CN118004248A - 一种适用于高速铁路的列车自主运行控制系统 - Google Patents

一种适用于高速铁路的列车自主运行控制系统 Download PDF

Info

Publication number
CN118004248A
CN118004248A CN202410229815.0A CN202410229815A CN118004248A CN 118004248 A CN118004248 A CN 118004248A CN 202410229815 A CN202410229815 A CN 202410229815A CN 118004248 A CN118004248 A CN 118004248A
Authority
CN
China
Prior art keywords
train
intelligent
information
sensing
autonomous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202410229815.0A
Other languages
English (en)
Inventor
张淼
周博渊
易海旺
李昂
孙延浩
惠子南
范楷
丁舒忻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China Academy of Railway Sciences Corp Ltd CARS
China State Railway Group Co Ltd
Signal and Communication Research Institute of CARS
Original Assignee
China Academy of Railway Sciences Corp Ltd CARS
China State Railway Group Co Ltd
Signal and Communication Research Institute of CARS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China Academy of Railway Sciences Corp Ltd CARS, China State Railway Group Co Ltd, Signal and Communication Research Institute of CARS filed Critical China Academy of Railway Sciences Corp Ltd CARS
Publication of CN118004248A publication Critical patent/CN118004248A/zh
Pending legal-status Critical Current

Links

Landscapes

  • Train Traffic Observation, Control, And Security (AREA)

Abstract

本发明公开了一种适用于高速铁路的列车自主运行控制系统,列车自主运行系统通过采用安全云计算技术,使得一系列地面设备系统能够运行在云服务器平台,实现进路和移动授权统一管理,达到信号控制系统层次扁平化、逻辑处理中心化、执行机构分散化,达到提高运输效率、节约资源的目的,在此基础上,实现基于云脑平台的地面中心化列车自主化运行控制,具备研究环境状态自感知、大数据自学习、模式自决策、协同自组织、故障自恢复、调度控制一体化等特征。

Description

一种适用于高速铁路的列车自主运行控制系统
技术领域
本发明涉及列车自主运行控制技术领域,尤其涉及一种适用于高速铁路的列车自主运行控制系统。
背景技术
近年来,随着人工智能、大数据等技术的兴起,更安全、更绿色、更高效、更智能的轨道交通技术成为主要发展趋势,高速铁路列控系统迈入智能化发展新阶段,列车自动驾驶技术是当前国际铁路热门发展方向,根据国际公共运输协会(UITP)的定义,轨道交通自动化运行程度分为5个等级,即GoA1至GoA4级以及目视行车的GoA0级。我国高速铁路已完成CTCS3+ATO自动驾驶系统(GoA2级)研发,并于2019年底随京张高铁开通运营,实现了世界首个时速350公里高速列车自动驾驶示范工程。
然而,目前的列车自动驾驶系统仍需要地面控制系统根据列车位置等信息进行道岔控制,并向每列车发送速度命令和其他信息,列车按照给定的驾驶模型行驶,在车-地通信中断、地面控制系统故障等特殊情况下,列车不具备自主运行的能力,无法适应复杂的运行环境及外部突发事件。目前欧洲的Shift2Rail联合行动计划和日本铁路技术研究所的“RESEARCH 2025”总体规划中,均有关于铁路列车自主运行控制相关的研发任务和工作计划,进一步提升列控系统安全性、可用性和灵活性,实现无缝交通。
为实现高铁列车在紧急或特殊情况下自主确定允许的安全运行区间和运行速度,完成列车自主安全运行,还需在列车自动驾驶技术研究基础上,结合新一代无线通信、人工智能等技术,研究高速铁路列车自主运行控制环境及态势感知技术,以及自适应、自学习的控车模型等,率先突破具有自主感知、自主决策、无需外部控制的列车自主运行控制技术。
下面针对现有技术中的相关方案进行介绍。
方案一、CTCS-2/CTCS-3级+ATO列控系统是在既有列车运行控制系统ATP的行车许可下,通过无线通信接收到的运行计划、站间数据(含线路基础数据和临时限速)等信息,实现列车的车站自动发车、区间自动运行、车站自动停车、车门自动开门、车门站台门联动控制等功能。然而,它的缺陷在于:CTCS-2/CTCS-3级+ATO列控系统技术体系先进,但是不具备主动感知和不具备自主运行的能力,无法适应复杂的运行环境及外部突发事件。在特殊情况下仍需人工介入进行处理,不具备独立思考和独立决策的能力。
方案二、欧洲铁路行业协会(UNIFE)下一代列车控制系统(Next Generation ofTrain Control System,NGTC)为代表的基于卫星导航定位、无线通信技术的列车自动运行系统。欧洲NGTC项目中,基于卫星导航的列车定位技术、基于IP的无线车-地通信技术和支持更短运行间隔的移动闭塞技术、自动驾驶(ATO)等是研究的重点。然而,它的缺陷在于:欧洲的NGTC列控系统的列车定位完全依赖卫星导航,未能融合惯性导航、测速测距等其他技术手段,可靠性和定位精度均有不足。虽然轨旁设备较以往系统大幅减少,但其整体设计和理念与我国CTCS体系不兼容,无法实现系统间的互联互通。
方案三、国内某些城市轨道交通自动驾驶系统已具备GoA4级的全自动运行技术条件,并在此基础上向列车自主运行控制发展,通过车-地协同感知、车-车可靠通信、虚拟编队等技术,大幅提升系统的自动化、智能化水平,全面提升系统的运行效率。然而,它的缺陷在于:未充分考虑国铁与城市轨道交通在运行场景与环境、列车运行时速、车站内线路复杂度等方面的差别,不能完全满足国铁路网互联互通、运行环境多样复杂、运行时速跨越空间大及车站联锁关系复杂等需求,既有城市轨道交通的GoA4级自动驾驶技术和列车自主运行控制技术无法完全应用到高速铁路中。
发明内容
本发明的目的是提供一种适用于高速铁路的列车自主运行控制系统,可以更好的实现列车自主运行控制。
本发明的目的是通过以下技术方案实现的:
一种适用于高速铁路的列车自主运行控制系统,包括:云端部分、智能列车与轨旁设备;其中,所述云端部分包括:信号控制中心、列车调度系统、全息感知系统与智能运维系统;
所述全息感知系统负责获取来自智能列车以及轨旁设备中感知设备的感知信息,通过感知研判,判断是否满足列车发车条件,并传输至信号控制中心与智能列车;所述信号控制中心采用云计算技术实现,能够运行一系列信号设备系统,接收自轨旁设备中智能转辙机的道岔状态信息与来自智能列车的列车状态信息,并传输至列车调度系统与智能运维系统;以及,根据列车调度系统下发的运行计划排列列车进路,控制智能转辙机将道岔转至规定位置,以及结合全息感知系统的感知研判结果,计算行车授权并发送至智能列车;所述列车调度系统,用于根据智能转辙机的道岔状态信息与列车状态信息下发相应的运行计划;智能运维系统对接收到的信息进行大数据智能分析,输出维修建议和故障预警;
所述智能列车结合来自全息感知系统与信号控制中心的信息,进行自主控车。
由上述本发明提供的技术方案可以看出,列车自主运行系统通过采用安全云计算技术,使得一系列地面设备系统能够运行在云服务器平台,实现进路和移动授权统一管理,达到信号控制系统层次扁平化、逻辑处理中心化、执行机构分散化,达到提高运输效率、节约资源的目的,在此基础上,实现基于云脑平台的地面中心化列车自主化运行控制,具备研究环境状态自感知、大数据自学习、模式自决策、协同自组织、故障自恢复、调度控制一体化等特征。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域的普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他附图。
图1为本发明实施例提供的一种适用于高速铁路的列车自主运行控制系统的整体架构示意图;
图2为本发明实施例提供的地面中心化自主运行控制方案的原理图;
图3为本发明实施例提供的智能调度指挥与自主运行控制一体化方案的示意图。
具体实施方式
下面结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明的保护范围。
首先对本文中可能使用的术语进行如下说明:
术语“包括”、“包含”、“含有”、“具有”或其它类似语义的描述,应被解释为非排它性的包括。例如:包括某技术特征要素(如原料、组分、成分、载体、剂型、材料、尺寸、零件、部件、机构、装置、步骤、工序、方法、反应条件、加工条件、参数、算法、信号、数据、产品或制品等),应被解释为不仅包括明确列出的某技术特征要素,还可以包括未明确列出的本领域公知的其它技术特征要素。
术语“由……组成”表示排除任何未明确列出的技术特征要素。若将该术语用于权利要求中,则该术语将使权利要求成为封闭式,使其不包含除明确列出的技术特征要素以外的技术特征要素,但与其相关的常规杂质除外。如果该术语只是出现在权利要求的某子句中,那么其仅限定在该子句中明确列出的要素,其他子句中所记载的要素并不被排除在整体权利要求之外。
列车自动驾驶是通过预先设定的车载自动化系统,使列车做出前进、停止、减速和加速等动作,实现车站自动发车、区间自动运行、车站自动停车、车门自动开门与防护、车门/站台门联动等功能,虽然目前高速铁路和城市轨道交通都实现了不同自动化等级(Grades of Automation,GoA)的列车自动驾驶,但既有的列车自动驾驶方法都是基于固定的模型,依赖于对列车模型和运行环境的精确描述与建模,面向我国轨道交通运行环境复杂、运营条件多变等特点与难点,缺乏足够的鲁棒性和适应性,在特殊情况下仍需人工介入进行处理,不具备独立思考和独立决策的能力。因此,提高列车运行的自主化程度是轨道交通列车驾驶控制的重要发展方向。
在此背景下,列车自主运行概念应运而生。自主化是将决定权代理给一个经过授权的个体,这个代理者可以在规定的范围内做决定。自动化则是指系统由若干定义好的规则控制,不允许有任何的偏离。自动化不是自主化。对一个系统而言,为了实现自主化,必须有独立的系统组成,并在基于对环境和状况理解的基础上,选择不同的、一系列的行动来达到目标。自主驾驶列车与自动驾驶列车最大的区别在于,自主列车是一种能够感知环境态势并做出自主决策的列车,当轨道上发生意外情况时,高度自主化列车无需人为指令干预,而是能够自主监测并做出相应的判断。
本发明实施例提供一种适用于高速铁路的列车自主运行控制系统,高速铁路列车自主运行控制系统是在CTCS-2/CTCS-3级+ATO列控系统基础上,车载设置列车全息化感知单元,地面通过专用精确定位应答器实现精确定位,地面设备通过GPRS/5G-R通信实现站台门控制、站间数据发送和列车运行调整计划(简称运行计划)处理;根据实际运用需求,为实现列车自主运行环境态势超前研判,地面还应补充设置极端天气检测监测、轨道线路状态监测等系统,并通过无线通信方式将地面感知数据传输至车载系统与全息感知系统,并在紧急或特殊情况下自主确定允许的安全运行区间和运行速度,完成列车自主安全运行。
下面对本发明所提供的一种适用于高速铁路的列车自主运行控制系统进行详细描述。本发明实施例中未作详细描述的内容属于本领域专业技术人员公知的现有技术。本发明实施例中未注明具体条件者,按照本领域常规条件或制造商建议的条件进行。本发明实施例中所用试剂或仪器未注明生产厂商者,均为可以通过市售购买获得的常规产品。
如图1所示,一种适用于高速铁路的列车自主运行控制系统,主要包括:云端部分、智能列车与轨旁设备;其中,所述云端部分包括:信号控制中心、列车调度系统、全息感知系统与智能运维系统;轨旁设备包括:智能转辙机、轨旁感知模块以及应答器;智能列车中包括车载设备与通信设备;车载设备包括:ATO(列车自动运行系统)单元、移动授权计算单元、自动驾驶单元、全息化感知单元与列车接口单元等,移动授权计算单元和自动驾驶单元是部署在主控单元内部,此处仅列出了部分车载设备的组成单元,车载设备的具体组成以及结构关系,相关的工作方案可参见常规技术,此处不做赘述;通信设备包括:安装在各通信终端的多模(GSM-R、5G-R等)通信设备。
所述全息感知系统负责获取来自智能列车以及轨旁设备中感知设备的感知信息,通过感知研判,判断是否满足列车发车条件,并传输至信号控制中心与智能列车;所述信号控制中心采用云计算技术实现,能够运行一系列信号设备系统,接收自轨旁设备中智能转辙机的道岔状态信息与来自智能列车的列车状态信息,并传输至列车调度系统与智能运维系统;以及,根据列车调度系统下发的运行计划排列列车进路,使列车进入车站正确的股道,控制智能转辙机将道岔转至规定位置,以及结合全息感知系统的感知研判结果,计算行车授权并发送至智能列车;所述列车调度系统,用于根据智能转辙机的道岔状态信息与列车状态信息下发相应的运行计划;智能运维系统对接收到的信息进行大数据智能分析,输出维修建议和故障预警等信息;
所述智能列车结合来自全息感知系统与信号控制中心的信息,进行自主控车。
本发明实施例中,所述全息感知系统引入了基于人工智能的环境感知技术,负责获取来自智能列车以及轨旁设备中感知设备的感知信息,并进行感知研判,判断是否满足列车发车条件;其中,全息感知系统获取的感知信息包含轨道信息、智能列车信息、接触网信息与相关的人员信息;通过感知判断感知信息中的各元素是对列车发车条件产生影响,若否,则表明满足列车发车条件。
本发明实施例中,所述智能列车结合来自全息感知系统与信号控制中心的信息,进行自主控车包括:计算环境变化下的速度曲线、最大授权速度、牵引力与制动能力,以及确定要应用的最大速度曲线;根据计算结果进行自主控车。
此外,自主控车还包括:停车控制与远程驾驶。
本发明实施例中,系统还实现智能调度指挥与自主运行控制一体化:融合列车调度指挥系统,实现调度指挥与列车自主运行跨层级直接控制与调整优化一体化,实现运行图、调度决策、指挥控制与列车运行间的协同互馈与迭代优化。
本发明实施例中,所述一系列信号设备系统包括:联锁系统、无线闭塞中心、临时限速服务器与列控中心等设备系统。
本发明实施例提供的列车自主运行控制系统是第一个在CTCS体系框架内,能够感知环境态势并做出自主决策的的列车运行控制系统。列车自主运行控制系统采用目标距离连续速度控制模式监控列车安全运行,由列车自主计算行车许可(行车授权),并实现复杂环境下基于全息感知数据融合的自动驾驶。列车自主运行控制系统支持在紧急或特殊情况下自主确定允许的安全运行区间和运行速度,实现列车自主安全运行。
为了更加清晰地展现出本发明所提供的技术方案及所产生的技术效果,下面以具体实施例对本发明实施例所提供的方案进行详细描述。
本发明实施例提供的列车自主运行控制系统通过采用安全云计算技术,使得RBC(无线闭塞中心)、TSRS(临时限速服务器)、TCC(列控中心)、CBI(联锁系统)等地面设备能够运行在云服务器平台,实现“进路”和“移动授权”统一管理,达到信号控制系统层次扁平化、逻辑处理中心化、执行机构分散化,达到提高运输效率、节约资源的目的,在此基础上,实现基于云脑平台的地面中心化列车自主化运行控制,具备研究环境状态自感知、大数据自学习、模式自决策、协同自组织、故障自恢复、调度控制一体化等特征。本发明实施例提供的列车自主运行控制方案采用了地面中心化自主运行控制技术,下面做详细的介绍。
一、方案的总体介绍。
研究简化系统架构,减少轨旁设备和系统间接口,通过集成融合现有信号地面设备功能,实现地面控制中心化;研究采用云计算技术实现信号控制中心化,通过将RBC、TSRS、TCC、联锁等信号设备一体化并集中至“云端”,组成信号控制中心,实现中心化控制,“云”信号控制中心直接控制轨旁设备和智能列车,控制层次只有“中心-车”、“中心-轨旁”两个层次,最大限度简化车地信息传输和控制环节。在此基础上,结合车地协同多源融合感知信息,实现基于地面云控制中心的调度列控一体化列车自主运行控制。
参见图2,智能转辙机将道岔状态发送至信号控制中心;车载设备将列车状态发送至信号控制中心;信号控制中心将控制范围内所有列车及线路状态信息发送至列车调度系统、智能运维系统等其他系统。当有列车计划下达时,列车调度系统将当前列车计划发送至信号控制中心;信号控制中心根据运行计划、列车位置、道岔状态等信息排列列车进路;智能转辙机根据道岔控制命令将道岔转至规定位置;轨旁感知设备和列车感知设备分别将感知信息发送至云端感知数据融合研判系统(它是全息感知系统的一个子系统)进行处理;信号控制中心结合全息化感知研判结果,自主计算列车的行车授权,发送至车载设备,控制列车运行。
智能列车根据结合全息化感知研判结果、行车授权进行自主控车。
二、方案的细节介绍。
1、智能调度指挥与自主运行控制一体化。
本发明实施例中,云端部分集成了信号控制中心与列车调度系统,实现智能调度指挥系统和自主运行控制系统深度融合,实现智能调度指挥与自主运行控制一体化。如图3所示,智能调度指挥与自主运行控制一体化,形成“信息感知、态势推演、决策评估、控制执行”的循环迭代优化机制,实现调度指挥与列车自主运行跨层级直接控制与调整优化一体化。基于该技术,实现运行图、调度决策、指挥控制与列车运行间的协同互馈、迭代优化。
2、车-地协同的线路环境感知数据处理。
针对列车自动驾驶发车条件检查问题,在车-地协同感知系统的前提下,分析与自动驾驶功能相关的周围环境元素,主要包含轨道、列车、接触网、人员等。进一步研究上述元素不会阻止列车发车所满足的条件,融合检查从智能感知系统接收到的信息是否不会阻止列车发车:1)无人在轨道上或轨道沿线,2)轨道上没有列车,3)轨道或接触网无异常,4)没有人工紧急停止命令,5)客运列车客流乘降已完成。此处获得的结果即为前文所述的感知研判结果。
3、自动驾驶控制模型。
智能列车结合来自云端部分的全息化感知研判结果、行车授权进行自主控车。
(1)计算环境变化下的速度曲线。
针对列车运行过程中环境变化下的决策问题,基于车地协同感知系统(全息感知系统)的前提下,研究分析既有传感器可检测的环境约束类型:1)沿轨道的列车;2)能见度降低;3)路线错误等,并进一步分析在途策略调整和基于上述环境约束相关的速度曲线计算需求。
(2)最大授权速度。
针对列车最大授权速度相关问题,分析列车自主运行控制系统中授权速度涉及的相关元素,包含:1)列车的减速能力;2)最大速度曲线;3)梯度曲线等。此外,分析授权速度所需计算的最终曲线和来源主体,ATP计算最大速度曲线,并以此提供最大授权速度。
(3)计算牵引力。
在列车自主运行过程中,针对列车牵引力计算的问题,研究了可能影响牵引力的因素,包括列车的组成,线路坡度,气候条件以及机车的类型,并进一步的研究了这些因素的具体情况,以及每种情况对于列车牵引力计算的影响程度:1)列车的受电弓,牵引电机效率等组成以及自身质量、载客(货)重量等属性的影响;2)线路坡度是对牵引力造成较大影响的因素;3)不良的气候条件可能对行车造成的干扰;4)列车由几节动车、几节拖车构成。
(4)计算列车车辆的制动能力。
列车自身的制动能力需要进行定义,通过对列车的组成:主要是货车的质量、载货量以及其他自身属性;客车的动车和拖车数量以及制动性能和列车的卫生状况确定车辆的制动能力,具体的包括:1)货运列车的制动数据考虑轨道上的质量、获得的制动重量、列车长度和机车制动盘;2)多单元客运列车的参数(单机或多机)计算行车制动和紧急制动的制动能力。
(5)确定要应用的最大速度曲线。
列车需要依据最大速度曲线进行驾驶,研究了确定最大速度曲线所需要的各种参数,包括列车位置、线路参数授权的最大速度、CTCS区域授权的最大速度、线路旁信号授权的最大速度和环境约束授权的最大速度,并且研究了在不同驾驶模式以及线路环境下,每种参数的优先级,并最终计算适用于列车的最大速度曲线,使列车可以依据曲线实现自动驾驶。
结合计算结果进行自主控车,考虑到以上五部分计算均可参照常规技术实现,故不做赘述。
4、精准停车控制。
该功能控制列车在站内精确停车,分析精确停车所需要的条件,即列车完成优化目标速度曲线的计算后(前文计算的环境变化下的速度曲线),根据曲线实时调节列车的牵引或制动情况以及列车的停车点,系统应确保列车在站内精准停车。并进一步研究分析未停准的处理:如果列车未到达站台的指定停车位置,列车将自动缓慢前进直至到达该位置;如果列车驶过站台但停在授权的退行限制范围内,列车将自动缓慢退行直到进入停车位置允许的范围内。
5、列车远程驾驶。
列车远程驾驶属于对系统特殊场景下的补充完善,随着高自动驾驶程度的自主运行控制系统列车带来的无人驾驶,以及人和自动化共同执行列车运行控制任务成为新的趋势。针对列车正常运行下的计划下达和面对故障情况和突发事件的反应能力问题,确保在高速列车速度高、运行环境复杂、易受外界影响等特点下人类驾驶员作为保障列车运行的最后一道安全防线不可或缺的地位,研究列车接收CTC遥控指令工作在远程驾驶模式和在CTC调度指挥人员控制下运行的交互和控制策略,统一人机在自主运行控制中的角色定位。
此处的CTC它负责调度环节,即对多条线路上列车群组的调度控制,它属于信号控制中心的上层系统。
以上为系统的主要方案介绍,下面提供多个自主运行典型场景示例。
示例1、车站自动发车场景。
由列车自主判断列车车门状态、车站信号状态、列车运行环境情况(客流、异物入侵、天气等),在满足发车条件的情况下自主发车,并将信息发送至CTC。具体研究的过程包括:1)车载设备处于AM模式时,列车保持静止,出站信号开放、车门/站台门关闭,乘客换乘结束,动车组自动关闭车门/屏蔽门,检查“移动授权”是否符合运行计划,检查安全起动条件,如满足则自动起动离站;2)通过运输信息系统向车上乘客发送发车信息。
示例2、区间自动运行场景。
区间自动运行研究系统在区间运行过程中的ATO单元自主控制列车运行的功能实现。结合系统自动运行过程中的障碍物检测及环境感知等功能,1)研究ATO单元根据地面设备提供的运行计划和列车运行状况,采用列车加速、自动巡航、惰行、减速或停车等控制策略,实现自动运行;2)在列车运行过程中运行计划不可用的场景下,研究ATO单元自动选择预选驾驶策略中的默认策略控制列车运行。
本领域技术人员可以理解,ATO单元车载设备的组成单元,负责自动驾驶等功能。
示例3、车站自动停车场景。
针对列车在站内精确停车的问题,在全息感知系统的前提下,ATO车载设备通过精确定位应答器进行位置校正,并根据地面设备提供的停车点位置及列车运行状况,在驾驶任务人机分配的策略下,自动控制列车在车站股道停车点处停车。实现自动停站功能需达到的相关条件以及对于未停准情况的协同处理机制:1)停车为列车任务的一部分;2)当前列车未收到“车站跳停”的指令;3)列车未到达站台的指定停车位置或驶过站台但停在授权的退行限制范围内,列车将自动缓慢行至停车允许位置。
示例4、车门自动开门场景。
针对列车停站后车门安全开放问题,研究了ATP(列车自动防护系统)实现开门防护的条件和车地协同的机制,ATP需要判断动车组停准停稳并根据接收的站台侧信息,完成安全防护。结合驾驶任务人机分配策略,研究分析了执行车门开放的机制,包含对ATO接收运行计划情况和车站自身业务情况等方面:1)ATO接收到运行计划且该站办理客运业务时自动开门;2)ATO接收到运行计划且该站不办理客运业务,或未接收到运行计划时,由本地或者远程驾驶员开启相应站台侧的动车组车门。
示例5、自动折返场景。
为提高整体运行效率,加强列车在车站的折返能力,列车自主运行控制系统采用自动折返模式,无需人工参与,可以有效提升列车在开关车门、乘客换乘、自动发车和折返过程中效率。
示例6、障碍物检测场景。
针对列车运行过程中障碍物检测与联动问题,基于全息感知系统,研究分析检测过程中对于传感器等检测设备的防护需求:1)轨旁装置检测到障碍物入侵,确定障碍物位置之后,系统应立即在入侵位置附近建立保护区;2)车载障碍物传感器检测到列车和障碍物碰撞之后,必须立即触发列车紧急制动,并将障碍物入侵信息传给CTC。通过轨旁障碍物检测设备和车载障碍物传感器,检测轨道上的障碍物,防止列车与轨道上的障碍物碰撞。当列车与障碍物发生碰撞时,向CTC发送告警信息,包括发生碰撞时的列车速度、位置信息,实现与CTC的联动。
示例7、紧急制动命令处理场景。
当针对列车运行过程中紧急制动命令问题,基于车-地协同大规模感知数据融合技术,分析列车必须实施紧急制动的场景:1)列车检测到人员的应急手势;2)从相反方向运行的列车发出的灯光警报;3)列车脱轨;4)请求紧急制动的障碍物或行程错误;5)发现列车定位错误等。结合复杂环境下的自学习控制,基于相对制动距离模式的高速列车自动驾驶避撞控制策略,在保证安全的前提下提高运行效率。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例可以通过软件实现,也可以借助软件加必要的通用硬件平台的方式来实现。基于这样的理解,上述实施例的技术方案可以以软件产品的形式体现出来,该软件产品可以存储在一个非易失性存储介质(可以是CD-ROM,U盘,移动硬盘等)中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本发明各个实施例所述的方法。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,仅以上述各功能模块的划分进行举例说明,实际应用中,可以根据需要而将上述功能分配由不同的功能模块完成,即将系统的内部结构划分成不同的功能模块,以完成以上描述的全部或者部分功能。
以上所述,仅为本发明较佳的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明披露的技术范围内,可轻易想到的变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应该以权利要求书的保护范围为准。

Claims (5)

1.一种适用于高速铁路的列车自主运行控制系统,其特征在于,包括:云端部分、智能列车与轨旁设备;其中,所述云端部分包括:信号控制中心、列车调度系统、全息感知系统与智能运维系统;
所述全息感知系统负责获取来自智能列车以及轨旁设备中感知设备的感知信息,通过感知研判,判断是否满足列车发车条件,并传输至信号控制中心与智能列车;所述信号控制中心采用云计算技术实现,能够运行一系列信号设备系统,接收自轨旁设备中智能转辙机的道岔状态信息与来自智能列车的列车状态信息,并传输至列车调度系统与智能运维系统;以及,根据列车调度系统下发的运行计划排列列车进路,控制智能转辙机将道岔转至规定位置,以及结合全息感知系统的感知研判结果,计算行车授权并发送至智能列车;所述列车调度系统,用于根据智能转辙机的道岔状态信息与列车状态信息下发相应的运行计划;智能运维系统对接收到的信息进行大数据智能分析,输出维修建议和故障预警;
所述智能列车结合来自全息感知系统与信号控制中心的信息,进行自主控车。
2.根据权利要求1所述的一种适用于高速铁路的列车自主运行控制系统,其特征在于,所述全息感知系统负责获取来自智能列车以及轨旁设备中感知设备的感知信息,并进行感知研判,判断是否满足列车发车条件包括:
全息感知系统获取的感知信息包含轨道信息、智能列车信息、接触网信息与相关的人员信息;
通过感知判断感知信息中的各元素是对列车发车条件产生影响,若否,则表明满足列车发车条件。
3.根据权利要求1所述的一种适用于高速铁路的列车自主运行控制系统,其特征在于,所述智能列车结合来自全息感知系统与信号控制中心的信息,进行自主控车包括:
计算环境变化下的速度曲线、最大授权速度、牵引力与制动能力,以及确定要应用的最大速度曲线;根据计算结果进行自主控车。
4.根据权利要求3所述的一种适用于高速铁路的列车自主运行控制系统,其特征在于,所述智能列车结合来自全息感知系统与信号控制中心的信息,进行自主控车还包括:结合环境变化下的速度曲线进行站内停车控制。
5.根据权利要求1所述的一种适用于高速铁路的列车自主运行控制系统,其特征在于,所述一系列信号设备系统包括:联锁系统、无线闭塞中心、临时限速服务器与列控中心设备系统。
CN202410229815.0A 2023-12-29 2024-02-29 一种适用于高速铁路的列车自主运行控制系统 Pending CN118004248A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202311857669 2023-12-29
CN2023118576698 2023-12-29

Publications (1)

Publication Number Publication Date
CN118004248A true CN118004248A (zh) 2024-05-10

Family

ID=90942850

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202410229815.0A Pending CN118004248A (zh) 2023-12-29 2024-02-29 一种适用于高速铁路的列车自主运行控制系统

Country Status (1)

Country Link
CN (1) CN118004248A (zh)

Similar Documents

Publication Publication Date Title
CN107284471B (zh) 一种基于车车通信的cbtc系统
CN109664923B (zh) 基于车车通信的城市轨道交通列控系统
CN111923966B (zh) 面向不同智能化等级的城市轨道交通列车运行控制系统
CN108725520B (zh) 适用于低密度铁路的列车运行控制系统
CN109677466B (zh) 一种面向中国重载铁路的轻量化列车自动控制系统
CA2489001C (en) Integrated railroad systems
CN101941451B (zh) 点式列车控制系统
EP2746132B1 (en) Ctcs level-3 onboard automatic train operation device and rail transit car
Song et al. Train-centric communication based autonomous train control system
CN113320575B (zh) 支持后备控车模式和人工故障处理方式的tacs系统
CN110239596A (zh) 一种基于ctcs-3的移动闭塞列车控制方法及系统
CN113562023A (zh) 含列车定位和完整性判断的基于通信的列车运行控制方法
CN113335350A (zh) 一种互联互通共线与跨线运行的列车自主运行系统
CN109278807B (zh) 基于车车通信列控系统的列车跳停方法
CN101670841A (zh) 信号安全系统
CN103260994A (zh) 车载控制单元与公共交通网之间的信息通讯方法
CN108146471A (zh) 采用基于车车通信的cbtc系统应对潮汐客流的运行方法
CN109532955A (zh) 一种微轨调度控制方法及系统
CN113002565A (zh) 一种智能网联捷运系统及运行控制方法
Torralba et al. Smart railway operation aid system for facilities with low-safety requirements
CN114407972A (zh) 市郊铁路车载设备切换方法及系统
CN113548087A (zh) 车载atp子系统、列车发车联合控制系统及方法
Liu Unmanned driving systems for smart trains
Caramia et al. Automatic train operation systems: A survey on algorithm and performance index
CN114394128B (zh) 列车控制方法及系统、车载子系统和轨旁资源管理子系统

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination