QTL,Quantitative Trait Loci)基因。这些基因控制籽粒大小涉及多种信号通路,包括:(1)泛素-蛋白酶体通路,蛋白的泛素化修饰介导的蛋白降解途径和蛋白磷酸化修饰介导的相关信号分子的激活/失活。(2)G蛋白信号通路,细胞膜上含有Gα、Gβ和Gγ亚基的异三聚体G蛋白与G蛋白偶联受体(GPCR)协同接收胞外信号并将其转导至下游应答因子的保守过程。(3)MAPK信号通路途径。(4)植物激素(BR、GA、IAA和CK)感知和信号通路。(5)转录调控途径,SPLs、GRFs等转录因子通过调控下游关键基因来影响籽粒大小。及其他相对独立的、不确定的途径。这些途径通过影响水稻颖壳的生长来控制籽粒大小(Fan and Li,2019,Mol.Breeding 39:163–187;Li等,2019,Annu Rev Plant Biol70:435–463;Zuo andLi,2014,Annu Rev Genet 48:99–118)。然而,这些已克隆的粒形基因对揭示粒形遗传和生化调控机制来说,仍然是零散化和碎片化的。因此,迫切需要克隆更多的粒形基因,以全面解析粒形形成的分子机制。在此背景下,QTL-Seq和QTG-seq等QT L基因克隆方法被开发出来(Takagi等,2013,Plant J.74:174–183;Zhang等,2019,Mol.Plant 12:426–437),但仍不能满足快速和大批量鉴定克隆QTL基因的需要。本课题组新近开发了RapMap技术,集成了BSA(Bulked Segregant Analysis)和芯片技术/二代测序技术的优点,并引入共分离标准的图位克隆新方法,大大加快了QTL基因克隆的效率,为快速大批量克隆自然变异调控基因提供了可能(Zhang等,2021,Nat Commun 12:5673)。
稻米垩白是水稻育种中的一个负向靶标,垩白严重影响稻米的外观质量、加工品质、食味和口感,是直接决定稻米的品质和商品价格关键因素之一,也是稻米品质遗传改良的主要目标(Zhou等,2020,Mol Breed,40:1)。
本发明利用RapMap的方法分离克隆一个控制水稻谷粒粒宽、粒重和产量和外观品质的主效基因GWY10,其敲除单株的粒宽和产量均增加,垩白度显著降低。这为水稻产量和品质的遗传改良提供新的基因资源,也为作物的进化研究提供新的线索。
发明内容
本发明的目的是从水稻中分离克隆一个同时控制谷粒粒宽、粒重、产量和外观品质的主效基因的完整编码区段DNA片段,所述基因GWY10编码的蛋白为SEQ ID NO.3所示。
本发明的另一个目的在于提供了基因GWY10在水稻育种中的应用。
为了达到上述目的,本发明采取以下技术措施:
本发明以宽粒品种中花11(ZH11)和窄粒品种核心354(HX354)为双亲得到F2随机小群体,将极端表型单株按BSA方法混合建池后,进行RICE6K育种芯片分析,在第10号染色体19.6Mb处发现了一个新的QTL,命名为GWY10(Grain width and yield 10)。根据当代的重组单株以及筛选后代大群体得到的重组单株及其后代测验结果,对GWY10的基因结构和编码的蛋白质产物进行预测和分析,发现该基因包含4个外显子,共编码435个氨基酸,通过生物信息学技术预测该蛋白质为肌动蛋白,是一类形成微丝的球状多功能蛋白。该基因在HX354中的序列为SEQ ID NO.1所示,CDS为SEQ ID NO.2所示,编码的蛋白为SEQ ID NO.3所示,启动子序列为SEQ ID NO.4所示。
本发明的保护范围包括:
水稻基因GWY10在水稻育种中的应用,所述基因编码的蛋白为SEQ ID NO.3所示;以上所述的应用,具体是:
提高水稻中GWY10基因的表达量来减少水稻籽粒的粒宽、粒重、产量和/或增加垩白。
以上所述的应用,具体的是将提高GWY10基因表达量的物质导入水稻中;
所述的物质包括:含有GWY10基因的核酸分子,或其表达框,重组载体,重组微生物;
敲除、抑制或者沉默水稻中GWY10基因的表达量来增加水稻籽粒的粒宽、粒重、产量和/或降低垩白。
以上所述的应用中,优选的,在水稻中应用时,所述的敲除采用的是CRISPR/Cas9系统,所述系统中gRNA的靶位点为GCTGTTTTCCCGAGTATTGTTGG。
以上所述的应用中,CRISPR/Cas9系统编辑后的水稻,具有SEQ ID NO.5或SEQ IDNO.6或SEQ ID NO.7所示多核苷酸。
以上所述的应用中,所述的GWY10基因为SEQ ID NO.1或SEQ ID NO.2所示。
与现有技术相比,本发明具有以下优点:
本发明在水稻中克隆了一个对粒宽、粒重、产量和外观品质具有很大负调控效应的基因GWY10,其功能缺失的等位基因在增加水稻谷粒粒宽、粒重和产量的同时降低垩白度,为水稻的产量和品质育种提供新的基因资源,也为作物的进化研究提供线索。
附图说明
图1是GWY10基因克隆的技术路线技术流程图。
图2是本发明中的用于GWY10初定位的RICE6K SNP芯片结果;
左图是低池芯片检测结果,右图是高池芯片检测结果。
图3F2随机群体中谷粒粒宽的频率分布图;
图中蓝色、黄色和灰色柱子分别表示GWY10区段ZH11基因型,HX354基因型和杂合基因型;三种GWY10区段基因型是通过分子标记C10M1和C10M5检测得到的。
图4是本发明双亲粒形图和基因的图位克隆;
其中A为:宽粒品种ZH11和窄粒品种HX354的粒型图;
B为:GWY10的定位区域,其中标记间的数字代表各标记与GWY10位点间发生重组的单株数;
C为:InDel标记检测双亲后代的基因型示意图;
图5本发明克隆的GWY10的比较测序示意图和mRNA水平的验证。
图6是本发明HX354背景下CRISPR转基因单株粒宽表型分析。
图7是本发明CRISPR纯合移码突变单株靶点序列及示意图。
图8本发明中的部分CRISPR敲除T0代转基因阳性、阴性单株的粒宽表型图。
图9本发明中的部分CRISPR敲除T1代的垩白表型和统计。
图10本发明中的部分CRISPR敲除T1代的粒宽和千粒重统计。
图11本发明中的ZH11背景下互补转基因单株粒宽表型分析。
图12本发明中的GWY10近等基因系的株形、粒宽、千粒重、单株产量和粒长统计。
具体实施方式
本发明所述技术方案,如未特别说明,均为本领域的常规方案;所述试剂或材料,如未特别说明,均来源于商业渠道。
实施例1:GWY10的初定位
1.GWY10定位遗传群体构建及两个极端粒宽表型混池的芯片检测
初定位流程如图1所示,从533份核心种质材料中,选取双亲同为gw5基因型的宽粒品种ZH11和窄粒品种HX354(图1中A)杂交,得到F1,再自交产生F2随机群体。
对F2群体各个单株粒宽表型进行考察,每个单株选取有代表性的饱满的10粒种子,按照同样的方向肩并肩依次排列,不重叠且不留缝隙的紧靠在一起,用游标卡尺读取十粒宽数据,进行3次重复后取其平均值。根据得到的粒宽表型频数分布图(图3),构建极端高低混池,极端池里每株随机选择10粒饱满的种子代表该F2单株的基因型。高低池分别混合发芽,两周后取等量叶片用液氮研磨,送中国种子集团(武汉)进行Rice6K芯片检测,结果如图2所示。
2.分子标记的开发
使用RiceVarMap数据库(http://ricevarmap.ncpgr.cn/)寻找在目标物理位置附近的InDe l多态性变异的“variation ID,”并根据“variation ID”在“Search forGenotype With Variation ID”中查询该检测该Indel在双亲中的基因型。将在双亲中基因型有差异的Indel的“variation ID”通过“Design Primer by Variation ID”功能设计InDel引物。设计上优先选择InDel差异3-8bp缺失的、PCR片段大约有100-200bp。然后用4%PAGE胶电泳验证设计好的分子标记在双亲ZH11与HX354之间是否存在多态性。PCR程序参见萨姆布鲁克等,2002,分子克隆实验指南,第三版,金冬雁等(译),科学出版社介绍的方法。PCR的反应体系,包含:20-50ng DNA模板,10×Buffer(含Mg2+)2.0μl+dd H2O 5.3μl+dNTP0.2μl+左引物与右引物各0.2μl+r Taq酶0.1μl=8.0μl,加dd H2O补到20μl。PCR扩增的条件为:94℃预变性4min;94℃30s,55℃30s,72℃30s,32个循环;72℃延伸5mi n;25℃1min(退火温度可根据不同引物适当调整)。PCR产物在4%的聚丙烯酰胺胶上分离后进行银染(Bassam等,1991,Anal.Biochem.196:80-83)。双亲中显示出条带差异的引物可以用来进一步检测群体单株的分子标记基因型。
3.分子标记基因型的鉴定
以群体单株的DNA为PCR扩增模板,同时用双亲DNA模板为对照,PCR反应体系和程序以及4%的聚丙烯酰胺胶检测依照上述分子标记的开发中采用的方法进行。检测单株分子标记的的带型:若与亲本ZH11的带型相同,则记为A;若与亲本HX354的带型相同则记为B;若同时显示两种亲本的带型,则记为H。
实施例2:
GWY10的精细定位及候选基因确定
1.重组单株筛选及后代测验
选择目标区段杂合的F2单株的种子发展成包含2511株的F2:3大群体,用初定位最小区间两侧的InDel标记C10M3和C10M4筛选重组单株,两端标记基因型不同的单株即为重组单株。共得到得到13株重组单株。将每个重组单株的后代种植36株,考察36株粒宽表型确定该重组单株目标基因的基因型:若后代粒宽表型不分离且都表现为高值,则该重组单株的GWY10的两个等位基因均来自ZH11;若后代粒宽表型不分离且都表现为低值,则该重组单株的GWY10的两个等位基因均来自HX354;若后代粒宽表型出现明显分离,则该重组单株的GWY10的两个等位基因为杂合。
2.GWY10精细定位和候选基因确定
利用在初定位区间内部发展的6个InDel标记分析这13个重组单株,根据标记基因型和重组单株后代测验结果,将GWY10最终定位在C10FM3和C10FM4之间物理位置为18.17kb的区间(图4中B,C)。根据RAP-DB数据库网站注释,该区段有三个候选基因OR F1、ORF2和OFR3。其中ORF2基因在已公开的珍汕97和日本晴的表达数据库(http://cre p.ncpgr.cn/;http://ricexpro.dna.affrc.go.jp/)在幼穗时期存在差异表达。对此我们设计引物(引物名称qRT-GWY10,表1所示。)对ORF2在两亲本中进行比较表达分析,发现在两亲本中存在差异表达,启动子区段存在多个变异及大片段缺失(图5)。因此,因此本发明将OR F2确定为GWY10候选基因,对GWY10的基因结构和编码的蛋白质产物进行预测和分析,发现该基因包含4个外显子,共编码435个氨基酸,通过生物信息学技术预测该蛋白质为肌动蛋白,该基因在HX354中的序列为SEQ ID NO.1所示,CDS为SEQ ID NO.2所示,编码的蛋白为SEQ ID NO.3所示,启动子序列为SEQ ID NO.4所示。对ZH11和HX354进行比较测序发现,起始密码子上游3kb和编码区存在多处多态性变异,这些变异包括替换、插入和缺失三种突变类型。
实施例3:转基因验证GWY10功能
利用重叠PCR的方法将GWY10靶点序列(GCTGTTTTCCCGAGTATTGTTGG)引入到U6启动子中(引物为:表1中引物名称GWY10-CR的引物对,以及U6-F:CCCCTTT CGCCAGGGGTACCtatgtacagcattacgtagg;U6-R:TACGAATTCGAGCTCGGTACCgatggtgct tactgttta),再利用Gibson一步连接法,将其与KpnI线性化后的pCXUN-CAS9载体连接,即成功构建GWY10的CRISPR/Cas9载体。
从HX354基因组DNA中将包含GWY10整个编码区及上游4.1kb启动子序列总共5.2kb片段克隆出来(所用引物是表1中的GWY10-EcoRI F,GWY10-KpnI-R),利用Gi bson一步连接法,连接到经KpnI和EcoRI线性化后的pCAMBIA 1301-Flag互补载体,测序正确后,即成功构建GWY10的互补转化载体。
采用农杆菌介导的转基因方法,将得到的正确克隆的敲除载体质粒,通过农杆菌介导的水稻遗传转化体系导入到GWY10有功能水稻品种HX354;同时,将得到的测序正确克隆的互补载体质粒,通过农杆菌介导的水稻遗传转化体系导入到GWY10无功能品种ZH11愈伤中。经过诱导、继代、侵染、共培养、筛选具有潮霉素抗性的愈伤、分化、生根、炼苗移栽,得到转基因的水稻小植株。农杆菌介导的水稻(粳稻亚种)遗传转化体系主要应用Hiei等人报道的方法(参见:Efficient transformation of rice,Oryza sativa L.,mediated byAgrobacte rium and sequence analysis of the boundaries of the T-DNA,1994,Plant Journal 6:271-282)基础上进行优化。
本发明获得转基因敲除T0代独立36株,经过6%聚丙烯酰胺凝胶电泳和一代测序检测(测序引物为GWY10-CR-seq,表1所示),确认其中9株为阳性,27株为阴性。敲除转基因T0代粒宽表型统计如图8,阳性敲除单株整体上比阴性转基因单株粒宽增加。其中,在阳性敲除转基因单株中,有三株独立阳性单株为三种不同类型的纯合移码突变体(图7,突变后的gwy10-1株包含的序列为GCTGTTTTCCCGAGTATGTTGG;gwy10-2株包含的序列为GCTGTTTTCCCGAGTATaTGTTGG;gwy10-3株包含的序列为GCTGTTTTCCC GAGTATTtGTTGG),其粒宽表型均比对照显著变宽,较阴性对照相比平均增加9.4%(图6),垩白度比对照显著降低12.3%(图9),千粒重及单株产量表型均比对照有显著增加6.9%和13.0%(图10),表明GWY10是一个负调控水稻谷粒粒宽、粒重、产量和品质的基因。
另外,转基因互补实验中,经过1.5%琼脂糖凝胶电泳,确认其中19株为阳性,9株为阴性,且该互补转基因阳性植株粒宽比对照变窄(图11),这与敲除转基因结果一致。
近等基因系中,NILZH11(gwy10)比NILHX354(GWY10)粒宽增加5.6%,千粒重增加5.7%,单株产量增加10.2%(图12)。
上述都证明了GWY10就是真正的候选基因,且负调控水稻谷粒粒宽、粒重、产量和品质。同时也证明了这个基因可以通过遗传转化来改良水稻品种。
表1用于本发明图位克隆和基因功能分析的引物/分子标记

Claims (8)

1. 水稻基因GWY10在水稻育种中的应用,所述基因编码的蛋白为SEQ ID NO.3所示。
2.根据权利要求1所述的应用,其特征在于:敲除、抑制或者沉默水稻中GWY10基因的表达量来增加水稻籽粒的粒宽、粒重、产量和/或降低垩白。
3.根据权利要求2所述的应用,所述的敲除采用的是CRISPR/Cas9系统,所述系统中gRNA的靶位点为GCTGTTTTCCCGAGTATTGTTGG。
4. 根据权利要求3所述的应用,利用CRISPR/Cas9系统编辑后的水稻,具有SEQ IDNO.5或SEQ ID NO.6或SEQ ID NO.7所示多核苷酸。
5.根据权利要求1所述的应用,其特征在于:通过提高水稻中GWY10基因的表达量减少水稻籽粒的粒宽、粒重、产量和/或增加垩白。
6.根据权利要求5所述的应用,其步骤包括将提高GWY10基因表达量的物质导入水稻中。
7.根据权利要求6所述的应用,所述的物质为含有GWY10基因的核酸分子,或其表达框,重组载体,重组微生物。
8. 根据权利要求1所述的应用,所述的GWY10基因为SEQ ID NO.1或SEQ ID NO.2所示。
CN202410216607.7A 2024-02-27 2024-02-27 水稻基因gwy10在粒形、产量和品质育种中的应用 Pending CN118006667A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202410216607.7A CN118006667A (zh) 2024-02-27 2024-02-27 水稻基因gwy10在粒形、产量和品质育种中的应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202410216607.7A CN118006667A (zh) 2024-02-27 2024-02-27 水稻基因gwy10在粒形、产量和品质育种中的应用

Publications (1)

Publication Number Publication Date
CN118006667A true CN118006667A (zh) 2024-05-10

Family

ID=90953927

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202410216607.7A Pending CN118006667A (zh) 2024-02-27 2024-02-27 水稻基因gwy10在粒形、产量和品质育种中的应用

Country Status (1)

Country Link
CN (1) CN118006667A (zh)

Similar Documents

Publication Publication Date Title
Cheng et al. A single amino acid substitution in STKc_GSK3 kinase conferring semispherical grains and its implications for the origin of Triticum sphaerococcum
Ye et al. An InDel in the promoter of Al-ACTIVATED MALATE TRANSPORTER9 selected during tomato domestication determines fruit malate contents and aluminum tolerance
Huang et al. Tomato fruit weight 11.3 maps close to fasciated on the bottom of chromosome 11
Takeuchi et al. Fine linkage mapping enables dissection of closely linked quantitative trait loci for seed dormancy and heading in rice
Wu et al. Evolutionary trajectories of duplicated FT homologues and their roles in soybean domestication
Tang et al. Genetic dissection and validation of candidate genes for flag leaf size in rice (Oryza sativa L.)
Matsubara et al. Novel QTLs for photoperiodic flowering revealed by using reciprocal backcross inbred lines from crosses between japonica rice cultivars
Zhang et al. The identification of grain size genes by RapMap reveals directional selection during rice domestication
Wang et al. Fine-mapping and transcriptome analysis of a candidate gene controlling plant height in Brassica napus L.
Lou et al. Cold‐adaptive evolution at the reproductive stage in Geng/japonica subspecies reveals the role of OsMAPK3 and OsLEA9
Zhou et al. Gene diagnosis and targeted breeding for blast-resistant Kongyu 131 without changing regional adaptability
Dou et al. The branchless gene Clbl in watermelon encoding a TERMINAL FLOWER 1 protein regulates the number of lateral branches
Hui et al. Identification of rice QTLs for important agronomic traits with long-kernel CSSL-Z741 and three SSSLs
Wang et al. Genome‐wide expression quantitative trait locus studies facilitate isolation of causal genes controlling panicle structure
Niaz et al. Identification of TaGL1‐B1 gene controlling grain length through regulation of jasmonic acid in common wheat
Zhang et al. Loss of function of OsMADS3 via the insertion of a novel retrotransposon leads to recessive male sterility in rice (Oryza sativa)
An et al. Candidate loci for the kernel row number in maize revealed by a combination of transcriptome analysis and regional association mapping
Lu et al. Genetic basis of maize kernel protein content revealed by high-density bin mapping using recombinant inbred lines
US10633668B2 (en) Extending juvenility in grasses
CN112210616B (zh) 一种与水稻籽粒长度性状相关的InDel分子标记引物及其应用
Yu et al. Simultaneously mapping loci related to two plant architecture traits by phenotypic recombination BSA/BSR in peanut (Arachis hypogaea L.)
CN111363751B (zh) 水稻粒宽和粒重基因gw5.1的克隆与应用
Zhang et al. Verification and evaluation of grain QTLs using RILs from TD70 x Kasalath in rice
Zhang et al. Genetic identification of the pleiotropic gene Tasg-D1/2 affecting wheat grain shape by regulating brassinolide metabolism
Li et al. Fine mapping of qDB. A03, a QTL for rapeseed branching, and identification of the candidate gene

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination