CN117881773A - 重组酵母细胞 - Google Patents

重组酵母细胞 Download PDF

Info

Publication number
CN117881773A
CN117881773A CN202280059115.0A CN202280059115A CN117881773A CN 117881773 A CN117881773 A CN 117881773A CN 202280059115 A CN202280059115 A CN 202280059115A CN 117881773 A CN117881773 A CN 117881773A
Authority
CN
China
Prior art keywords
seq
acid sequence
nucleic acid
recombinant yeast
yeast cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202280059115.0A
Other languages
English (en)
Inventor
S·L·罗塞尔-阿拉贡特
M·L·A·詹森
I·M·武格特-范卢茨
J·P·J·施密茨
E·T·范里奇
R·M·德容
H·M·C·J·德布吕伊恩
P·E·布雷曼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Danisco US Inc
Original Assignee
Danisco US Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Danisco US Inc filed Critical Danisco US Inc
Priority claimed from PCT/EP2022/068996 external-priority patent/WO2023285297A1/en
Publication of CN117881773A publication Critical patent/CN117881773A/zh
Pending legal-status Critical Current

Links

Landscapes

  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

公开了一种重组酵母细胞,该重组酵母细胞功能性地表达:a)编码具有NADH依赖性硝酸盐还原酶活性的酶的核酸序列和/或编码具有NADH依赖性亚硝酸盐还原酶活性的酶的核酸序列;以及b)编码具有转酮酶活性的蛋白质(EC 2.2.1.1)的核酸序列,其中编码具有转酮酶活性的该蛋白质的该核酸序列的表达在启动子(“TKL启动子”)的控制下,该TKL启动子对转酮酶的厌氧/好氧表达比率为2或更高。

Description

重组酵母细胞
技术领域
本发明涉及一种具有生产乙醇的能力的重组酵母细胞以及一种用于生产乙醇的方法,其中使用了所述酵母细胞。
背景技术
将微生物发酵方法应用于从可再生碳水化合物原料工业生产广泛且快速扩大范围的化合物。尤其是在厌氧发酵方法中,辅因子对NADH/NAD+的氧化还原平衡可能对产物产率造成重大限制。这种挑战的示例为在由酿酒酵母(Saccharomyces cerevisiae)工业生产例如燃料乙醇时作为主要副产物的甘油的形成,这是需要再氧化在生物合成反应中形成的NADH的直接结果。
按体积计,由酿酒酵母生产乙醇是目前工业生物技术中最大的单一发酵方法。已经提出了多种方法以通过基因修饰来改善工业生物技术中使用的生物体的发酵性质。与基于酵母的乙醇生产的化学计量相关的重大挑战是大量的NADH依赖性副产物(诸如甘油)通常作为副产物形成,尤其是在厌氧和氧气受限的条件下或在呼吸以其他方式受限或不存在的条件下。据估计,在典型的工业乙醇工艺中,高达约4wt.%的糖原料转化为甘油(Nissen等人,Yeast[酵母]16(2000)463-474)。在对于厌氧生长理想的条件下,向甘油的转化甚至可能更高,高达约10%。
厌氧条件下的甘油生产主要与氧化还原代谢有关。在酿酒酵母(S.cerevisiae)的厌氧生长过程中,经由酒精发酵发生糖异化。在该过程中,在糖酵解甘油醛-3-磷酸脱氢酶反应中形成的NADH通过经由NAD+依赖性醇脱氢酶将由丙酮酸脱羧形成的乙醛转化为乙醇而被再氧化。当NAD+向NADH的净还原发生在代谢的其他地方时,这种氧化还原-中性异化途径的固定化学计量会引起问题。在厌氧条件下,酿酒酵母中的NADH再氧化严格依赖于糖向甘油的还原。甘油形成是通过将糖酵解中间体磷酸二羟丙酮(DHAP)还原为甘油3-磷酸(甘油-3P)而引发的,该反应是由NAD+依赖性甘油3-磷酸脱氢酶催化的。随后,在该反应中形成的甘油3-磷酸被甘油-3-磷酸酶水解,以产生甘油和无机磷酸。因此,甘油是由酿酒酵母厌氧生产乙醇过程中的主要副产物,这是不期望的,因为它减少了糖向乙醇的总体转化。此外,乙醇生产工厂的流出物中甘油的存在可能增加废水处理的成本。
氮是酵母细胞的关键营养物。如Linder在他的“Nitrogen AssimilationPathways in Budding Yeasts[芽殖酵母中氮同化途径]”的第7章中(于手册“Non-conventional Yeasts:from Basic Research to Application”[“非常规酵母:从基础研究到应用”],由Sibirney编辑,由施普林格·自然瑞士股份公司出版(2019)第197页及后续内容)中所述,氨(NH3)是用作芽殖酵母氮源的最简单的氮底物之一。
根据Linder的说法,酵母中用于含氮生物分子的绝大多数生物合成途径首先需要将氨转化为L-谷氨酸和L-谷氨酰胺,然后将它们用作下游合成代谢转氨反应中的氨基供体。NADP+依赖性谷氨酸脱氢酶(EC 1.4.1.4;由GDH1基因编码)催化将α-酮戊二酸胺化以形成l-谷氨酸,而谷氨酰胺合成酶(EC 6.3.1.2;由GLN1基因编码)催化将l-谷氨酸胺化以形成l-谷氨酰胺。GDH1基因的第二个拷贝(称为GDH3)已在酿酒酵母中描述,并且似乎在氮代谢中发挥独特的生理作用。
根据Linder的说法,同化除氨以外的无机氮源的能力被认为在芽殖酵母中很罕见。据说硝酸根(NO3 )通过经由亚硝酸根(NO2 )的两步还原被同化以产生氨。将硝酸盐还原成亚硝酸盐据说是通过硝酸盐还原酶(EC 1.7.1.2/EC 1.7.1.3)进行的,该酶由YNR1基因编码。Linder指出,除了存在黄素腺嘌呤二核苷酸(FAD)和血红素辅基之外,硝酸盐还原酶还是芽殖酵母中目前已知的为数不多的需要钼辅因子(MoCo)才能发挥其活性的酶之一。Linder解释说,酵母硝酸盐还原酶的氧化还原辅因子需求似乎因物种而异。食腺嘌呤芽生葡萄孢酵母(Blastobotrys adeninivorans)(毛红曲霉科(Trichomonascaceae))中的硝酸盐还原酶被认为对NADPH有特异性,而博伊丁假丝酵母(Candida boidinii)(毕赤酵母科(Pichiaceae))、杰丁塞伯林德纳氏酵母(Cyberlindnera jadinii)(法夫酵母科(Phaffomycetaceae))和多形汉逊酵母(Ogataea polymorpha)(毕赤酵母科)的硝酸盐还原酶被认为能够使用NADH和NADPH两者。据说亚硝酸盐被含有FAD的亚硝酸盐还原酶(EC1.7.1.4)进一步还原为氨,该酶由YNI1基因编码。Linder指出芽殖酵母亚硝酸盐还原酶的氧化还原辅因子特异性尚未以全面方式进行研究。
同样在Siverio发表于FEMS Microbiology Reviews[FEMS微生物学评论]第26卷(2002)第277-284页上的题为“Assimilation of nitrate by yeasts”[“酵母对硝酸盐的同化”]的文章中,提到酵母能够使用多种化合物作为氮源。然而,硝酸盐和亚硝酸盐的使用局限于不同属的相对少数物种。提到酵母(Saccharomyces)属和裂殖酵母(Schizosaccharomyces)属的酵母不能使用硝酸盐或亚硝酸盐作为唯一的氮源。发现Siverio所研究的酵母,多形汉逊酵母(Hansenula polymorpha)(现更名为安格斯毕赤酵母(Pichia angusta))确实包含硝酸盐还原酶活性。
正如上面由Linder所指出的,氨是用于酵母培养的优选氮源。尿素可以是廉价的氨源。尿素可以容易地分解成两分子的铵离子和一分子的二氧化碳。然而,如Ingledew等人发表于American Journal of Enology and Viticulture[美国酿酒与葡萄栽培杂志],(1987),第38卷,第332-335页上的题为“Yeast foods and ethyl carbamate formationin wine”[“酵母食品和葡萄酒中氨基甲酸乙酯的形成”]的文章中所指出的,许多国家现已禁止将尿素用作用于饮用酒精制造的酵母食品成分,因为尿素会导致产生少量尿烷(氨基甲酸乙酯),其是食品中的疑似致癌物。
本领域中的进步是提供一种新颖酵母细胞,该新颖酵母细胞适用于用于生产发酵产物(例如乙醇)的厌氧发酵方法,该新颖酵母细胞与其对应的野生型生物体相比具有降低的甘油产量或如果将该细胞用于乙醇的发酵制备,则该细胞缺乏甘油生产。
此外,仍然需要改善。在工业环境中,以上重组酵母细胞的甘油生产的减少可能会潜在地影响这些重组酵母细胞的耐高渗性和对外部环境的应激反应。特别是在具有挑战性的工艺条件下,例如当应用具有高干固体含量和/或高发酵温度的发酵培养基时,这可能导致发酵期结束时细胞群体的减少和/或细胞活性的下降。提供一种方法以及用于该方法的酵母细胞,其中这些酵母细胞在高干固体/高干物质条件和/或高温下具有改善的稳健性,这样的方法和酵母细胞将是本领域的进步。此外,提供在酵母细胞内具有减少的葡萄糖积累和/或总糖含量的酵母细胞将是本领域的进步。也就是说,即使在发酵开始和/或整个发酵过程中存在高浓度的葡萄糖的情况下,在发酵结束时实现酵母细胞的持续性能和/或低浓度的剩余葡萄糖将是本领域的进步。
发明内容
诸位发明人现在已经出人意料地发现了有利的用于生产乙醇的重组酵母细胞和方法。
因此,本发明提供了一种重组酵母细胞,该重组酵母细胞功能性地表达:
a)编码具有NADH依赖性硝酸盐还原酶活性的酶的核酸序列和/或编码具有NADH依赖性亚硝酸盐还原酶活性的酶的核酸序列;以及
b)编码具有转酮酶活性的蛋白质(EC 2.2.1.1)的核酸序列,
其中编码具有转酮酶活性的所述蛋白质的所述核酸序列的表达在启动子(“TKL启动子”)的控制下,所述TKL启动子对转酮酶的厌氧/好氧表达比率为2或更高。
此外,本发明提供了一种用于生产乙醇的方法,该方法包括使用以上重组酵母细胞转化碳源(诸如碳水化合物或另一种有机碳源),从而适当地形成乙醇。
有利地,使用以上重组酵母细胞和/或以上方法使得稳健性得到改善。当应用具有高干固体含量的培养基时和/或如果应用高发酵温度,这是尤其有利的。
从碳源(诸如碳水化合物)生产乙醇的方法可以有利地在存在糖解酶(诸如葡糖淀粉酶)的情况下进行,以将多糖和/或寡糖转化为葡萄糖。当该方法在具有高干物质含量的培养基中进行时,例如在用高浓度玉米醪开始该方法后,培养基中葡萄糖的浓度可能变得非常高。不希望受任何类型的理论的约束,据信高浓度的葡萄糖可能引起酵母细胞的渗透应激,导致酵母细胞停止表现出性能,甚至死亡。
不希望受任何类型的理论的约束,据信与不包含TKL启动子的酵母细胞相比,以上重组酵母细胞允许葡萄糖和/或其他糖在酵母细胞内的积累减少,从而适当地允许改善稳健性。
通过实例说明优点。在实例中,发酵在36%w/w的高干物质含量下进行。如实例所展示,根据本发明的重组酵母细胞以及根据本发明的方法允许酵母细胞的持续性能和/或葡萄糖的持续转化。即使在包含浓度高达36%w/w的葡萄糖的培养基中和/或高达32℃的温度下,重组酵母细胞在66小时后仍将碳水化合物转化为乙醇。因此,即使在发酵开始和/或整个发酵过程中存在高浓度的葡萄糖的情况下,在发酵结束时仍可以获得低浓度的剩余葡萄糖。
序列表说明
本申请含有呈计算机可读形式的序列表,将其通过援引并入本文。下表1提供了概述。
表1:序列表的概述:
在本专利申请的上下文中,每个以上蛋白质/氨基酸序列都优选地由针对在酵母中表达、更优选地针对在酿酒酵母中表达进行密码子对优化的DNA/核酸序列编码。
具体实施方式
定义
除非另有定义或由上下文清楚地指示,否则本文所用的所有技术和科学术语都具有与本领域普通技术人员通常所理解的相同的含义。
在整个本说明书和所附权利要求中,词语“包含(comprise)”和“包括(include)”以及变体诸如“包含(comprises)”、“包含(comprising)”、“包括(includes)”和“包括(including)”应被包含性地解释。也就是说,在上下文允许的情况下,这些词语旨在表达可能包含未具体列举的其他要素或整数。
冠词“一个/一种(a)”和“一个/一种(an)”在本文中用于指代一个/一种(one)或多于一个/多于一种(more than one)(即,一个/一种(one)或至少一个/至少一种(at leastone))该冠词的语法宾语。举例来说,“一个要素/一种要素(an element)”可以意指一个要素/一种要素(one element)或多于一个要素/多于一种要素(more than one element)。当以单数形式提及名词(例如,化合物、添加剂等)时,意在包括复数形式。因此,当提及特定部分(例如,“基因”)时,除非另有规定,否则这意指该基因中的“至少一个”,例如“至少一个基因”。
当提及存在几种异构体(例如,D和L对映异构体)的化合物时,该化合物原则上包括可以在本发明的特定方面中使用的该化合物的所有对映异构体、非对映异构体和顺式/反式异构体;特别是当提及这种化合物时,它包括一种或多种天然异构体。
除非另有明确指示,否则本文所述的本发明的各种实施例可以交叉组合。
术语“碳源”是指碳的来源,优选包含碳的化合物或分子。优选地,碳源是碳水化合物。在本文中将碳水化合物理解为由碳、氧和氢组成的有机化合物。适当地,碳源可以选自由以下组成的组:单糖、二糖和/或多糖、酸和酸式盐。更优选地,碳源是选自由以下组成的组的化合物:葡萄糖、阿拉伯糖、木糖、半乳糖、甘露糖、鼠李糖、果糖、甘油和乙酸或其盐。
术语“干物质”和“干固体”(分别缩写为“DM”和“DS”)在本文中可互换地使用,并且是指在除去水后剩余的材料。因此,可以通过本领域技术人员已知的任何方法来确定干物质含量。
术语“发酵(ferment)”及其变体诸如“发酵(fermenting)”、“发酵(fermentation)”和/或“发酵(fermentative)”在本文中以经典意义使用,即表明过程在厌氧条件下进行或已经在厌氧条件下进行。在本文中将厌氧发酵定义为在厌氧条件下进行的发酵。在本文中将厌氧条件定义为没有任何氧气或酵母细胞基本上不消耗氧气的条件。基本上不消耗氧气的条件适当地对应于耗氧量小于5mmol/l.h-1,特别是耗氧量小于2.5mmol/l.h-1或小于1mmol/l.h-1。更优选地,消耗0mmol/L/h(即,耗氧量是不可检测的)。这适当地对应于培养液中的溶解氧浓度小于空气饱和度的5%,更适当地溶解氧浓度小于空气饱和度的1%或小于空气饱和度的0.2%。
术语“发酵方法”是指用于制备或生产发酵产物的方法。
术语“细胞”是指真核生物体或原核生物体,优选作为单细胞存在。在本发明中,细胞是重组酵母细胞。也就是说,重组细胞选自由酵母组成的属的组。
术语“酵母”和“酵母细胞”在本文中可互换地使用,并且是指一组在系统发育上多样化的单细胞真菌,其中的大部分属于子囊菌门(Ascomycota)和担子菌门(Basidiomycota)。芽殖酵母(“真酵母”)被分类在酵母目(Saccharomycetales)中。根据本发明的酵母细胞优选地是衍生自酵母属(Saccharomyces)的酵母细胞。更优选地,酵母细胞是酿酒酵母种的酵母细胞。
如本文所用,术语“重组”(例如,提及“重组酵母”、“重组细胞”、“重组微生物”和/或“重组菌株”)分别是指含有作为一种或多种基因修饰的结果的核酸的酵母、细胞、微生物或菌株。简单地说,酵母、细胞、微生物或菌株含有来自其一个或多个亲本(其中的任一个)的核酸的不同组合。为了构建重组酵母、细胞、微生物或菌株,可以使用一种或多种重组DNA技术和/或另外一种或多种诱变技术。例如,重组酵母和/或重组酵母细胞可以包含不存在于对应野生型酵母和/或细胞中的核酸,已经使用重组DNA技术将该核酸引入该酵母或酵母细胞中(即,转基因酵母和/或细胞),或者不存在于所述野生型酵母和/或细胞中的该核酸是存在于所述野生型酵母和/或酵母细胞中的核酸序列(诸如编码野生型多肽的基因)中的一种或多种突变(例如,使用重组DNA技术或另一种诱变技术诸如UV辐照)的结果,或者其中基因的核酸序列已经被修饰以将多肽产物(编码它)靶向至另一个细胞区室。此外,术语“重组”可以适当地涉及例如已经使用重组DNA技术从其中除去核酸序列的酵母、细胞、微生物或菌株。
在本文中将包含或具有某种活性的重组酵母理解为重组酵母可以包含编码具有这种活性的蛋白质的一个或多个核酸序列。因此,允许重组酵母功能性地表达这种蛋白质或酶。
术语“功能性地表达”意指存在相关核酸序列的功能性转录,允许核酸序列实际上被转录,例如导致蛋白质的合成。
如本文所用,术语“转基因”(例如,提及“转基因酵母”和/或“转基因细胞”)分别是指这样的酵母和/或细胞,其含有非天然存在于该酵母和/或细胞中并且已经使用例如重组DNA技术被引入该酵母和/或细胞中的核酸,诸如重组酵母和/或细胞。
如本文关于蛋白质或多肽所用的术语“突变”意指,与野生型或天然存在的蛋白质或多肽序列相比,至少一个氨基酸已经被不同的氨基酸替代、插入氨基酸序列中或从氨基酸序列中缺失。氨基酸的替代、插入或缺失可以例如经由编码这些氨基酸的核酸的诱变来实现。诱变是本领域熟知的方法,并且包括例如通过PCR的手段或经由寡核苷酸介导的诱变的定点诱变,如以下文献中所述:Sambrook等人,Molecular Cloning-A LaboratoryManual[分子克隆-实验室手册],第2版,第1-3卷(1989),由Cold Spring HarborPublishing[冷泉港出版公司]出版。
如本文关于基因所用的术语“突变”意指,与野生型或天然存在的核酸序列相比,基因或其调控序列的核酸序列中的至少一个核苷酸已经被不同的核苷酸替代、插入核酸序列中或从核酸序列中缺失。氨基酸的替代、插入或缺失可以例如经由诱变来实现,导致例如具有定性或定量改变的功能的蛋白质序列的转录或该基因的敲除。在本发明的上下文中,“改变基因”具有与突变基因相同的含义。
如本文所用,术语“基因(gen)”或“基因(gene)”是指可以被转录成然后被翻译成蛋白质的mRNA的核酸序列。编码某种蛋白质的基因是指编码这种蛋白质的一个或多个核酸序列。
如本文所用,术语“核酸”或“核苷酸”是指呈单链或双链形式的脱氧核糖核苷酸或核糖核苷酸聚合物(即,多核苷酸)中的单体单元,并且除非另有限制,否则涵盖具有天然核苷酸的本质属性的已知类似物,因为它们以类似于天然存在的核苷酸的方式与单链核酸杂交(例如,肽核酸)。例如,由编码酶的核苷酸序列定义的某种酶包括(除非另有限制)与编码酶的参考核苷酸序列杂交的核苷酸序列。多核苷酸可以是天然或异源结构或调控基因的全长或子序列。除非另有指示,否则该术语包括对指定序列以及其互补序列的提及。因此,具有出于稳定性或其他原因而修饰的骨架的DNA或RNA是如本文所预期的术语“多核苷酸”。此外,包含稀有碱基(诸如肌苷)或修饰的碱基(诸如三苯甲基化碱基)(仅举两个示例)的DNA或RNA是如本文所用的术语多核苷酸。将理解,已经对DNA和RNA进行了多种多样的修饰,其用于本领域技术人员已知的许多有用目的。如本文所用的术语多核苷酸包括多核苷酸的此类化学、酶促或代谢修饰形式,以及病毒和细胞(尤其包括简单和复杂细胞)所特有的DNA和RNA的化学形式。
术语“核苷酸序列”和“核酸序列”在本文中可互换地使用。核酸序列的一个示例是DNA序列。
术语“多肽”、“肽”和“蛋白质”在本文中可互换地用于指代例如由氨基酸序列所展示的氨基酸残基的聚合物。这些术语适用于一个或多个氨基酸残基是对应的天然存在的氨基酸的人工化学类似物的氨基酸聚合物,以及天然存在的氨基酸聚合物。天然存在的氨基酸的此类类似物的本质属性是,当被掺入蛋白质中时,该蛋白质对由相同但完全由天然存在的氨基酸组成的蛋白质引发的抗体具有特异性反应性。术语“多肽”、“肽”和“蛋白质”还包括修饰,包括但不限于糖基化、脂质附接、硫酸化、谷氨酸残基的γ-羧基化、羟基化和ADP-核糖基化。
术语“酶”在本文中是指具有催化功能的蛋白质。在蛋白质催化某种生物反应的情况下,术语“蛋白质”和“酶”在本文中可以可互换地使用。当参考酶类(EC)提及酶时,酶类是这样的类别,其中酶根据国际生物化学与分子生物学联盟命名委员会(the NomenclatureCommittee of the International Union of Biochemistry and Molecular Biology,NC-IUBMB)提供的酶命名法被分类或可以被分类,该命名法可以在http://www.chem.qmul.ac.uk/iubmb/enzyme/找到。意在包括还未(尚未)被分类在指定类别中但可以如此分类的其他合适的酶。
如果在本文中通过参考登录号提及蛋白质或核酸序列(诸如基因),除非另有规定,否则该编号特别用于指代具有可以经由www.ncbi.nlm.nih.gov/(2020年10月1日可获得)找到的序列的蛋白质或核酸序列(基因)。
在本文中编码多肽的每个核酸序列都还包括其任何保守修饰的变体。通过参考遗传密码,这包括,它描述了核酸的每种可能的沉默变异。术语“保守修饰的变体”适用于氨基酸和核酸序列两者。关于特定核酸序列,保守修饰的变体是指由于遗传密码的简并性而编码相同氨基酸序列或保守修饰的氨基酸序列变体的那些核酸。术语“遗传密码的简并性”是指大量在功能上相同的核酸编码任何给定蛋白质的事实。例如,密码子GCA、GCC、GCG和GCU都编码氨基酸丙氨酸。因此,在密码子指定丙氨酸的每个位置处,密码子可以被改变为任何所描述的对应密码子而不改变编码的多肽。此类核酸变异是“沉默变异”,并且代表一种保守修饰的变异。
如本文所用,术语具有特定序列(例如,“SEQ ID NO:X”)的多肽和/或氨基酸序列的“功能性同源物”(或简称“同源物”)是指包含所述特定序列的多肽和/或氨基酸序列,条件是一个或多个氨基酸被突变、取代、缺失、添加和/或插入,并且该多肽具有(定性地)相同的用于底物转化的酶功能。
如本文所用,术语具有特定序列(例如,“SEQ ID NO:X”)的多核苷酸和/或核酸序列的“功能性同源物”(或简称“同源物”)是指包含所述特定序列的多核苷酸和/或核酸序列,条件是一个或多个核酸被突变、取代、缺失、添加和/或插入,并且该多核苷酸编码具有(定性地)相同的用于底物转化的酶功能的多肽序列。关于核酸序列,术语功能性同源物意在包括由于遗传密码的简并性而与另一个核酸序列不同并且编码相同多肽序列的核酸序列。
在本文中将序列同一性定义为两个或更多个氨基酸(多肽或蛋白质)序列或者两个或更多个核酸(多核苷酸)序列之间的关系,如通过比较序列所确定。通常,在所比较的序列的整个长度上比较序列同一性或相似性。在本领域中,“同一性”还意指氨基酸或核酸序列之间的序列相关性程度,视情况而定,如通过此类序列的串之间的匹配所确定。
当展现出一定水平的相似性时,氨基酸或核苷酸序列被说成是同源的。两个序列是同源的表明有共同的进化起源。两个同源序列是密切相关还是更远距离相关由“同一性百分比”或“相似性百分比”指示,其分别为高或低。尽管有争议,但为了指示“同一性百分比”或“相似性百分比”,“同源性水平”或“同源性百分比”经常可互换地使用。序列的比较和两个序列之间的同一性百分比的确定可以使用数学算法来完成。技术人员将意识到几种不同的计算机程序可用于比对两个序列并确定两个序列之间的同源性的事实(Kruskal等人,"An overview of sequence comparison:Time warps,string edits,andmacromolecules",[“序列比较的概述:时间扭曲、串编辑与大分子”],(1983),Society forIndustrial and Applied Mathematics(SIAM)[工业与应用数学学会(SIAM)],第25卷,第2期,第201-237页以及由D.Sankoff和J.B.Kruskal(编辑)编辑的手册,"Time warps,stringedits and macromolecules:the theory and practice of sequence comparison",[“时间扭曲、串编辑与大分子:序列比较的理论与实践”],(1983),第1-44页,由Addison-WesleyPublishing Company,Massachusetts USA[美国马萨诸塞州的艾迪生-韦斯利出版公司]出版)。
可以使用尼德曼(Needleman)和翁施(Wunsch)算法对两个序列进行比对来确定两个氨基酸序列之间的同一性百分比。(Needleman等人"A General Method Applicable tothe Search for Similarities in the Amino Acid Sequence of Two Proteins"[“一种适用于寻找两种蛋白质的氨基酸序列的相似性的通用方法”](1970)J.Mol.Biol.[分子生物学杂志]第48卷,第443-453页)。该算法比对氨基酸序列以及核苷酸序列。尼德曼-翁施算法已经在计算机程序NEEDLE中实施。出于本发明的目的,使用来自EMBOSS包的NEEDLE程序(2.8.0版本或更高版本,参见Rice等人,"EMBOSS:The European Molecular Biology OpenSoftware Suite"[EMBOSS:欧洲分子生物学开放软件套件],(2000),Trends in Genetics[遗传学趋势]第16卷,(6)第276—277页,http://emboss.bioinformatics.nl/)。对于蛋白质序列,使用EBLOSUM62作为取代矩阵。对于核苷酸序列,使用EDNAFULL。可以指定其他矩阵。用于氨基酸序列比对的任选的参数是空位开放罚分为10且空位扩展罚分为0.5。技术人员将理解,所有这些不同的参数都将产生稍微不同的结果,但是当使用不同的算法时,两个序列的总体同一性百分比没有显著改变。
同源性或同一性是两个完整序列之间在包括任何空位或扩展的总比对区域上相同匹配的百分比。如下计算两个比对序列之间的同源性或同一性:在比对中在两个序列中显示相同氨基酸的对应位置的数目除以包括空位的比对的总长度。如本文所定义的同一性可以从NEEDLE获得,并且在程序的输出中被标记为“同一性(IDENTITY)”。
如下计算两个比对序列之间的同源性或同一性:在比对中在两个序列中显示相同氨基酸的对应位置的数目除以在减去比对中的空位的总数后比对的总长度。如本文所定义的同一性可以通过使用NOBRIEF选项从NEEDLE获得,并且在程序的输出中被标记为“最长同一性(longest-identity)”。
也可以将本文公开的核苷酸或氨基酸序列的变体定义为与本文具体公开的核苷酸或氨基酸序列(例如,在序列表中)相比具有一个或多个突变、取代、插入和/或缺失的核苷酸或氨基酸序列。
任选地,在确定氨基酸相似性程度时,技术人员还可以考虑所谓的“保守”氨基酸取代,这对于技术人员将是清楚的。保守氨基酸取代是指具有相似侧链的残基的互换性。例如,具有脂族侧链的一组氨基酸是甘氨酸、丙氨酸、缬氨酸、亮氨酸和异亮氨酸;具有脂族-羟基侧链的一组氨基酸是丝氨酸和苏氨酸;具有含酰胺侧链的一组氨基酸是天冬酰胺和谷氨酰胺;具有芳族侧链的一组氨基酸是苯丙氨酸、酪氨酸和色氨酸;具有碱性侧链的一组氨基酸是赖氨酸、精氨酸和组氨酸;并且具有含硫侧链的一组氨基酸是半胱氨酸和甲硫氨酸。在一个实施例中,保守氨基酸取代组是:缬氨酸-亮氨酸-异亮氨酸、苯丙氨酸-酪氨酸、赖氨酸-精氨酸、丙氨酸-缬氨酸和天冬酰胺-谷氨酰胺。本文公开的氨基酸序列的取代变体是所公开的序列中的至少一个残基已经被除去并且不同的残基插入其位置的变体。优选地,氨基酸变化是保守的。在一个实施例中,每种天然存在的氨基酸的保守取代如下:Ala至Ser;Arg至Lys;Asn至Gln或His;Asp至Glu;Cys至Ser或Ala;Gln至Asn;Glu至Asp;Gly至Pro;His至Asn或Gln;Ile至Leu或Val;Leu至Ile或Val;Lys至Arg;Gln或Glu;Met至Leu或Ile;Phe至Met、Leu或Tyr;Ser至Thr;Thr至Ser;Trp至Tyr;Tyr至Trp或Phe;以及Val至Ile或Leu。
本发明的核苷酸序列还可以由它们在中等杂交条件下或优选地在严格杂交条件下分别与本文公开的特定核苷酸序列的部分杂交的能力来定义。在本文中将严格杂交条件定义为这样的条件,其允许至少约25个核苷酸,优选约50个、75个或100个核苷酸,最优选约200个或更多个核苷酸的核酸序列在约65℃的温度下在包含约1M盐的溶液(优选6x SSC或具有相当的离子强度的任何其他溶液)中杂交,并且在65℃下在包含约0.1M或更少的盐的溶液(优选0.2x SSC或具有相当的离子强度的任何其他溶液)中洗涤。优选地,杂交进行过夜,即至少10小时;并且优选地,洗涤进行至少一小时,其中洗涤溶液至少更换两次。这些条件通常将允许具有约90%或更高序列同一性的序列的特异性杂交。在本文中将中等条件定义为这样的条件,其允许至少50个核苷酸、优选约200个或更多个核苷酸的核酸序列在约45℃的温度下在包含约1M盐的溶液(优选6x SSC或具有相当的离子强度的任何其他溶液)中杂交,并且在室温下在包含约1M盐的溶液(优选6x SSC或具有相当的离子强度的任何其他溶液)中洗涤。优选地,杂交进行过夜,即至少10小时;并且优选地,洗涤进行至少一小时,其中洗涤溶液至少更换两次。这些条件通常将允许具有高达50%序列同一性的序列的特异性杂交。本领域技术人员将能够修改这些杂交条件,以便特异性地鉴定同一性在50%与90%之间变化的序列。
“表达”是指基因转录成结构RNA(rRNA、tRNA)或信使RNA(mRNA),随后翻译成蛋白质。
“过表达”是指重组细胞对基因(对应地核酸序列)的表达超过其在对应野生型细胞中的表达。这种过表达可以例如通过以下方式安排:增加一个或多个核酸序列的转录频率,例如通过将核酸序列可操作地连接到在重组细胞内有功能的启动子;和/或通过增加某个核酸序列的拷贝数。
术语“上调(upregulate)”、“上调(upregulated)”和“上调(upregulation)”是指细胞增加细胞组分(诸如RNA或蛋白质)的量的过程。这种上调可以响应于基因修饰或由基因修饰引起。
在本文中将术语“途径”或“代谢途径”理解为细胞中构建和分解分子的一系列化学反应。
核酸序列(即,多核苷酸)或蛋白质(即,多肽)对于宿主细胞的基因组可以是天然的或异源的。
关于宿主细胞的“天然”、“同源”或“内源”意指核酸序列确实天然存在于宿主细胞的基因组中,或者蛋白质由该细胞天然产生。术语“天然”、“同源”和“内源”在本文中可互换地使用。
如本文所用,“异源”可以指代核酸序列或蛋白质。例如,关于宿主细胞,“异源”可以指代不以该方式天然存在于宿主细胞的基因组中的多核苷酸,或者多肽或蛋白质不以该方式由该细胞天然产生。异源核酸序列是源自外来物种的核酸,或者如果来自相同物种,则通过故意的人为干预在组成和/或基因组基因座方面相对于其天然形式进行了实质修饰。例如,可操作地连接到天然结构基因的启动子来自与衍生出结构基因的物种不同的物种,或者如果来自相同物种,则一者或两者相对于其原始形式进行了实质修饰。异源蛋白可以源自外来物种,或者如果来自相同物种,则通过故意的人为干预相对于其原始形式进行了实质修饰。也就是说,异源蛋白表达涉及在宿主细胞中不以该方式天然表达的蛋白质的表达。术语“异源表达”是指在宿主细胞中表达异源核酸。异源蛋白在真核宿主细胞系统(诸如酵母)中的表达是本领域技术人员熟知的。包含编码具有特定活性的某种蛋白质或酶的基因的核酸序列的多核苷酸可以在这种真核系统中表达。在一些实施例中,转化/转染细胞可以用作表达酶的表达系统。异源蛋白在酵母中的表达是熟知的。Sherman,F.等人,Methodsin Yeast Genetics[酵母遗传学方法],(1986),由Cold Spring Harbor Laboratory[冷泉港实验室]出版是描述可用于在酵母中表达蛋白质的多种方法的公认的著作。两种广泛利用的酵母是酿酒酵母和巴斯德毕赤酵母。用于在酵母属和毕赤酵母属(Pichia)中表达的载体、菌株和方案是本领域已知的并且可从商业供应商(例如,英杰公司(Invitrogen))获得。合适的载体通常具有表达控制序列,诸如启动子(包括3-磷酸甘油酸激酶或醇氧化酶启动子)以及按需的复制起点、终止序列等。
如本文所用,“启动子”是指导(结构)基因或其他(部分的)核酸序列的转录的DNA序列。适当地,启动子位于基因的5'区,靠近(结构)基因的转录起始位点。启动子序列可以是组成型的、诱导型的或阻遏型的。在一个实施例中,不需要(外部)诱导物。
如本文所用,术语“载体”包括对常染色体表达载体和用于整合至染色体中的整合载体的提及。
术语“表达载体”是指包含编码目的多肽的区段的线性或环状的DNA分子,该区段在提供其转录的另外的核酸区段的控制下(即,与其可操作地连接)。此类另外的区段可以包括启动子和终止子序列,并且可以任选地包括一个或多个复制起点、一种或多种选择标记、增强子、多腺苷酸化信号等。表达载体通常衍生自质粒或病毒DNA,或者可以含有两者的元件。特别地,表达载体包含核酸序列,其在5'至3'方向上包含并且可操作地连接:(a)酵母识别的转录和翻译起始区,(b)目的多肽的编码序列,以及(c)酵母识别的转录和翻译终止区。
“质粒”是指自主复制的染色体外DNA,其不整合至微生物的基因组中并且通常在自然界中是环状的。
“整合载体”是指线性或环状的DNA分子,其可以掺入微生物的基因组中并且提供编码目的多肽的基因的稳定遗传。整合载体通常包含含有编码目的多肽的基因序列的一个或多个区段,该基因序列在提供其转录的另外的核酸区段的控制下(即,与其可操作地连接)。此类另外的区段可以包括启动子和终止子序列,以及驱动目的基因掺入靶细胞的基因组中(通常通过同源重组的方法)的一个或多个区段。典型地,整合载体将是可以转移至靶细胞中但具有在该生物体中无功能的复制子的载体。如果在该区段内包括适当的标记,则可以选择包含目的基因的区段的整合。
在本文中将“宿主细胞”理解为这样的细胞(诸如酵母细胞),其将被编码一种或多种异源蛋白的一个或多个核酸序列转化以构建转化细胞(也称为重组细胞)。例如,转化细胞可以含有载体并且可以支持载体的复制和/或表达。
如本文所用,“转化(transformation)”和“转化(transforming)”是指外源多核苷酸插入宿主细胞中,而不考虑用于插入的方法,例如直接摄取、转导、f-接合或电穿孔。外源多核苷酸可以作为非整合载体(例如,质粒)维持,或者替代性地可以整合至宿主细胞基因组中。如本文所用,“转化(transformation)”和“转化(transforming)”是指外源多核苷酸(即,外源核酸序列)插入宿主细胞中,而不考虑用于插入的方法,例如直接摄取、转导、f-接合或电穿孔。外源多核苷酸可以作为非整合载体(例如,质粒)维持,或者替代性地可以整合至宿主细胞基因组中。
在本文中将“组成性表达(constitutive expression)”和“组成性地表达(constitutively expressing)”理解为存在核酸序列的连续转录。也就是说,核酸序列以持续的方式进行转录。组成性地表达的基因总是“开启”。
在本文中将“厌氧组成性表达”理解为核酸序列在厌氧条件下在生物体中组成性地表达。也就是说,在厌氧条件下,核酸序列以持续的方式进行转录,即在此类厌氧条件下,基因总是“开启”。
在本文中将“破坏”理解为对活性的任何破坏,包括但不限于被破坏的基因的亲和力和与这种被破坏的基因互补的RNA的表达的缺失、突变和降低。它包括所有核酸修饰,诸如核苷酸缺失或取代、基因敲除以及影响对应多肽的翻译或转录和/或影响酶(特定)活性、其底物特异性和/或稳定性的其他行为。它还包括可以靶向基因的编码序列或启动子的修饰。基因破坏株(disruptant)是具有相应基因的一种或多种破坏的细胞。在本文中将对于酵母是天然的理解为基因在破坏前存在于酵母细胞中。
术语“编码(encoding)”具有与“编码(coding for)”相同的含义。因此,举例来说,“编码转酮酶的一个或多个基因(one or more genes encoding a transketolase)”具有与“编码转酮酶的一个或多个基因(one or more genes coding for a transketolase)”相同的含义。
就编码蛋白质或酶的基因或核酸序列而言,短语“编码X的一个或多个核酸序列”(其中X表示蛋白质)具有与“编码具有X活性的蛋白质的一个或多个核酸序列”相同的含义。因此,举例来说,“编码转酮酶的一个或多个核酸序列”具有与“编码具有转酮酶活性的蛋白质的一个或多个核酸序列”相同的含义。
缩写“NADH”是指烟酰胺腺嘌呤二核苷酸的还原氢化形式。缩写“NAD+”是指烟酰胺腺嘌呤二核苷酸的氧化形式。烟酰胺腺嘌呤二核苷酸可以充当所谓的辅因子,辅助细胞中的生化反应和/或转化。
“NADH依赖性(NADH dependent)”或“NAD+依赖性(NAD+dependent)”在本文中等同于NADH特异性(NADH specific),并且“NADH依赖性(NADH dependency)”或“NAD+依赖性(NAD+dependency)”在本文中等同于NADH特异性(NADH specificity)。
在本文中将“NADH依赖性”或“NAD+依赖性”酶理解为即与其他类型的辅因子相比仅依赖于作为辅因子的NADH/NAD+或主要依赖于作为辅因子的NADH/NAD+的酶。在本文中将“仅NADH/NAD+依赖性”酶理解为相对于NADPH/NADP+对NADH/NAD+具有绝对需求的酶。也就是说,它仅在将NADH/NAD+作为辅因子应用时才有活性。在本文中将“主要NADH/NDA+依赖性”酶理解为对作为辅因子的NADH/NAD+比对作为辅因子的NADPH/NADP+具有更高的特异性和/或更高的催化效率的酶。
酶的特异性特征可以通过以下公式来描述:
1<Km NADP+/Km NAD+<∞(无穷大)
其中Km是所谓的米氏常数。
对于主要NADH依赖性酶,优选地,KmNADP+/KmNAD+在1与1000之间、在1与500之间、在1与200之间、在1与100之间、在1与50之间、在1与10之间、在5与100之间、在5与50之间、在5与20之间或在5与10之间。
使用已知的分析技术、计算和方案可以将本文的酶的Km确定为分别针对NAD+和NADP+的酶特异性。这些例如在以下文献中有描述:Lodish等人,Molecular Cell Biology[分子细胞生物学]第6版,编辑Freeman,第80和81页,例如图3-图22。对于主要NADH依赖性酶,优选地,对作为辅因子的NADPH/NADP+的催化效率(kcat/Km)NADP+与对作为辅因子的NADH/NAD+的催化效率(kcat/Km)NAD+的比率(即,催化效率比率(kcat/Km)NADP+:(kcat/Km)NAD+)大于1:1,更优选等于或大于2:1,还更优选等于或大于5:1,甚至更优选等于或大于10:1,又甚至更优选等于或大于20:1,甚至还更优选等于或大于100:1,最优选等于或大于1000:1。没有上限,但是出于实际原因,主要NADH依赖性酶的催化效率比率(kcat/Km)NADP+:(kcat/Km)NAD+可以等于或小于1.000.000.000:1(即,1.109:1)。
酵母细胞
重组酵母细胞优选地是酵母细胞,或者衍生自宿主酵母细胞,来自酵母科(Saccharomycetaceae)的属或裂殖酵母科(Schizosaccharomycetaceae)的属。也就是说,优选地,衍生出重组酵母细胞的宿主细胞是来自酵母科的属或裂殖酵母科的属的酵母细胞。
合适的酵母细胞的示例包括酵母属,诸如酿酒酵母、真贝酵母(Saccharomyceseubayanus)、Saccharomyces jurei、巴氏酵母(Saccharomyces pastorianus)、Saccharomyces beticus、发酵性酵母(Saccharomyces fermentati)、奇异酵母(Saccharomyces paradoxus)、葡萄汁酵母(Saccharomyces uvarum)和贝酵母(Saccharomyces bayanus)。
合适的酵母细胞的示例进一步包括裂殖酵母属(Schizosaccharomyces),诸如粟酒裂殖酵母、日本裂殖酵母(Schizosaccharomyces japonicus)、八孢裂殖酵母(Schizosaccharomyces octosporus)和嗜冷裂殖酵母(Schizosaccharomycescryophilus)。
其他示例性酵母包括有孢圆酵母属(Torulaspora),诸如戴尔有孢圆酵母(Torulaspora delbrueckii);克鲁维酵母属(Kluyveromyces),诸如马克斯克鲁维酵母;毕赤酵母属,诸如树干毕赤酵母(Pichia stipitis)、巴斯德毕赤酵母或安格斯毕赤酵母;结合酵母属(Zygosaccharomyces),诸如拜氏结合酵母(Zygosaccharomyces bailii);酒香酵母属(Brettanomyces),诸如间型酒香酵母(Brettanomyces inter medius);布鲁塞尔酒香酵母(Brettanomyces bruxellensis)、异酒香酵母(Brettanomyces anomalus)、班图酒香酵母(Brettanomyces custersianus)、纳氏酒香酵母(Brettanomyces naardenensis)、南斯酒香酵母(Brettanomyces nanus),布鲁塞尔德克酵母(Dekkera bruxellensis)和异型德克酵母(Dekkera anomala);梅奇酵母属(Metschmkowia),伊萨酵母属(Issatchenkia),诸如东方伊萨酵母(Issatchenkia orientalis),克勒克酵母属(Kloeckera),诸如柠檬形克勒克酵母(Kloeckera apiculata);以及短梗霉属(Aureobasidium),诸如出芽短梗霉(Aureobasidium pullulans)。
酵母细胞优选地是裂殖酵母属的酵母细胞(在本文中也称为裂殖酵母属酵母细胞),或是酵母属的酵母细胞(在本文中也称为酵母属酵母细胞)。更优选地,酵母细胞是衍生自酿酒酵母种的酵母细胞(在本文中也称为酿酒酵母细胞)。也就是说,优选地,衍生出重组酵母细胞的宿主细胞是来自酿酒酵母种的酵母细胞。
优选地,酵母细胞是工业酵母细胞。酵母细胞在工业过程中的生存环境与在实验室中的生存环境显著不同。工业酵母细胞必须能够在多种环境条件下表现良好,这些环境条件在过程中可以变化。此类变化包括营养源、pH、乙醇浓度、温度、氧气浓度等的变化,它们一起对酵母细胞的细胞生长和乙醇生产具有潜在的影响。可以将工业酵母细胞理解为指代当与实验室对应物相比时具有更稳健的性能的酵母细胞。也就是说,当与实验室对应物相比时,当选自营养源、pH、乙醇浓度、温度、氧气浓度的组的一种或多种环境条件在发酵过程中变化时,工业酵母细胞显示出更少的性能变化。优选地,酵母细胞是在作为宿主的工业酵母细胞的基础上构建的,其中构建如下文所述进行。工业酵母细胞的示例是Ethanol(弗曼蒂斯公司(Fermentis))、/>(帝斯曼公司(DSM))和/>(拉曼公司(Lallemand))。
本文所述的重组酵母细胞可以衍生自能够产生发酵产物的任何宿主细胞。优选地,宿主细胞是酵母细胞,更优选如上文所述的工业酵母细胞。优选地,本文所述的酵母细胞衍生自具有生产乙醇的能力的宿主细胞。
因此,本文所述的酵母细胞可以通过本领域技术人员已知合适的任何技术而衍生自宿主细胞。此类技术可以包括诱变、重组DNA技术(包括但不限于CRISPR-CAS技术)、选择性和/或适应性进化、接合、细胞融合和/或酵母菌株之间的胞导中的任何一种或多种。适当地,通过一种或多种以上技术的组合将一种或多种所需基因掺入酵母细胞中。
根据本发明的重组酵母细胞优选地是抑制剂耐受的,即它们可以在它们典型地具有的共同预处理和水解条件的水平下经受住共同的抑制剂,使得重组酵母细胞可用于广泛的应用,即它对于不同的原料、不同的预处理方法和不同的水解条件具有高适应性。在一个实施例中,重组酵母细胞是抑制剂耐受的。抑制剂耐受性是对抑制性化合物的抗性。木质纤维素中抑制性化合物的存在和水平可以随着原料、预处理方法、水解方法的变化而广泛变化。抑制剂类别的示例是羧酸、呋喃和/或酚类化合物。羧酸的示例是乳酸、乙酸或甲酸。呋喃的示例是糠醛和羟基-甲基糠醛。酚类化合物的示例是香草醛(vannilin)、丁香酸、阿魏酸和香豆酸。抑制剂的典型量,对于羧酸:为数克/升,高达20克/升或更多,取决于原料、预处理和水解条件。对于呋喃:为数百毫克/升,高达数克/升,取决于原料、预处理和水解条件。对于酚类:为数十毫克/升,高达一克/升,取决于原料、预处理和水解条件。
在一个实施例中,重组酵母细胞是天然能够进行酒精发酵、优选厌氧酒精发酵的细胞。重组酵母细胞优选地对乙醇具有高耐受性,对低pH(即,能够在低于约5、约4、约3或约2.5的pH下生长)和有机物具有高耐受性,和/或对升高的温度具有高耐受性。
转酮酶
重组酵母细胞适当地功能性地表达编码具有转酮酶活性的蛋白质(EC 2.2.1.1)的一个或多个核酸序列,其中适当地,编码具有转酮酶活性的蛋白质的核酸序列的表达在启动子(“TKL启动子”)的控制下,该TKL启动子对转酮酶的厌氧/好氧表达比率为2或更高。用此适当地意指转酮酶(“TKL”)在厌氧条件下的表达是在好氧条件下的表达的至少2倍。上述可以替代性地表述为重组酵母细胞功能性地表达编码具有转酮酶活性的蛋白质(或简称为“转酮酶”或“TKL”)的一个或多个核酸序列,其中转酮酶在启动子(“TKL启动子”)的控制下,该启动子的TKL表达比率厌氧/好氧为2或更高。
具有转酮酶活性的蛋白质在本文中也被称为“转酮酶蛋白”、“转酮酶(transketolase enzyme)”或被简称为“转酮酶(transketolase)”。“转酮酶”在本文中缩写为“TKL”。
转酮酶是在酵母细胞的戊糖磷酸途径内有活性的酶。编码该戊糖磷酸途径的基因在本文中也被称为“PPP”基因。优选地,在本说明书中对戊糖磷酸途径的提及应理解为对戊糖磷酸途径的非氧化部分的提及。在戊糖磷酸途径内有活性的酶包括核酮糖-5-磷酸异构酶(RKI)、核酮糖-5-磷酸差向异构酶(RPE)、转酮酶(TKL)和转醛醇酶(TAL)。
在本文中将“转酮酶”(EC 2.2.1.1)定义为催化以下反应的酶:D-核糖5-磷酸+D-木酮糖5-磷酸<->景天庚酮糖7-磷酸+D-甘油醛3-磷酸,反之亦然。
该酶也被称为转羟乙醛基酶或景天庚酮糖-7-磷酸:D-甘油醛-3-磷酸转羟乙醛基酶。某种转酮酶可以进一步由其氨基酸序列定义。同样地,转酮酶可以进一步由编码转酮酶的核苷酸序列定义。如上文在定义下详细解释的,由编码酶的核苷酸序列定义的某种转酮酶包括(除非另有限制)与编码转酮酶的这种核苷酸序列杂交的核苷酸序列。
天然酵母可以包含一个或两个转酮酶基因。除了第一转酮酶基因“TKL1”之外,一些酵母(例如像酿酒酵母)还包含旁系同源基因“TKL2”(第二转酮酶基因)。
适当地,根据本发明的重组酵母细胞可以包含TKL1基因和/或TKL2基因。
也就是说,适当地,重组酵母细胞可以包含:
-编码TKL1的核酸序列(例如,基因“TKL1”);或者
-编码TKL2的核酸序列(例如,基因“TKL2”);或者
-编码TKL1的核酸序列(例如,基因“TKL1”)和编码TKL2的核酸序列(例如,基因“TKL2”)两者。
优选地,重组酵母细胞包含编码转酮酶TKL1的核苷酸序列。也就是说,优选地,重组酵母细胞包含TKL1基因。
重组酵母细胞可以包含一个或多个拷贝(适当地在等于或大于1个至等于或小于30个拷贝的范围内,优选地在等于或大于1个至等于或小于20个拷贝的范围内)的编码转酮酶的基因。更优选地,重组酵母细胞包含编码转酮酶的基因的一个、两个、三个、四个、五个、六个、七个、八个、九个、十个、十一个或十二个拷贝。
编码转酮酶的基因可以是同源基因、异源基因或者同源和异源基因的混合物。
重组酵母细胞可以是这样的重组酵母细胞,其中编码具有转酮酶活性的蛋白质的天然核酸序列在TKL启动子的控制下。
重组酵母细胞还可以功能性地表达编码具有转酮酶活性的蛋白质的异源核酸序列。因此,具有转酮酶活性的蛋白质可以是具有转酮酶活性的异源蛋白,即“异源转酮酶”。编码具有转酮酶活性的蛋白质的异源核酸序列(对应地异源转酮酶)可以以编码具有转酮酶活性的蛋白质的天然核酸序列(对应地天然转酮酶)的替代或附加的形式而存在。
当重组酵母细胞包含编码具有转酮酶活性的蛋白质的异源核酸序列(对应地异源转酮酶)时,编码具有转酮酶活性的蛋白质的一个或多个天然核酸序列可以被破坏或缺失。
替代性地,除了编码转酮酶的天然核酸序列之外,重组酵母细胞还可以包含编码转酮酶的异源核酸序列。因此,除了编码具有转酮酶活性的蛋白质的天然核酸序列之外(对应地除了天然转酮酶之外),重组酵母细胞还可以包含或可以不包含编码具有转酮酶活性的蛋白质的异源核酸序列(对应地异源转酮酶)。
如果重组酵母细胞包含编码转酮酶的异源核酸序列,则编码转酮酶的这种异源核酸序列优选地在TKL启动子的控制下。
优选地,重组酵母细胞包含编码转酮酶的至少一个异源核酸序列(对应地至少一种异源转酮酶)。
优选地,异源转酮酶包含以下或由以下组成:
-SEQ ID NO:9、SEQ ID NO:10、SEQ ID NO:11、SEQ ID NO:12、SEQ ID NO:13、SEQID NO:14、SEQ ID NO:15、SEQ ID NO:16、SEQ ID NO:17、SEQ ID NO:18、SEQ ID NO:19、SEQID NO:20、SEQ ID NO:21、SEQ ID NO:22、SEQ ID NO:23或SEQ ID NO:25的氨基酸序列;或者
-SEQ ID NO:9、SEQ ID NO:10、SEQ ID NO:11、SEQ ID NO:12、SEQ ID NO:13、SEQID NO:14、SEQ ID NO:15、SEQ ID NO:16、SEQ ID NO:17、SEQ ID NO:18、SEQ ID NO:19、SEQID NO:20、SEQ ID NO:21、SEQ ID NO:22、SEQ ID NO:23或SEQ ID NO:25的功能性同源物,该功能性同源物包含与SEQ ID NO:9、SEQ ID NO:10、SEQ ID NO:11、SEQ ID NO:12、SEQ IDNO:13、SEQ ID NO:14、SEQ ID NO:15、SEQ ID NO:16、SEQ ID NO:17、SEQ ID NO:18、SEQ IDNO:19、SEQ ID NO:20、SEQ ID NO:21、SEQ ID NO:22、SEQ ID NO:23或SEQ ID NO:25具有至少40%、至少45%、至少50%、至少55%、至少60%、至少65%、至少70%、至少75%、至少80%、至少85%、至少90%、至少95%、至少98%或至少99%序列同一性的氨基酸序列;或者
-SEQ ID NO:9、SEQ ID NO:10、SEQ ID NO:11、SEQ ID NO:12、SEQ ID NO:13、SEQID NO:14、SEQ ID NO:15、SEQ ID NO:16、SEQ ID NO:17、SEQ ID NO:18、SEQ ID NO:19、SEQID NO:20、SEQ ID NO:21、SEQ ID NO:22、SEQ ID NO:23或SEQ ID NO:25的功能性同源物,该功能性同源物包含当与SEQ ID NO:9、SEQ ID NO:10、SEQ ID NO:11、SEQ ID NO:12、SEQID NO:13、SEQ ID NO:14、SEQ ID NO:15、SEQ ID NO:16、SEQ ID NO:17、SEQ ID NO:18、SEQID NO:19、SEQ ID NO:20、SEQ ID NO:21、SEQ ID NO:22、SEQ ID NO:23或SEQ ID NO:25相比时具有一个或多个突变、取代、插入和/或缺失的氨基酸序列。
更优选地,与此类氨基酸序列相比,任何这种功能性同源物的氨基酸序列具有不超过300个、不超过250个、不超过200个、不超过150个、不超过100个、不超过75个、不超过50个、不超过40个、不超过30个、不超过20个、不超过10个或不超过5个氨基酸突变、取代、插入和/或缺失。
优选地,重组酵母细胞包含:
-编码选自由以下组成的组的一个或多个氨基酸序列的一个或多个核酸序列:SEQID NO:9、SEQ ID NO:10、SEQ ID NO:11、SEQ ID NO:12、SEQ ID NO:13、SEQ ID NO:14、SEQID NO:15、SEQ ID NO:16、SEQ ID NO:17、SEQ ID NO:18、SEQ ID NO:19、SEQ ID NO:20、SEQID NO:21、SEQ ID NO:22、SEQ ID NO:23和SEQ ID NO:25;和/或
-其功能性同源物,这些功能性同源物包含与那些核酸序列中任一个具有至少40%、至少45%、至少50%、至少55%、至少60%、至少65%、至少70%、至少75%、至少80%、至少85%、至少90%、至少95%、至少98%或至少99%序列同一性的核酸序列;和/或
-其功能性同源物,这些功能性同源物包含当与那些核酸序列中任一个相比时具有一个或多个突变、取代、插入和/或缺失的核酸序列。
更优选地,与此类核酸序列相比,任何这种功能性同源物的核酸序列具有不超过300个、不超过250个、不超过200个、不超过150个、不超过100个、不超过75个、不超过50个、不超过40个、不超过30个、不超过20个、不超过10个或不超过5个核酸突变、取代、插入和/或缺失。
更优选地,异源转酮酶衍生自法夫驹形氏酵母(一种也称为“巴斯德毕赤酵母”的酵母物种),例如像由SEQ ID NO:9、SEQ ID NO:10、SEQ ID NO:22、SEQ ID NO:23展示的多肽及其功能性同源物,这些功能性同源物包含与由SEQ ID NO:9、SEQ ID NO:10、SEQ IDNO:22或SEQ ID NO:23展示的多肽具有至少40%、至少45%、至少50%、至少55%、至少60%、至少65%、至少70%、至少75%、至少80%、至少85%、至少90%、至少95%、至少98%或至少99%序列同一性的氨基酸序列。
来自酿酒酵母物种的宿主细胞是优选的。酿酒酵母的天然转酮酶1的氨基酸序列由SEQ ID NO:7展示。编码酿酒酵母中的转酮酶1的天然核酸序列由SEQ ID NO:8展示。如果编码具有转酮酶活性的蛋白质的天然核酸序列在TKL启动子的控制下,则这种天然核酸序列优选地包含以下或由以下组成:SEQ ID NO:8的核酸序列或其功能性同源物,该功能性同源物包含与SEQ ID NO:8的核酸序列具有至少40%、至少45%、至少50%、至少55%、至少60%、至少65%、至少70%、至少75%、至少80%、至少85%、至少90%、至少95%、至少98%或至少99%序列同一性的核酸序列。类似地,如果编码具有转酮酶活性的蛋白质的天然核酸序列在TKL启动子的控制下,则这种具有转酮酶活性的蛋白质优选地包含以下或由以下组成:SEQ ID NO:7的氨基酸序列或其功能性同源物,该功能性同源物包含与SEQ ID NO:7的氨基酸序列具有至少40%、至少45%、至少50%、至少55%、至少60%、至少65%、至少70%、至少75%、至少80%、至少85%、至少90%、至少95%、至少98%或至少99%序列同一性的氨基酸序列
因此,合适的转酮酶的示例包括:
-具有SEQ ID NO:7、SEQ ID NO:9、SEQ ID NO:10、SEQ ID NO:11、SEQ ID NO:12、SEQ ID NO:13、SEQ ID NO:14、SEQ ID NO:15、SEQ ID NO:16、SEQ ID NO:17、SEQ ID NO:18、SEQ ID NO:19、SEQ ID NO:20、SEQ ID NO:21、SEQ SEQ ID NO:22、SEQ ID NO:23和SEQID NO:25的氨基酸序列的转酮酶;以及
-其功能性同源物,这些功能性同源物包含分别与SEQ ID NO:7、SEQ ID NO:9、SEQID NO:10、SEQ ID NO:11、SEQ ID NO:12、SEQ ID NO:13、SEQ ID NO:14、SEQ ID NO:15、SEQID NO:16、SEQ ID NO:17、SEQ ID NO:18、SEQ ID NO:19、SEQ ID NO:20、SEQ ID NO:21、SEQID NO:22、SEQ ID NO:23和/或SEQ ID NO:25的氨基酸序列具有至少40%、至少45%、至少50%、至少55%、至少60%、至少65%、至少70%、至少75%、至少80%、至少85%、至少90%、至少95%、至少98%或至少99%序列同一性的氨基酸序列;以及
-其功能性同源物,这些功能性同源物包含分别与SEQ ID NO:7、SEQ ID NO:9、SEQID NO:10、SEQ ID NO:11、SEQ ID NO:12、SEQ ID NO:13、SEQ ID NO:14、SEQ ID NO:15、SEQID NO:16、SEQ ID NO:17、SEQ ID NO:18、SEQ ID NO:19、SEQ ID NO:20、SEQ ID NO:21、SEQID NO:22、SEQ ID NO:23和/或SEQ ID NO:25的氨基酸序列相比具有一个或多个突变、取代、插入和/或缺失的氨基酸序列。
更优选地,分别与SEQ ID NO:7、SEQ ID NO:9、SEQ ID NO:10、SEQ ID NO:11、SEQID NO:12、SEQ ID NO:13、SEQ ID NO:14、SEQ ID NO:15、SEQ ID NO:16、SEQ ID NO:17、SEQID NO:18、SEQ ID NO:19、SEQ ID NO:20、SEQ ID NO:21、SEQ ID NO:22、SEQ ID NO:23和/或SEQ ID NO:25的氨基酸序列相比,任何此类功能性同源物的氨基酸序列具有不超过300个、不超过250个、不超过200个、不超过150个、不超过100个、不超过75个、不超过50个、不超过40个、不超过30个、不超过20个、不超过10个或不超过5个氨基酸突变、取代、插入和/或缺失。
为了允许任何异源转酮酶在宿主细胞中的良好表达,使用异源转酮酶可以是有利的,该异源转酮酶可以具有与宿主细胞的天然转酮酶的氨基酸序列具有等于或大于30%、等于或大于35%、等于或大于40%、等于或大于45%、等于或大于50%、等于或大于55%、等于或大于60%、等于或大于65%、等于或大于70%、等于或大于75%、等于或大于80%、等于或大于85%、等于或大于90%、等于或大于95%、等于或大于98%或者等于或大于99%序列同一性的氨基酸序列。
然而,异源转酮酶也可以优选地是不受宿主细胞的天然(即,内源)调控因子调控的异源转酮酶。也就是说,优选地,异源转酮酶是其活性不能被宿主细胞天然产生的分子增加或减少的转酮酶。为了避免天然调控因子,在宿主细胞中使用异源转酮酶可以是有利的,该异源转酮酶可以具有与宿主细胞的天然转酮酶的氨基酸序列具有等于或小于99%、等于或小于98%、等于或小于95%、等于或小于90%、等于或小于85%、等于或小于80%、等于或小于75%、等于或小于70%或者等于或小于65%序列同一性的氨基酸序列。
因此,更优选地,异源转酮酶具有与宿主细胞的天然转酮酶的氨基酸序列具有在以下范围内的同一性百分比的氨基酸序列:在等于或大于30%至等于或小于80%的范围内,更优选地在等于或大于35%至等于或小于75%的范围内,最优选地在等于或大于35%至等于或小于70%或甚至等于或小于65%的范围内。也就是说,更优选地,编码具有转酮酶活性的蛋白质的任何异源核酸序列是编码具有转酮酶活性的蛋白质的异源核酸序列,该蛋白质具有与宿主细胞的天然转酮酶的氨基酸序列具有在以下范围内的同一性百分比的氨基酸序列:在等于或大于30%至等于或小于80%的范围内,更优选地在等于或大于35%至等于或小于75%的范围内,最优选地在等于或大于35%至等于或小于70%或甚至等于或小于65%的范围内。
来自酿酒酵母物种的宿主细胞是优选的。如上文所指示,酿酒酵母的天然转酮酶1的氨基酸序列由SEQ ID NO:7展示,编码酿酒酵母中的转酮酶1的天然核酸序列由SEQ IDNO:8展示。
因此,重组酵母细胞也可以是重组酿酒酵母细胞,其功能性地表达编码具有转酮酶活性的蛋白质的异源核酸序列,其中:
-具有转酮酶活性的蛋白质包含以下氨基酸序列或由以下氨基酸序列组成,该氨基酸序列与SEQ ID NO:7的氨基酸序列具有在等于或大于30%至等于或小于80%的范围内、更优选地在等于或大于35%至等于或小于75%的范围内、最优选地在等于或大于35%至等于或小于70%或甚至等于或小于65%的范围内的序列同一性;和/或
-该异源核酸序列包含以下核酸序列或由以下核酸序列组成,该核酸序列与SEQID NO:8的核酸序列具有在等于或大于30%至等于或小于80%的范围内、更优选地在等于或大于35%至等于或小于75%的范围内、最优选地在等于或大于35%至等于或小于70%或甚至等于或小于65%的范围内的序列同一性。
因此,重组酵母细胞最优选地是重组酿酒酵母细胞,其功能性地表达编码具有转酮酶活性的蛋白质的异源核酸序列,其中:
重组酵母细胞可以包含编码异源转酮酶的异源核酸序列(例如,异源基因)的一个、两个或更多个拷贝和/或编码天然转酮酶的天然核酸序列(例如,天然基因)的一个、两个或更多个拷贝。最优选地,重组酵母细胞可以包含编码异源转酮酶的异源核酸序列(例如,异源基因)的一个、两个、三个、四个、五个、六个、七个、八个、九个、十个、十一个或十二个拷贝和/或编码天然转酮酶的天然核酸序列(例如,天然基因)的一个、两个、三个、四个、五个、六个、七个、八个、九个、十个、十一个或十二个拷贝。最优选地,除了编码对于宿主细胞天然的转酮酶的至少一种天然基因之外,重组酵母细胞还包含编码异源转酮酶的至少一种异源基因。
因此,优选地,重组酵母细胞是包含以下的一个、两个或更多个拷贝的重组酵母细胞:
-编码任何上述转酮酶的核酸序列;和/或
-SEQ ID NO:8和/或SEQ ID NO:24和/或SEQ ID NO:26的核酸序列;和/或-分别与SEQ ID NO:8和/或SEQ ID NO:24和/或SEQ ID NO:26的核酸序列具有至少40%、至少45%、至少50%、至少55%、至少60%、至少65%、至少70%、至少75%、至少80%、至少85%、至少90%、至少95%、至少98%或至少99%序列同一性的核酸序列;和/或
-分别与SEQ ID NO:8和/或SEQ ID NO:24和/或SEQ ID NO:26的核酸序列相比具有一个或多个突变、取代、插入和/或缺失的核酸序列,其中更优选地,分别与SEQ ID NO:8和/或SEQ ID NO:24和/或SEQ ID NO:26的核酸序列相比,该核酸序列具有不超过300个、不超过250个、不超过200个、不超过150个、不超过100个、不超过75个、不超过50个、不超过40个、不超过30个、不超过20个、不超过10个或不超过5个核酸突变、取代、插入和/或缺失。
PPP途径的一种或多种其他酶的任选的过表达
重组酵母细胞可以进一步任选地在其他PPP基因(即,RKI、RPE和TAL)中包含一种或多种基因修饰,其增加戊糖磷酸途径的通量。有利地,这种或此类基因修饰可以使得通过戊糖磷酸途径的非氧化部分的通量进一步增加。
因此,重组酵母细胞可以任选地包含一种或多种另外的基因修饰,以过表达戊糖磷酸途径(的非氧化部分)的一种或多种其他酶。例如,重组酵母细胞可以包含一个或多个核酸序列以过表达选自由以下组成的组的酶中的一种或多种:核酮糖-5-磷酸异构酶、核酮糖-5-磷酸差向异构酶和转醛醇酶。
在本文中将“核酮糖5-磷酸差向异构酶”(EC 5.1.3.1)定义为催化D-木酮糖5-磷酸向D-核酮糖5-磷酸的差向异构化(反之亦然)的酶。该酶也被称为磷酸核酮糖差向异构酶;赤藓糖-4-磷酸异构酶;磷酸戊酮糖3-差向异构酶;木酮糖磷酸3-差向异构酶;磷酸戊酮糖差向异构酶;核酮糖5-磷酸3-差向异构酶;D-核酮糖磷酸-3-差向异构酶;D-核酮糖5-磷酸差向异构酶;D-核酮糖-5-P 3-差向异构酶;D-木酮糖-5-磷酸3-差向异构酶;戊糖-5-磷酸3-差向异构酶;或D-核酮糖-5-磷酸3-差向异构酶。核酮糖5-磷酸差向异构酶可以进一步由其氨基酸序列定义。同样地,核酮糖5-磷酸差向异构酶可以由编码酶的核苷酸序列以及与编码核酮糖5-磷酸差向异构酶的参考核苷酸序列杂交的核苷酸序列来定义。编码核酮糖5-磷酸差向异构酶的核苷酸序列在本文中被称为RPE或RPE1。
在本文中将“核酮糖5-磷酸异构酶”(EC 5.3.1.6)定义为催化D-核糖5-磷酸向D-核酮糖5-磷酸的直接异构化(反之亦然)的酶。该酶也被称为磷酸戊糖异构酶;磷酸核糖异构酶;核糖磷酸异构酶;5-磷酸核糖异构酶;D-核糖5-磷酸异构酶;D-核糖-5-磷酸酮醇-异构酶;或D-核糖-5-磷酸醛糖-酮糖-异构酶。核酮糖5-磷酸异构酶可以进一步由其氨基酸序列定义。同样地,核酮糖5-磷酸异构酶可以由编码酶的核苷酸序列以及与编码核酮糖5-磷酸异构酶的参考核苷酸序列杂交的核苷酸序列来定义。编码核酮糖5-磷酸异构酶的核苷酸序列在本文中被称为RKI或RKI1。
在本文中将“转醛醇酶”(EC 2.2.1.2)定义为催化以下反应的酶:景天庚酮糖7-磷酸+D-甘油醛3-磷酸<->D-赤藓糖4-磷酸+D-果糖6-磷酸,反之亦然。该酶也被称为二羟基丙酮转移酶;二羟基丙酮合酶;甲醛转酮酶;或景天庚酮糖-7-磷酸:D-甘油醛-3-磷酸甘油酮转移酶。转醛醇酶可以进一步由其氨基酸序列定义。同样地,转醛醇酶可以由编码酶的核苷酸序列以及与编码转醛醇酶的参考核苷酸序列杂交的核苷酸序列来定义。编码转酮酶的核苷酸序列在本文中被称为TAL或TAL1。
TKL启动子
重组酵母细胞适当地功能性地表达编码具有转酮酶活性的蛋白质(EC 2.2.1.1)的一个或多个核酸序列,其中适当地,编码具有转酮酶活性的蛋白质的核酸序列的表达在启动子(“TKL启动子”)的控制下,该TKL启动子对转酮酶的厌氧/好氧表达比率为2或更高。用此适当地意指转酮酶(“TKL”)在厌氧条件下的表达是在好氧条件下的表达的至少2倍。上述可以替代性地表述为重组酵母细胞功能性地表达编码具有转酮酶活性的蛋白质(或简称为“转酮酶”或“TKL”)的一个或多个核酸序列,其中转酮酶在启动子(“TKL启动子”)的控制下,该启动子的TKL表达比率厌氧/好氧为2或更高。
TKL启动子可以适当地可操作地连接到编码具有转酮酶活性的蛋白质的核酸序列。优选地,TKL启动子位于TKL基因的5'区;更优选地,它位于靠近TKL基因的转录起始位点。如上文所指示,TKL基因优选地是TKL1或TKL2基因。
优选地,TKL启动子是ROX1受抑制的。在本文中ROX1是一种或多种缺氧基因的血红素依赖性阻遏物;其介导缺氧诱导基因(诸如COX5b和CYC7)的好氧转录抑制;阻遏物功能通过响应于氧化应激而降低启动子占有率来调控;并且含有负责DNA结合活性的HMG结构域;参与高渗应激抗性。ROX1受氧气调控。
不希望受任何类型的理论的限制,据信ROX1的调控可以起如下作用:根据Kwast等人,"Genomic Analysis of Anaerobically induced genes in Saccharomycescerevisiae:Functional roles of ROX1 and other factors in mediating the anoxicresponse"[“酿酒酵母中厌氧诱导基因的基因组分析:ROX1和其他因子在介导缺氧反应中的功能作用”],(2002),Journal of bacteriology[细菌学杂志]第184卷,第1期第250-265页,通过援引并入本文:“尽管Rox1以O2依赖性方式起作用,但其表达是氧气(血红素)依赖性的,由血红素依赖性转录因子Hap1激活[19]。因此,随着氧气水平下降至限制血红素生物合成的水平[20],ROX1不再转录[21],其蛋白质水平下降[22],并且它调控的基因去抑制”。
其他细节和合适的基序由以下文献提供:Keng,T.(1992),"HAP1 and ROX1 forma regulatory pathway in the repression of HEM13 transcription inSaccharomyces cerevisiae"[“HAP1和ROX1在酿酒酵母中形成抑制HEM13转录的调控途径”],Mol.Cell.Biol.[分子与细胞生物学]12:第2616–2623页,以及Ter Kinde和deSteensma,"A microarray-assisted screen for potential Hap1 and Rox1 targetgenes in Saccharomyces cerevisiae"[“酿酒酵母中潜在的Hap1和Rox1靶基因的微阵列辅助筛选”],(2002),Yeast[酵母]19:第825-840页,通过援引并入本文。
优选地,TKL启动子包含ROX1结合基序。TKL启动子可以适当地包含一个或多个ROX1结合基序。
更优选地,TKL启动子可以在其核酸序列中包含基序NNNATTGTTNNN的一个或多个拷贝。在本文中“N”代表选自由以下组成的组的核酸:腺嘌呤(A)、鸟嘌呤(G)、胞嘧啶(C)和胸腺嘧啶(T)。这种基序由SEQ ID NO:27展示。
更优选地,TKL启动子包含以下或由以下组成:与选自由以下组成的列表的基因的优选地天然的启动子的核酸序列相同的核酸序列:FET4、ANB1、YHR048W、DAN1、AAC3、TIR2、DIP5、HEM13、YNR014W、YAR028W、FUN 57、COX5B、OYE2、SUR2、FRDS1、PIS1、LAC1、YGR035C、YAL028W、EUG1、HEM14、ISU2、ERG26、YMR252C和SML1,更优选FET4、ANB1、YHR048W、DAN1、AAC3、TIR2、DIP5和HEM13,或其功能性同源物,该功能性同源物包含与以上项具有至少40%、至少45%、至少50%、至少55%、至少60%、至少65%、至少70%、至少75%、至少80%、至少85%、至少90%、至少95%、至少98%或至少99%序列同一性的核酸序列。在本文中对天然启动子的提及是指对于宿主细胞是天然的启动子。
优选地,重组酵母细胞是重组酿酒酵母细胞;并且优选地,TKL启动子是选自由以下组成的列表的酿酒酵母基因的天然启动子:FET4、ANB1、YHR048W、DAN1、AAC3、TIR2、DIP5、HEM13、YNR014W、YAR028W、FUN 57、COX5B、OYE2、SUR2、FRDS1、PIS1、LAC1、YGR035C、YAL028W、EUG1、HEM14、ISU2、ERG26、YMR252C和SML1。
另外或在替代方案中,TKL启动子优选地在其核酸序列中包含以下基序的一个或多个拷贝:TCGTTYAG和/或AAAAATTGTTGA。在本文中“Y”代表C或T。AAAAATTGTTGA基序由SEQID NO:28展示。
TKL启动子还可以包含这样的核酸序列或由其组成,该核酸序列与DAN、TIR或PAU基因的优选地天然的启动子的核酸序列相同。例如,TKL启动子可以适当地包含以下或由以下组成:选自由以下组成的列表的基因的优选地天然的启动子的核酸序列:TIR2、DAN1、TIR4、TIR3、PAU7、PAU5、YLL064C、YGR294W、DAN3、YIL176C、YGL261C、YOL161C、PAU1、PAU6、DAN2、YDR542W、YIR041W、YKL224C、PAU3、YLL025W、YOR394W、YHL046C、YMR325W、YAL068C、YPL282C、PAU2和PAU4,或其功能性同源物,该功能性同源物包含与以上项具有至少40%、至少45%、至少50%、至少55%、至少60%、至少65%、至少70%、至少75%、至少80%、至少85%、至少90%、至少95%、至少98%或至少99%序列同一性的核酸序列。在本文中对天然启动子的提及是指对于宿主细胞是天然的启动子。
优选地,重组酵母细胞是重组酿酒酵母细胞;并且优选地,TKL启动子是选自由以下组成的列表的酿酒酵母基因的天然启动子:TIR2、DAN1、TIR4、TIR3、PAU7、PAU5、YLL064C、YGR294W、DAN3、YIL176C、YGL261C、YOL161C、PAU1、PAU6、DAN2、YDR542W、YIR041W、YKL224C、PAU3、YLL025W、YOR394W、YHL046C、YMR325W、YAL068C、YPL282C、PAU2和PAU4。
更优选地,TKL启动子可以包含以下或由以下组成:与选自由以下组成的列表的基因的优选地天然的启动子的核酸序列相同的序列:TIR2、DAN1、TIR4、TIR3、PAU7、PAU5、YLL064C、YGR294W、DAN3、YIL176C、YGL261C、YOL161C、PAU1、PAU6、DAN2、YDR542W、YIR041W、YKL224C、PAU3和YLL025W,或其功能性同源物,该功能性同源物包含与以上项具有至少40%、至少45%、至少50%、至少55%、至少60%、至少65%、至少70%、至少75%、至少80%、至少85%、至少90%、至少95%、至少98%或至少99%序列同一性的核酸序列。
酿酒酵母ANB1启动子的核酸序列展示于SEQ ID NO:29中。酿酒酵母DAN1启动子的核酸序列展示于SEQ ID NO:30中。
因此,优选的TKL启动子可以包含以下或由以下组成:
-SEQ ID NO:29或SEQ ID NO:30的核酸序列;或者
-SEQ ID NO:29或SEQ ID NO:30的核酸序列的功能性同源物,该功能性同源物与SEQ ID NO:29或SEQ ID NO:30的核酸序列具有至少40%、至少45%、至少50%、至少55%、至少60%、至少65%、至少70%、至少75%、至少80%、至少85%、至少90%、至少95%、至少98%或至少99%序列同一性;或者
-SEQ ID NO:29或SEQ ID NO:30的核酸序列的功能性同源物,该功能性同源物与SEQ ID NO:29或SEQ ID NO:30的核酸序列相比具有一个或多个突变、取代、插入和/或缺失,其中更优选地,与SEQ ID NO:29或SEQ ID NO:30的核酸序列相比,核酸序列具有不超过300个、不超过250个、不超过200个、不超过150个、不超过100个、不超过75个、不超过50个、不超过40个、不超过30个、不超过20个、不超过10个或不超过5个核酸突变、取代、插入和/或缺失。
TKL启动子也可以是合成的寡核苷酸。也就是说,TKL启动子可以是人工寡核苷酸合成的产物。人工寡核苷酸合成是合成生物学中用于在实验室中产生人工寡核苷酸(诸如基因)的方法。商业基因合成服务现在可从世界各地的许多公司获得,其中的一些已经围绕该任务建立了其商业模式。当前的基因合成方法最常基于有机化学和分子生物学技术的组合,并且可以“从头”合成整个基因,而无需前体模板DNA。
TKL启动子的TKL表达比率厌氧/好氧为2或更高,优选3或更高、4或更高、5或更高、6或更高、7或更高、8或更高、9或更高、10或更高、20或更高或者50或更高。2或更高的TKL表达比率厌氧/好氧适当地意指,在进一步相同的表达条件下,转酮酶(“TKL”)在厌氧条件下的表达是在好氧条件下的表达的至少2倍。
没有上限,并且TKL启动子可以是允许促进转酮酶基因仅在厌氧条件下表达而不在好氧条件下表达的TKL启动子。
出于实际原因,可以考虑在等于或大于2至等于或小于10指数10(即,1010)或至或小于10指数4(即,104)的范围内的TKL表达比率厌氧/好氧
如上文所指示,本文的“表达”是指基因转录成结构RNA(rRNA、tRNA)或信使RNA(mRNA),随后翻译成蛋白质。
可以例如通过测量在好氧和厌氧条件下生长的细胞的转酮酶(TKL)蛋白质的量来确定TKL表达比率。可以通过蛋白质组学或已知定量蛋白质的量的任何其他方法来确定TKL蛋白的量。
也可以通过测量在好氧和厌氧条件下(例如,在无细胞提取物中)生长的细胞的转酮酶(TKL)活性来确定水平或转酮酶(TKL)表达比率。
作为上述的附加或替代,可以通过测量在好氧和厌氧条件下生长的细胞的TKL基因的转录水平(例如,作为mRNA的量)来确定水平或TKL表达比率。技术人员知道如何使用本领域通常已知的方法(例如,Q-PCR、实时PCR、RNA印迹、RNA-seq)来确定翻译水平。
TKL启动子有利地使得转酮酶在厌氧条件下的表达能够高于在好氧条件下的表达。在根据本发明的方法中,重组酵母细胞优选地表达转酮酶,其中在厌氧条件下表达的转酮酶的量是在好氧条件下表达的转酮酶的量的倍数,并且其中该倍数优选地是2或更大,更优选3或更大、4或更大、5或更大、6或更大、7或更大、8或更大、9或更大、10或更大、20或更大或者50或更大。
增加的通量
优选地,在本文中将对PPP基因(即,关于TKL1和任选地RKI、RPE和TAL)进行的一种或多种基因修饰使得戊糖磷酸途径的非氧化部分的通量增加理解为意指与除使得通量增加的基因修饰外在遗传上相同的菌株中的通量相比,使通量增加至少约1.1倍、约1.2倍、约1.5倍、约2倍、约5倍、约10倍或约20倍的修饰。戊糖磷酸途径的非氧化部分的通量可以通过以下方式测量:以木糖作为唯一碳源使修饰的宿主生长,确定比木糖消耗速率,并且如果产生任何木糖醇,则从比木糖消耗速率中减去比木糖醇产生速率。然而,戊糖磷酸途径的非氧化部分的通量与以木糖作为唯一碳源的生长速率成比例,优选地与以木糖作为唯一碳源的厌氧生长速率成比例。在以木糖作为唯一碳源的生长速率(μmax)与戊糖磷酸途径的非氧化部分的通量之间存在线性关系。比木糖消耗速率(Qs)等于生长速率(μ)除以靠糖的生物量产率(Yxs),因为靠糖的生物量产率是恒定的(在一组给定的条件下:厌氧、生长培养基、pH、菌株的遗传背景等;即,Qs=μ/Yxs)。因此,戊糖磷酸途径的非氧化部分的通量增加可以从除转运(摄取是限制性的)之外的这些条件下的最大生长速率的增加推断出。
可以以多种方式将增加戊糖磷酸途径的通量的一种或多种基因修饰引入宿主细胞中。这些包括例如实现木酮糖激酶和/或非氧化部分戊糖磷酸途径的一种或多种酶的较高稳态活性水平和/或非特异性醛糖还原酶活性的降低的稳态水平。稳态活性水平的这些变化可以通过选择突变体(自发的或由化学品或辐射诱导的)和/或通过重组DNA技术(例如,分别通过编码酶或调节这些基因的因子的基因的过表达或失活)来实现。
在优选的宿主细胞中,基因修饰包括(非氧化部分)戊糖磷酸途径的至少一种酶的过表达。优选地,该酶选自由以下组成的组:编码核酮糖-5-磷酸异构酶、核酮糖-5-磷酸差向异构酶、转酮酶和转醛醇酶的酶。可以过表达(非氧化部分)戊糖磷酸途径的酶的多种组合。例如,过表达的酶可以是至少核酮糖-5-磷酸异构酶和核酮糖-5-磷酸差向异构酶;或至少核酮糖-5-磷酸异构酶和转酮酶;或至少核酮糖-5-磷酸异构酶和转醛醇酶;或至少核酮糖-5-磷酸差向异构酶和转酮酶;或至少核酮糖-5-磷酸差向异构酶和转醛醇酶;或至少转酮酶和转醛醇酶;或至少核酮糖-5-磷酸差向异构酶、转酮酶和转醛醇酶;或至少核酮糖-5-磷酸异构酶、转酮酶和转醛醇酶;或至少核酮糖-5-磷酸异构酶、核酮糖-5-磷酸差向异构酶和转醛醇酶;或至少核酮糖-5-磷酸异构酶、核酮糖-5-磷酸差向异构酶和转酮酶。在本发明的一个实施例中,在宿主细胞中过表达核酮糖-5-磷酸异构酶、核酮糖-5-磷酸差向异构酶、转酮酶和转醛醇酶中的每一种。更优选的是这样的宿主细胞,其中基因修饰至少包括转酮酶和转醛醇酶两者的过表达,因为这种宿主细胞已经能够靠木糖厌氧生长。事实上,在一些条件下,仅过表达转酮酶和转醛醇酶的宿主细胞已经具有与过表达所有四种酶(即,核酮糖-5-磷酸异构酶、核酮糖-5-磷酸差向异构酶、转酮酶和转醛醇酶)的宿主细胞相同的靠木糖厌氧生长的速率。此外,与仅过表达异构酶或仅过表达差向异构酶的宿主细胞相比,过表达核酮糖-5-磷酸异构酶和核酮糖-5-磷酸差向异构酶两者的宿主细胞是优选的,因为这些酶中仅一种的过表达可能产生代谢失衡。
硝酸盐还原酶
重组酵母细胞还可以有利地包含(对应地功能性地表达)编码具有NADH依赖性硝酸盐还原酶活性的酶的核酸序列和/或编码具有NADH依赖性亚硝酸盐还原酶活性的酶的核酸序列。在2020年10月5日向美国专利局提交的非预先公开的美国专利申请US 63087642中已经描述了表达这种替代性的氧化还原汇的细节,将其内容通过援引并入本文。
硝酸盐还原酶(NR)催化硝酸根(NO3 -)还原为亚硝酸根(NO2 -)。亚硝酸盐还原酶催化亚硝酸盐还原为氨(NH3)。硝酸盐还原酶和/或亚硝酸盐还原酶可以是某些细胞中所谓的氮同化途径的一部分。包含硝酸盐还原酶活性和/或亚硝酸盐还原酶活性的细胞包括某些植物细胞和细菌细胞以及少数酵母细胞。正如Linder所指出的,同化除氨以外的无机氮源的能力被认为在芽殖酵母中很罕见。天然能够同化硝酸盐或亚硝酸盐的少数真菌包括食腺嘌呤芽生葡萄孢酵母(毛红曲霉科)、博伊丁假丝酵母(毕赤酵母科)、杰丁塞伯林德纳氏酵母(法夫酵母科)和多形汉逊酵母(毕赤酵母科)。
优选地,如本文所述的重组酵母细胞包含编码NADH依赖性硝酸盐还原酶的至少一个或多个基因。
在本文中将NADH依赖性硝酸盐还原酶理解为仅依赖于作为辅因子的NADH或主要依赖于作为辅因子的NADH的硝酸盐还原酶。优选地,该NADH依赖性硝酸盐还原酶对作为辅因子的NADPH/NADP+的催化效率(kcat/Km)NADP+与对作为辅因子的NADH/NAD+的催化效率(kcat/Km)NAD+的比率(即,催化效率比率(kcat/Km)NADP+:(kcat/Km)NAD+)大于1:1,更优选地等于或大于2:1,还更优选地等于或大于5:1,甚至更优选地等于或大于10:1,又甚至更优选地等于或大于20:1,甚至还更优选地等于或大于100:1,最优选地等于或大于1000:1。没有上限,但是出于实际原因,NADH依赖性硝酸盐还原酶的催化效率比率(kcat/Km)NADP+:(kcat/Km)NAD+可以等于或小于1.000.000.000:1(即,1.109)。最优选地,NADH依赖性硝酸盐还原酶仅依赖于作为辅因子的NADH/NAD+。也就是说,最优选地,NADH依赖性硝酸盐还原酶绝对需要作为辅因子的NADH/NAD+,而不是作为辅因子的NADPH/NADP+。
优选地,NADH依赖性硝酸盐还原酶是具有酶分类EC 1.7.1.1(即,具有EC编号EC1.7.1.1)或酶分类EC.1.6.6.1(即,具有EC编号1.6.6.1)的NADH依赖性硝酸盐还原酶。适当地,NADH依赖性硝酸盐还原酶(也称为NADH依赖性硝酸盐氧化还原酶)是催化至少以下化学反应的酶:
硝酸盐+NADH+H+→亚硝酸盐+NAD++H2O
合适的NADH依赖性硝酸盐还原酶可以包括如获自或衍生自以下的一种或多种NADH依赖性硝酸盐还原酶:麦仙翁(Agrostemma githago)、绿穗苋(Amaranthushybridus)、三色苋(Amaranthus tricolor)、布朗纤维藻(Ankistrodesmus braunii)、拟南芥、黑曲霉、构巢曲霉、蛋白核小球藻(Auxenochlorella pyrenoidosa)、慢生根瘤菌属(Bradyrhizobium)物种、慢生根瘤菌属物种750、芥菜(Brassica juncea)、甘蓝(Brassicaoleracea)、野茶树(Camellia sinensis)、博伊丁假丝酵母、产朊假丝酵母(Candidautilis)、辣椒(Capsicum frutescens)、藜(Chenopodium album)、杰丁塞伯林德纳氏酵母、芥菜、甘蓝、野茶树、辣椒、藜、莱茵衣藻(Chlamydomonas reinhardtii)、暗色小球藻(Chlorella fusca)、小球藻属(Chlorella)物种、小球藻属柏林物种(Chlorellasp.Berlin)、普通小球藻(Chlorella vulgaris)、威氏海链藻(Conticribraweissflogii)、黄瓜(Cucumis sativus)、笋瓜(Cucurbita maxima)、西葫芦(Cucurbitapepo)、南瓜属(Cucurbita)物种、盐生杜氏藻(Dunaliella tertiolecta)、赫氏圆石藻(Emiliania huxleyi)、构巢裸胞壳、尖孢镰刀菌(Fusarium oxysporum)、尖孢镰刀菌JCM11502、水甜茅(Glyceria maxima)、大豆(Glycine max)、陆地棉(Gossypium hirsutum)、智利江蓠(Gracilaria chilensis)、细基江蓠(Gracilaria tenuistipitata)、向日葵(Helianthus annuus)、大麦(Hordeum vulgare)、莴苣(Lactuca sativa)、浮萍(Lemnaminor)、白羽扇豆(Lupinus albus)、结核分枝杆菌、皱叶烟草(Nicotianaplumbaginifolia)、烟草(Nicotiana tabacum)、安格斯汉逊酵母(Ogataea angusta)、多形汉逊酵母、水稻(Oryza sativa)、南极棕囊藻(Phaeocystis Antarctica)、芦苇(Phragmites australis)、小立碗藓(Physcomitrella patens)、紫花豌豆(Pisumarvense)、大金发藓(Polytrichum commune)、条斑紫菜(Pyropia yezoensis)、萝卜(Raphanus sativus)、荚膜红细菌(Rhodobacter capsulatus)、荚膜红细菌E1F1、蓖麻(Ricinus communis)、小翠云(Selaginella kraussiana)、白芥子(Sinapis alba)、中肋骨条藻(Skeletonema costatum)、热带骨条藻(Skeletonema tropicum)、番茄(Solanumlycopersicum)、菠菜、裸花碱蓬(Suaeda maritima)、纤细四爿藻(Tetraselmisgracilis)、龟裂泰来草(Thalassia Testudinum)、南极海链藻(ThalassiosiraAntarctica)、假微型海链藻(Thalassiosira pseudonana)、小麦(Triticum aestivum)、圆锥小麦杜兰亚种(Triticum turgidum subsp durum)、石莼属(Ulva)物种和/或玉蜀黍;和/或此类NADH依赖性硝酸盐还原酶的功能性同源物,这些功能性同源物包含与上述此类NADH依赖性硝酸盐还原酶中的一种或多种具有至少50%、60%、65%、70%、75%、80%、85%、90%、95%、98%或至少99%氨基酸序列同一性的氨基酸序列;和/或此类NADH依赖性硝酸盐还原酶的功能性同源物,这些功能性同源物包含与上述此类NADH依赖性硝酸盐还原酶中的一种或多种的氨基酸序列相比具有一个或几个取代、插入和/或缺失的氨基酸序列,其中优选地,与上述此类NADH依赖性硝酸盐还原酶相比,任何以上功能性同源物的氨基酸序列具有不超过300个、250个、200个、150个、100个、75个、50个、40个、30个、20个、10个或5个氨基酸取代、插入和/或缺失。
优选的NADH依赖性硝酸盐还原酶包括如获自或衍生自以下的NADH依赖性硝酸盐还原酶:博伊丁假丝酵母(能够利用NADH和NADPH两者作为电子供体的硝酸盐还原酶)、产朊假丝酵母(能够利用NADH和NADPH两者作为电子供体的硝酸盐还原酶)、尖孢镰刀菌(如由Fujii等人在Biosci.Biotechnol.Biochem.[生物科学,生物技术和生物化学],72(2),第412-420页,2008上发表的题为“Denitrification by the Fungus Fusarium oxysporumInvolves NADH-Nitrate Reductase”[“真菌尖孢镰刀菌的反硝化作用涉及NADH-硝酸盐还原酶”]的文章中所述,该文章通过援引并入本文)、菠菜和玉蜀黍。
因此,优选的NADH依赖性硝酸盐还原酶包括:这样的NADH依赖性硝酸盐还原酶,其包含具有如本文所述的SEQ ID NO:1和/或SEQ ID NO:2的氨基酸序列的多肽;和/或SEQ IDNO:1和/或SEQ ID NO:2的功能性同源物,这些功能性同源物包含分别与SEQ ID NO:1和/或SEQ ID NO:2中的一个或多个具有至少40%、50%、60%、65%、70%、75%、80%、85%、90%、95%、98%或至少99%氨基酸序列同一性的氨基酸序列;和/或SEQ ID NO:1和/或SEQID NO:2的功能性同源物,这些功能性同源物包含分别与SEQ ID NO:1和/或SEQ ID NO:2中的一个或多个的氨基酸序列相比具有一个或几个取代、插入和/或缺失的氨基酸序列。优选地,分别与SEQ ID NO:1和/或SEQ ID NO:2相比,任何以上功能性同源物的氨基酸序列具有不超过300个、250个、200个、150个、100个、75个、50个、40个、30个、20个、10个或5个氨基酸取代、插入和/或缺失。
优选地,重组酵母细胞包含编码具有NADH依赖性硝酸盐还原酶活性的酶的外源基因。更优选地,重组酵母细胞包含编码具有NADH依赖性硝酸盐还原酶活性的酶的外源基因,该酶选自由如获自或衍生自以下的NADH依赖性硝酸盐还原酶组成的组:麦仙翁、绿穗苋、三色苋、布朗纤维藻、拟南芥、黑曲霉、构巢曲霉、蛋白核小球藻、慢生根瘤菌属物种、慢生根瘤菌属物种750、芥菜、甘蓝、野茶树、博伊丁假丝酵母、产朊假丝酵母、辣椒、藜、杰丁塞伯林德纳氏酵母、芥菜、甘蓝、野茶树、辣椒、藜、莱茵衣藻、暗色小球藻、小球藻属物种、小球藻属柏林物种、普通小球藻、威氏海链藻、黄瓜、笋瓜、西葫芦、南瓜属物种、盐生杜氏藻、赫氏圆石藻、构巢裸胞壳、尖孢镰刀菌、尖孢镰刀菌JCM 11502、水甜茅、大豆、陆地棉、智利江蓠、细基江蓠、向日葵、大麦、莴苣、浮萍、白羽扇豆、结核分枝杆菌、皱叶烟草、烟草、安格斯汉逊酵母、多形汉逊酵母、水稻、南极棕囊藻、芦苇、小立碗藓、紫花豌豆、大金发藓、条斑紫菜、萝卜、荚膜红细菌、荚膜红细菌E1F1、蓖麻、小翠云、白芥子、中肋骨条藻、热带骨条藻、番茄、菠菜、裸花碱蓬、纤细四爿藻、龟裂泰来草、南极海链藻、假微型海链藻、小麦、圆锥小麦杜兰亚种、石莼属物种和玉蜀黍,以及此类NADH依赖性硝酸盐还原酶的功能性同源物,这些功能性同源物包含与上述此类NADH依赖性硝酸盐还原酶中的一种或多种具有至少50%、60%、65%、70%、75%、80%、85%、90%、95%、98%或至少99%氨基酸序列同一性的氨基酸序列;以及此类NADH依赖性硝酸盐还原酶的功能性同源物,这些功能性同源物包含与上述此类NADH依赖性硝酸盐还原酶中的一种或多种的氨基酸序列相比具有一个或几个取代、插入和/或缺失的氨基酸序列,其中优选地,与上述此类NADH依赖性硝酸盐还原酶相比,任何以上功能性同源物的氨基酸序列具有不超过300个、250个、200个、150个、100个、75个、50个、40个、30个、20个、10个或5个氨基酸取代、插入和/或缺失。
适当地,重组酵母细胞可以包含编码SEQ ID NO:1和/或SEQ ID NO:2中任一个的氨基酸序列或者与SEQ ID NO:1和/或SEQ ID NO:2中任一个的氨基酸序列相比具有一个或几个取代、插入和/或缺失的氨基酸序列的核苷酸序列。优选地,分别与SEQ ID NO:1和/或SEQ ID NO:2相比,氨基酸序列具有不超过300个、250个、200个、150个、100个、75个、50个、40个、30个、20个、10个或5个氨基酸取代、插入和/或缺失。
重组酵母细胞可以将编码以上NADH依赖性硝酸盐还原酶的一个或多个基因与编码NADPH依赖性亚硝酸盐还原酶的一个或多个基因组合。然而,优选地,重组酵母细胞将编码以上NADH依赖性硝酸盐还原酶的一个或多个基因与编码NADH依赖性亚硝酸盐还原酶的一个或多个基因组合。
合适的NADH依赖性硝酸盐还原酶的示例、其UniProt数据库登录号(可以在Uniprot网站(www.uniprot.org/,截至2020年10月4日)上找到)、其描述、可以衍生出它们的生物体及其与SEQ ID NO:1的氨基酸序列同一性列于下表12中。
表12:合适的NADH依赖性硝酸盐还原酶的示例、其UniProt数据库登录号(可以在Uniprot网站(www.uniprot.org/,截至2020年10月4日)上找到)、其描述、可以衍生出它们的生物体及其与SEQ ID NO:1的氨基酸序列同一性列于下表12中。
/>
/>
/>
/>
/>
亚硝酸盐还原酶
如上文所指示,亚硝酸盐还原酶催化亚硝酸盐还原为氨(NH3)。
优选地,如本文所述的重组酵母细胞包含编码NADH依赖性亚硝酸盐还原酶的至少一个或多个基因。
在本文中将NADH依赖性亚硝酸盐还原酶理解为仅依赖于作为辅因子的NADH或主要依赖于作为辅因子的NADH的亚硝酸盐还原酶。优选地,该NADH依赖性亚硝酸盐还原酶对作为辅因子的NADPH/NADP+的催化效率(kcat/Km)NADP+与对作为辅因子的NADH/NAD+的催化效率(kcat/Km)NAD+的比率(即,催化效率比率(kcat/Km)NADP+:(kcat/Km)NAD+)大于1:1,更优选地等于或大于2:1,还更优选地等于或大于5:1,甚至更优选地等于或大于10:1,又甚至更优选地等于或大于20:1,甚至还更优选地等于或大于100:1,最优选地等于或大于1000:1。没有上限,但是出于实际原因,NADH依赖性亚硝酸盐还原酶的催化效率比率(kcat/Km)NADP+:(kcat/Km)NAD+可以等于或小于1.000.000.000:1(即,1.109)。最优选地,NADH依赖性亚硝酸盐还原酶仅依赖于作为辅因子的NADH/NAD+。也就是说,最优选地,NADH依赖性亚硝酸盐还原酶绝对需要作为辅因子的NADH/NAD+,而不是作为辅因子的NADPH/NADP+。
优选地,NADH依赖性亚硝酸盐还原酶是具有酶分类EC 1.7.1.15(即,具有EC编号EC 1.7.1.15)的NADH依赖性亚硝酸盐还原酶。适当地,NADH依赖性亚硝酸盐还原酶(也称为NADH依赖性亚硝酸盐氧化还原酶)是催化至少以下化学反应的酶:
亚硝酸盐+3NADH+5H+→氨+3NAD++2H2O
本领域技术人员将理解,氨也可以存在和/或被称为所谓的氢氧化铵NH4OH
合适的NADH依赖性亚硝酸盐还原酶可以包括如衍生自以下的一种或多种NADH依赖性亚硝酸盐还原酶:构巢曲霉(也称为构巢裸胞壳)、肾形弓形杆菌(Arcobacterellisii)、太平洋弓形杆菌(Arcobacter pacificus)、枯草芽孢杆菌(Bacillussubtilis)、枯草芽孢杆菌JH642、台湾贪铜菌(Cupriavidus taiwanensis)、大肠杆菌、台湾罗尔斯通氏菌(Ralstonia taiwanensis)、蒲桃罗尔斯通氏菌(Ralstonia syzygii)、茄科罗尔斯通氏菌(Ralstonia solanacearum)、荚膜红细菌、荚膜红细菌、里贝罗副伯克霍尔德菌(Paraburkholderia ribeironis);和/或此类NADH依赖性亚硝酸盐还原酶的功能性同源物,这些功能性同源物包含与上述此类NADH依赖性亚硝酸盐还原酶中的一种或多种具有至少40%、50%、60%、65%、70%、75%、80%、85%、90%、95%、98%或至少99%氨基酸序列同一性的氨基酸序列;和/或此类NADH依赖性亚硝酸盐还原酶的功能性同源物,这些功能性同源物包含与上述此类NADH依赖性亚硝酸盐还原酶中的一种或多种的氨基酸序列相比具有一个或几个取代、插入和/或缺失的氨基酸序列,其中优选地,与上述此类NADH依赖性亚硝酸盐还原酶相比,任何以上功能性同源物的氨基酸序列具有不超过300个、250个、200个、150个、100个、75个、50个、40个、30个、20个、10个或5个氨基酸取代、插入和/或缺失。
大肠杆菌在其亚硝酸盐同化途径中利用几种不同的酶。nirD基因编码NADH依赖性亚硝酸盐还原酶(NADH)小亚基,而nirB基因编码NADH依赖性亚硝酸盐还原酶(NADH)大亚基。
优选的NADH依赖性亚硝酸盐还原酶包括如衍生自构巢曲霉(也称为构巢裸胞壳)的NADH依赖性亚硝酸盐还原酶(一种能够利用NADH和NADPH两者作为电子供体的亚硝酸盐还原酶)和/或衍生自大肠杆菌的NADH依赖性亚硝酸盐还原酶。在高硝酸盐和/或亚硝酸盐浓度下,由大肠杆菌的nirB基因编码的亚硝酸盐还原酶是尤其优选的。
因此,优选的NADH依赖性亚硝酸盐还原酶包括:这样的NADH依赖性亚硝酸盐还原酶,其包含具有如本文所述的SEQ ID NO:3(由nirD编码的大肠杆菌亚硝酸盐还原酶小亚基)和/或SEQ ID NO:4(由nirB编码的大肠杆菌亚硝酸盐还原酶大亚基)和/或SEQ ID NO:5(由niiA编码的构巢裸胞壳硝酸盐还原酶)的氨基酸序列的多肽;和/或SEQ ID NO:3和/或SEQ ID NO:4和/或SEQ ID NO:5的功能性同源物,这些功能性同源物包含分别与SEQ IDNO:3和/或SEQ ID NO:4和/或SEQ ID NO:5中的一个或多个具有至少40%、50%、60%、65%、70%、75%、80%、85%、90%、95%、98%或至少99%氨基酸序列同一性的氨基酸序列;和/或SEQ ID NO:3和/或SEQ ID NO:4和/或SEQ ID NO:5的功能性同源物,这些功能性同源物包含分别与SEQ ID NO:3和/或SEQ ID NO:4和/或SEQ ID NO:5中的一个或多个的氨基酸序列相比具有一个或几个取代、插入和/或缺失的氨基酸序列。优选地,分别与SEQ IDNO:3和/或SEQ ID NO:4和/或SEQ ID NO:5相比,任何以上功能性同源物的氨基酸序列具有不超过300个、250个、200个、150个、100个、75个、50个、40个、30个、20个、10个或5个氨基酸取代、插入和/或缺失。
优选地,重组酵母细胞包含编码具有NADH依赖性亚硝酸盐还原酶活性的酶的外源基因。更优选地,重组酵母细胞包含编码具有NADH依赖性亚硝酸盐还原酶活性的酶的外源基因,该酶选自由如衍生自以下的NADH依赖性亚硝酸盐还原酶组成的组:构巢曲霉(也称为构巢裸胞壳)、肾形弓形杆菌、太平洋弓形杆菌、枯草芽孢杆菌、枯草芽孢杆菌JH642、台湾贪铜菌、大肠杆菌、台湾罗尔斯通氏菌、蒲桃罗尔斯通氏菌、茄科罗尔斯通氏菌、荚膜红细菌、荚膜红细菌、里贝罗副伯克霍尔德菌;和/或此类NADH依赖性亚硝酸盐还原酶的功能性同源物,这些功能性同源物包含与上述此类NADH依赖性亚硝酸盐还原酶中的一种或多种具有至少40%、50%、60%、65%、70%、75%、80%、85%、90%、95%、98%或至少99%氨基酸序列同一性的氨基酸序列;和/或此类NADH依赖性亚硝酸盐还原酶的功能性同源物,这些功能性同源物包含与上述此类NADH依赖性亚硝酸盐还原酶中的一种或多种的氨基酸序列相比具有一个或几个取代、插入和/或缺失的氨基酸序列,其中优选地,与上述此类NADH依赖性亚硝酸盐还原酶相比,任何以上功能性同源物的氨基酸序列具有不超过300个、250个、200个、150个、100个、75个、50个、40个、30个、20个、10个或5个氨基酸取代、插入和/或缺失。
适当地,重组酵母细胞可以包含编码SEQ ID NO:3(由nirD编码的大肠杆菌硝酸盐还原酶小亚基)和/或SEQ ID NO:4(由nirB编码的大肠杆菌硝酸盐还原酶大亚基)和/或SEQID NO:5(由niiA编码的构巢裸胞壳硝酸盐还原酶)中任一个的氨基酸序列或者与SEQ IDNO:3和/或SEQ ID NO:4和/或SEQ ID NO:5中任一个的氨基酸序列相比具有一个或几个取代、插入和/或缺失的氨基酸序列的核苷酸序列。优选地,分别与SEQ ID NO:3和/或SEQ IDNO:4和/或SEQ ID NO:5相比,氨基酸序列具有不超过300个、250个、200个、150个、100个、75个、50个、40个、30个、20个、10个或5个氨基酸取代、插入和/或缺失。
重组酵母细胞可以将编码以上NADH依赖性亚硝酸盐还原酶中的一种或多种的一个或多个基因与编码NADPH依赖性硝酸盐还原酶的一个或多个基因组合。然而,优选地,重组酵母细胞将编码以上NADH依赖性亚硝酸盐还原酶中的一种或多种的一个或多个基因与编码NADH依赖性硝酸盐还原酶的一个或多个基因组合。
合适的NADH依赖性亚硝酸盐还原酶的示例、其UniProt数据库登录号(可以在Uniprot网站(www.uniprot.org/,截至2020年10月4日)上找到)、其描述、可以衍生出它们的生物体及其与SEQ ID NO:3(由nirD编码的小亚基)的氨基酸序列同一性列于下表13中。
合适的NADH依赖性亚硝酸盐还原酶的示例、其UniProt数据库登录号(可以在Uniprot网站(www.uniprot.org/,截至2020年10月4日)上找到)、其描述、可以衍生出它们的生物体及其与SEQ ID NO:4(由nirB编码的大亚基)的氨基酸序列同一性列于下表14中。
表13:合适的NADH依赖性亚硝酸盐还原酶的示例、其UniProt数据库登录号(可以在Uniprot网站(www.uniprot.org/,截至2020年10月4日)上找到)、其描述、可以衍生出它们的生物体及其与SEQ ID NO:3(由nirD编码的小亚基)的氨基酸序列同一性。
/>
/>
/>
/>
/>
/>
/>
表14:合适的NADH依赖性亚硝酸盐还原酶的示例、其UniProt数据库登录号(可以在Uniprot网站(www.uniprot.org/,截至2020年10月4日)上找到)、其描述、可以衍生出它们的生物体及其与SEQ ID NO:4(由nirB编码的大亚基)的氨基酸序列同一性。
/>
/>
/>
/>
/>
/>
/>
硝酸盐/亚硝酸盐转运蛋白
优选地,重组酵母细胞进一步包含使得氧化氮源(诸如硝酸盐或亚硝酸盐)至酵母细胞中的转运增加的一种或多种基因修饰。更优选地,重组酵母细胞进一步包含编码硝酸盐和/或亚硝酸盐转运蛋白的一个或多个基因。
合适的转运蛋白可以包括亚硫酸盐转运蛋白Ssu1和SSu2(如Cabrera等人在2014年2月第13卷第2期Eukaryotic Cell[真核细胞]第267–278页上发表的题为“MolecularComponents of Nitrate and Nitrite Efflux in Yeast”[“酵母中硝酸盐和亚硝酸盐流出物的分子组分”]的文章中所述,该文章通过援引并入本文);以及衍生自安格斯毕赤酵母(也称为多形汉逊酵母)的硝酸盐/亚硝酸盐转运蛋白YNT1;和/或此类硝酸盐/亚硝酸盐转运蛋白中的一种或多种的功能性同源物,该功能性同源物包含与上述硝酸盐/亚硝酸盐转运蛋白中的一种或多种具有至少40%、50%、60%、65%、70%、75%、80%、85%、90%、95%、98%或至少99%氨基酸序列同一性的氨基酸序列;和/或此类硝酸盐/亚硝酸盐转运蛋白中的一种或多种的功能性同源物,这些功能性同源物包含与上述此类硝酸盐/亚硝酸盐转运蛋白中的一种或多种的氨基酸序列相比具有一个或几个取代、插入和/或缺失的氨基酸序列,其中优选地,与上述这种硝酸盐/亚硝酸盐转运蛋白YNT1相比,任何以上功能性同源物的氨基酸序列具有不超过300个、250个、200个、150个、100个、75个、50个、40个、30个、20个、10个或5个氨基酸取代、插入和/或缺失。
优选地,重组酵母细胞包含编码以下的核酸序列:衍生自安格斯毕赤酵母的硝酸盐/亚硝酸盐转运蛋白YNT1;和/或这种硝酸盐/亚硝酸盐转运蛋白YNT1的功能性同源物,该功能性同源物包含与硝酸盐/亚硝酸盐转运蛋白YNT1具有至少50%、60%、65%、70%、75%、80%、85%、90%、95%、98%或至少99%氨基酸序列同一性的氨基酸序列;和/或这种硝酸盐/亚硝酸盐转运蛋白YNT1的功能性同源物,这些功能性同源物包含与上述这种硝酸盐/亚硝酸盐转运蛋白YNT1中的一种或多种的氨基酸序列相比具有一个或几个取代、插入和/或缺失的氨基酸序列,其中优选地,与上述这种硝酸盐/亚硝酸盐转运蛋白YNT1相比,任何以上功能性同源物的氨基酸序列具有不超过300个、250个、200个、150个、100个、75个、50个、40个、30个、20个、10个或5个氨基酸取代、插入和/或缺失。
因此,优选的硝酸盐/亚硝酸盐转运蛋白包括:这样的硝酸盐/亚硝酸盐转运蛋白,其包含具有如本文所述的SEQ ID NO:6的氨基酸序列的多肽;和/或SEQ ID NO:6的功能性同源物,这些功能性同源物包含与SEQ ID NO:6具有至少40%、50%、60%、65%、70%、75%、80%、85%、90%、95%、98%或至少99%氨基酸序列同一性的氨基酸序列;和/或SEQID NO:6的功能性同源物,这些功能性同源物包含与SEQ ID NO:6的氨基酸序列相比具有一个或几个取代、插入和/或缺失的氨基酸序列。优选地,与SEQ ID NO:6相比,任何以上功能性同源物的氨基酸序列具有不超过300个、250个、200个、150个、100个、75个、50个、40个、30个、20个、10个或5个氨基酸取代、插入和/或缺失。
适当地,重组酵母细胞可以包含编码SEQ ID NO:6的氨基酸序列或者与SEQ IDNO:6中任一个的氨基酸序列相比具有一个或几个取代、插入和/或缺失的氨基酸序列的核苷酸序列。优选地,分别与SEQ ID NO:6相比,氨基酸序列具有不超过300个、250个、200个、150个、100个、75个、50个、40个、30个、20个、10个或5个氨基酸取代、插入和/或缺失。
合适的亚硝酸盐/硝酸盐转运蛋白的示例、其UniProt数据库登录号(可以在Uniprot网站(www.uniprot.org/,截至2020年10月4日)上找到)、其描述、可以衍生出它们的生物体及其与SEQ ID NO:6的氨基酸序列同一性列于下表15中。
表15:合适的亚硝酸盐/硝酸盐转运蛋白的示例、其UniProt数据库登录号(可以在Uniprot网站(www.uniprot.org/,截至2020年10月4日)上找到)、其描述、可以衍生出它们的生物体及其与SEQ ID NO:6的氨基酸序列同一性。
/>
/>
/>
/>
/>
/>
/>
/>
辅因子
优选地,重组酵母细胞进一步包含合适的辅因子以增强上述NADH依赖性硝酸盐还原酶和/或NADH依赖性亚硝酸盐还原酶的活性。优选的辅因子包括黄素腺嘌呤二核苷酸(FAD)、血红素辅基和/或钼辅因子(MoCo)。因此,优选地,重组酵母细胞可以进一步包含编码用于合成黄素腺嘌呤二核苷酸(FAD)、血红素辅基和/或钼辅因子(MoCo)中的一种或多种的酶的一个或多个基因。例如,重组酵母细胞可以包含编码具有FAD合酶活性的酶的一个或多个基因。优选的辅因子如在2020年10月5日向美国专利局提交的非预先公开的美国专利申请US 63087642中所示例,将其内容通过援引并入本文。
甘油3-磷酸磷酸水解酶和/或甘油3-磷酸脱氢酶的缺失或破坏
重组酵母细胞进一步可以包含或可以不包含编码甘油3-磷酸磷酸水解酶基因和/或编码甘油3-磷酸脱氢酶基因的一个或多个内源核苷酸序列的缺失或破坏。
优选地,降低或缺失酵母细胞中NADH依赖性甘油合成所需的酶活性。甘油3-磷酸磷酸水解酶和/或甘油3-磷酸脱氢酶的酶活性的降低或缺失可以通过以下方式来实现:修饰编码NAD依赖性甘油3-磷酸脱氢酶(GPD)的一个或多个基因和/或编码甘油磷酸磷酸酶(GPP)的一个或多个基因,使得酶的表达大大低于野生型或使得基因编码活性降低的多肽。此类修饰可以使用通常已知的生物技术进行,并且可以特别地包括编码GPD和/或GPP的结构基因的启动子区或编码区的一个或多个敲除突变或定点诱变。替代性地,可以通过随机诱变、然后选择GPD和/或GPP活性降低或不存在的菌株来获得甘油生产有缺陷的酵母菌株。酿酒酵母GPD1、GPD2、GPP1和GPP2基因示于WO 2011010923中,并且公开于该申请的SEQ IDNO:22-27中。
优选地,重组酵母是这样的重组酵母,其进一步包含甘油-3-磷酸脱氢酶(GPD)基因的缺失或破坏。甘油磷酸磷酸酶(GPP)基因中的一个或多个可以被缺失或破坏或可以不被缺失或破坏。
更优选地,重组酵母是这样的重组酵母,其包含甘油-3-磷酸脱氢酶1(GPD1)基因的缺失或破坏。甘油-3-磷酸脱氢酶2(GPD2)基因可以被缺失或破坏或可以不被缺失或破坏。
最优选地,重组酵母是这样的重组酵母,其包含甘油-3-磷酸脱氢酶1(GPD1)基因的缺失或破坏,而甘油-3-磷酸脱氢酶2(GPD2)基因和/或甘油磷酸磷酸酶(GPP)基因保持活性和/或完整。因此,优选地,酿酒酵母GPD1、GPD2、GPP1和GPP2基因中的仅一个被破坏和缺失,而最优选地,仅选自由GPD1、GPD2、GPP1和GPP2基因组成的组的GPD1被破坏或缺失。
不希望受任何类型的理论的约束,据信根据本发明的重组酵母(其中GPD1基因而不是GPD2基因被缺失或破坏)当应用于以下发酵方法中时可以是有利的,在该发酵方法中,至少在该方法的一部分过程中,发酵培养基包含以下浓度的葡萄糖:优选地等于或大于80g/L,更优选等于或大于90g/L,甚至更优选等于或大于100g/L,还更优选等于或大于110g/L,又甚至更优选等于或大于120g/L、等于或大于130g/L、等于或大于140g/L、等于或大于150g/L、等于或大于160g/L、等于或大于170g/L或者等于或大于180g/L。
优选地,至少一个编码GPD的基因和/或至少一个编码GPP的基因被完全缺失,或者编码对其活性必需的酶的一部分的基因的至少一部分被缺失。用酿酒酵母细胞可以获得良好的结果,其中GPD1基因和/或GPD2基因的可读框已经失活。结构基因(靶基因)的失活可以由本领域技术人员通过合成地合成或以其他方式构建由侧翼为这样的DNA序列的选择标记基因组成的DNA片段来完成,这些DNA序列与待缺失的宿主细胞基因组区域侧翼的序列相同。适当地,通过整合标记基因kanMX和hphMX4使酿酒酵母中的GPD1和GPD2基因失活可以获得良好的结果。随后,将该DNA片段转化到宿主细胞中。例如通过诊断性聚合酶链式反应或DNA杂交,检查表达显性标记基因的转化细胞是否正确替换了被设计待缺失的区域。
因此,在本发明的重组酵母细胞中,可以有利地降低细胞中的甘油3-磷酸磷酸水解酶活性和/或细胞中的甘油3-磷酸脱氢酶活性。
甘油脱氢酶
重组酵母细胞可以功能性地表达或可以不功能性地表达
-编码具有甘油脱氢酶活性的蛋白质(E.C.1.1.1.6)的核酸序列;
-编码具有二羟基丙酮激酶活性的蛋白质(E.C.2.7.1.28或E.C.2.7.1.29)的核酸序列;以及
-任选地编码具有甘油转运蛋白活性的蛋白质的核酸序列。
因此,重组酵母细胞可以功能性地表达或可以不功能性地表达编码甘油脱氢酶的一个或多个优选地异源的核酸序列。
如果存在甘油脱氢酶,则重组酵母细胞可以包含NAD+连接的甘油脱氢酶(EC1.1.1.6)和/或NADP+连接的甘油脱氢酶(EC 1.1.1.72)。也就是说,重组酵母细胞可以包含或可以不包含编码具有NAD+依赖性甘油脱氢酶活性的蛋白质(EC 1.1.1.6)的核酸序列和/或编码具有NADP+依赖性甘油脱氢酶活性的蛋白质(EC 1.1.1.72)的核酸序列。
在一个实施例中,具有甘油脱氢酶活性的蛋白质优选地是具有NAD+依赖性甘油脱氢酶活性的蛋白质(EC 1.1.1.6);并且优选地,重组酵母细胞功能性地表达编码具有NAD+依赖性甘油脱氢酶活性的蛋白质(EC 1.1.1.6)的核酸序列。这种蛋白质可以来自细菌来源或例如来自真菌来源。一个示例是来自大肠杆菌(E.coli)的gldA。
在一个替代性的或另外的实施例中,可以存在NADP+依赖性甘油脱氢酶(EC1.1.1.72)。
如果存在甘油脱氢酶,则NAD+连接的甘油脱氢酶是优选的。
具有甘油脱氢酶活性的蛋白质在本文中也被称为“甘油脱氢酶蛋白”、“甘油脱氢酶(glycerol dehydrogenase enzyme)”或被简称为“甘油脱氢酶(glyceroldehydrogenase)”。以此类推,具有NAD+依赖性甘油脱氢酶活性的蛋白质在本文中也被称为“NAD+依赖性甘油脱氢酶蛋白”、“NAD+依赖性甘油脱氢酶(NAD+dependent glyceroldehydrogenase enzyme)”或被简称为“NAD+依赖性甘油脱氢酶(NAD+dependent glyceroldehydrogenase)”。甘油脱氢酶缩写为GLD。
甘油脱氢酶和编码这种甘油脱氢酶的核酸序列的优选物如WO 2015028582(通过援引并入本文)中所述。
NAD+依赖性甘油脱氢酶(EC 1.1.1.6)是催化以下化学反应的酶:
因此,该酶的两种底物是甘油和NAD+,而其三种产物是甘油酮、NADH和H+。甘油酮和二羟基丙酮在本文中是同义词。
甘油脱氢酶属于氧化还原酶家族,特别是以NAD+或NADP+作为受体作用于供体的CH-OH基团的氧化还原酶。该酶类的系统名称是甘油:NAD+2-氧化还原酶。常用的其他名称包括甘油(glycerin)脱氢酶和NAD+连接的甘油脱氢酶。该酶参与甘油脂代谢。甘油脱氢酶蛋白可以进一步由其氨基酸序列定义。同样地,甘油脱氢酶蛋白可以进一步由编码甘油脱氢酶蛋白的核苷酸序列定义。如上文在定义下详细解释的,由编码酶的核苷酸序列定义的某种甘油脱氢酶蛋白包括(除非另有限制)与编码甘油脱氢酶蛋白的这种核苷酸序列杂交的核苷酸序列。
编码具有甘油脱氢酶活性的蛋白质的核酸序列可以是异源核酸序列。具有甘油脱氢酶活性的蛋白质可以是具有NAD+依赖性甘油脱氢酶活性的异源蛋白。
如果重组酵母细胞包含编码甘油脱氢酶的一个或多个异源核酸序列,则重组酵母细胞优选地进一步包含合适的辅因子以增强甘油脱氢酶的活性。例如,重组酵母细胞可以包含锌、锌离子或锌盐和/或一种或多种将此等包括在细胞中的途径。
具有甘油脱氢酶活性的异源蛋白的合适的示例分别包括肺炎克雷伯菌、产气肠球菌、阿氏耶尔森菌和大肠杆菌的甘油脱氢酶蛋白。此类蛋白质的氨基酸序列已经分别由SEQID NO:31、SEQ ID NO:32、SEQ ID NO:33和SEQ ID NO:34展示。
因此,重组酵母细胞可以包括或可以不包括具有SEQ ID NO:31、SEQ ID NO:32、SEQ ID NO:33和/或SEQ ID NO:34的氨基酸序列的一种或多种适当地异源的甘油脱氢酶蛋白;和/或其功能性同源物,这些功能性同源物包含与SEQ ID NO:31、SEQ ID NO:32、SEQ IDNO:33和/或SEQ ID NO:34的氨基酸序列具有至少40%、至少45%、至少50%、至少55%、至少60%、至少65%、至少70%、至少75%、至少80%、至少85%、至少90%、至少95%、至少98%或至少99%序列同一性的氨基酸序列;和/或其功能性同源物,这些功能性同源物包含与SEQ ID NO:31、SEQ ID NO:32、SEQ ID NO:33和/或SEQ ID NO:34的氨基酸序列相比具有一个或多个突变、取代、插入和/或缺失的氨基酸序列,其中更优选地,与SEQ ID NO:31、SEQID NO:32、SEQ ID NO:33和/或SEQ ID NO:34的氨基酸序列相比,此类功能性同源物的氨基酸序列具有不超过300个、不超过250个、不超过200个、不超过150个、不超过100个、不超过75个、不超过50个、不超过40个、不超过30个、不超过20个、不超过10个或不超过5个氨基酸突变、取代、插入和/或缺失。
优选的甘油脱氢酶蛋白是由来自大肠杆菌的gldA基因编码的甘油脱氢酶蛋白。SEQ ID NO:34示出了由来自大肠杆菌的gldA基因编码的该优选的NAD+依赖性甘油脱氢酶蛋白的氨基酸序列。大肠杆菌的gldA基因的核酸序列由SEQ ID NO:35展示。
如果重组酵母细胞包含编码甘油脱氢酶的一个或多个异源核酸序列,则因此,重组酵母细胞最优选地包含衍生自大肠杆菌的编码具有NAD+依赖性甘油脱氢酶活性的蛋白质(E.C.1.1.1.6)的异源核苷酸序列,任选地针对宿主细胞进行密码子优化,如SEQ ID NO:35中示出的核酸序列所示例。
因此,优选地,编码具有甘油脱氢酶活性的蛋白质的核酸序列包含以下或由以下组成:
-SEQ ID NO:35的核酸序列;或者
-SEQ ID NO:35的功能性同源物,该功能性同源物与SEQ ID NO:35的核酸序列具有至少40%、至少45%、至少50%、至少55%、至少60%、至少65%、至少70%、至少75%、至少80%、至少85%、至少90%、至少95%、至少98%或至少99%序列同一性;或者
-SEQ ID NO:35的功能性同源物,该功能性同源物当与SEQ ID NO:35的核酸序列相比时具有一个或多个突变、取代、插入和/或缺失,更优选当与SEQ ID NO:35的核酸序列相比时具有不超过300个、不超过250个、不超过200个、不超过150个、不超过100个、不超过75个、不超过50个、不超过40个、不超过30个、不超过20个、不超过10个或不超过5个核酸突变、取代、插入和/或缺失的功能性同源物。
如果重组酵母细胞包含编码甘油脱氢酶的一个或多个异源核酸序列,则因此,重组酵母细胞最优选地包含衍生自大肠杆菌的编码甘油脱氢酶(E.C.1.1.1.6)的一个或多个核苷酸序列,任选地针对宿主细胞进行密码子优化。可以将编码甘油脱氢酶蛋白的这种异源核酸序列(例如,基因)适当地掺入重组酵母细胞的基因组中,例如如WO 2015/028583(通过援引并入本文)的实例中所述。
合适的甘油脱氢酶的其他示例列于表6(a)至表6(d)中。在每个表的顶部,提到了且经BLAST的gldA。
表6(a):BLAST查询-来自大肠杆菌的gldA
表6(b):BLAST查询-来自肺炎克雷伯菌的gldA
表6(c):BLAST查询-来自产气肠球菌的gldA
表6(d):BLAST查询-来自阿氏耶尔森菌的gldA
/>
二羟基丙酮激酶
如上文所指示,重组酵母细胞可以功能性地表达或可以不功能性地表达
-编码具有甘油脱氢酶活性的蛋白质(E.C.1.1.1.6)的核酸序列;
-编码具有二羟基丙酮激酶活性的蛋白质(E.C.2.7.1.28或E.C.2.7.1.29)的核酸序列;以及
-任选地编码具有甘油转运蛋白活性的蛋白质的核酸序列。
也就是说,重组酵母细胞可以功能性地表达或可以不功能性地表达编码二羟基丙酮激酶(E.C.2.7.1.28或E.C.2.7.1.29)的一个或多个同源或异源的核酸序列,
具有二羟基丙酮激酶活性的蛋白质在本文中也被称为“二羟基丙酮激酶蛋白”、“二羟基丙酮激酶(dihydroxyacetone kinase enzyme)”或被简称为“二羟基丙酮激酶(dihydroxyacetone kinase)”。二羟基丙酮激酶在本文中缩写为DAK。
二羟基丙酮激酶和编码这种二羟基丙酮激酶的核酸序列的优选物如WO2015028582(通过援引并入本文)中所述。
具有二羟基激酶活性的蛋白质可以适当地属于E.C.2.7.1.28和/或E.C.2.7.1.29的酶类别。因此,重组酵母细胞适当地功能性地表达编码具有二羟基丙酮激酶活性的蛋白质(E.C.2.7.1.28和/或E.C.2.7.1.29)的核酸序列。
在本文中将二羟基丙酮激酶优选地理解为催化以下化学反应的酶(EC2.7.1.29):
和/或催化以下化学反应的酶(EC 2.7.1.28):
二羟基丙酮激酶常用的其他名称包括甘油酮激酶、ATP:甘油酮磷酸转移酶和(磷酸化)丙酮醇激酶。应进一步理解,甘油酮和二羟基丙酮是相同的分子。二羟基丙酮激酶蛋白可以进一步由其氨基酸序列定义。同样地,二羟基丙酮激酶蛋白可以进一步由编码二羟基丙酮激酶蛋白的核苷酸序列定义。如上文在定义下详细解释的,由编码酶的核苷酸序列定义的某种二羟基丙酮激酶蛋白包括(除非另有限制)与编码二羟基丙酮激酶蛋白的这种核苷酸序列杂交的核苷酸序列。
如果存在,则重组酵母细胞优选地功能性地表达编码具有二羟基丙酮激酶活性的天然蛋白的核酸序列。更优选地,编码具有二羟基丙酮激酶活性的蛋白质的核酸序列是天然核酸序列。
酵母包含二羟基丙酮激酶的两种天然同工酶(DAK1和DAK2)。根据本发明,这些天然二羟基丙酮激酶是优选的。优选地,宿主细胞是酿酒酵母细胞;并且优选地,以上天然二羟基丙酮激酶是酿酒酵母细胞的天然二羟基丙酮激酶。酿酒酵母的天然二羟基丙酮激酶蛋白DAK1和DAK2的氨基酸序列已经分别由SEQ ID NO:36和SEQ ID NO:37展示。编码这些天然二羟基丙酮激酶蛋白DAK1和DAK2的核酸序列已经分别由SEQ ID NO:41和SEQ ID NO:42展示。
重组酵母细胞也可以功能性地表达编码具有二羟基丙酮激酶活性的蛋白质的核酸序列,其中核酸序列是异源核酸序列,对应地其中蛋白质是异源蛋白。在一个实施例中,重组酵母细胞包含编码二羟基丙酮激酶的异源基因。合适的异源基因包括编码来自以下的二羟基丙酮激酶的基因:库德里阿兹威酵母、拜氏结合酵母、乳酸克鲁维酵母、光滑假丝酵母(Candida glabrata)、解脂耶氏酵母、肺炎克雷伯菌、产气肠杆菌、大肠杆菌、解脂耶氏酵母、粟酒裂殖酵母、富氏葡萄孢盘菌(Botryotinia fuckeliana)和皮炎外瓶霉(Exophialadermatitidis)。优选的具有二羟基丙酮激酶活性的异源蛋白包括分别衍生自肺炎克雷伯菌、解脂耶氏酵母和粟酒裂殖酵母的异源蛋白,如分别由SEQ ID NO:38、SEQ ID NO:39和SEQ ID NO:40所展示。
重组酵母细胞可以包含或可以不包含引起二羟基丙酮激酶过表达(例如,通过过表达编码具有二羟基丙酮激酶活性的蛋白质的核酸序列)的基因修饰。编码二羟基丙酮激酶的核苷酸序列对于细胞可以是天然的或异源的。可以用于在本发明的细胞中过表达二羟基丙酮激酶的核酸序列是例如来自酿酒酵母的二羟基丙酮激酶基因(DAK1)和(DAK2),如例如以下文献所述:Molin等人,"Dihydroxy-acetone kinases in Saccharomycescerevisiae are involved in detoxification of dihydroxyacetone"[“酿酒酵母中的二羟基丙酮激酶参与二羟基丙酮的解毒”](2003),J.Biol.Chem.[生物化学杂志],第278卷:第1415–1423页,通过援引并入本文。在一个优选的实施例中,过表达编码二羟基丙酮激酶的密码子优化的(参见上文)核苷酸序列,例如像编码SEQ ID NO:36、SEQ ID NO:37、SEQID NO:38、SEQ ID NO:39或SEQ ID NO:40的二羟基丙酮激酶的密码子优化的核苷酸序列。
如上文所指示,编码酿酒酵母中的二羟基丙酮激酶蛋白DAK1和DAK2的天然核酸序列已经分别由SEQ ID NO:41和SEQ ID NO:42展示。
优选地,重组酵母细胞包含增加细胞中任何二羟基丙酮激酶的比活性的基因修饰。例如,重组酵母细胞可以包含编码过表达的一种或多种天然和/或异源二羟基丙酮激酶蛋白(诸如DAK1和/或DAK2)的一个或多个天然和/或异源核酸序列。天然二羟基丙酮激酶(诸如DAK1和/或DAK2)可以例如经由一种或多种基因修饰过表达,使得编码二羟基丙酮激酶的基因的拷贝多于存在于非基因修饰的细胞中的拷贝,和/或可以应用非天然启动子。
优选地,重组酵母细胞是这样的重组酵母细胞,其中编码具有二羟基丙酮激酶活性的蛋白质的核酸序列的表达在启动子的控制下。启动子可以例如是对于宿主细胞中的另一个基因天然的启动子。
为了过表达编码二羟基丙酮激酶的核苷酸序列,可以将核苷酸序列(待过表达)置于表达构建体中,其中它可操作地连接到合适的表达调控区/序列,以确保在将表达构建体转化至本发明的宿主细胞中后二羟基丙酮激酶的过表达(参见上文)。用于(过)表达编码具有二羟基丙酮激酶活性的酶的核苷酸序列的合适的启动子包括优选地对分解代谢物(葡萄糖)抑制不敏感、在厌氧条件下有活性和/或优选地不需要木糖或阿拉伯糖来诱导的启动子。上文给出了此类启动子的示例。与除引起过表达的基因修饰外在遗传上相同的菌株相比,被过表达的二羟基丙酮激酶优选地被过表达至少1.1、1.2、1.5、2、5、10或20倍。优选地,与除引起过表达的基因修饰外在遗传上相同的菌株相比,二羟基丙酮激酶在厌氧条件下被过表达至少1.1、1.2、1.5、2、5、10或20倍。应理解,这些过表达水平可以适用于酶活性(细胞中的比活性)的稳态水平、酶蛋白的稳态水平以及细胞中编码酶的转录物的稳态水平。宿主细胞中核苷酸序列的过表达产生至少0.002、0.005、0.01、0.02或0.05U min-1(mg蛋白质)-1的比二羟基丙酮激酶活性,在30℃下在转化宿主细胞的细胞提取物中确定,如例如WO2013/081456的实例中所述。
最优选的二羟基丙酮激酶蛋白是由来自酿酒酵母的Dak1基因编码的二羟基丙酮激酶蛋白。SEQ ID NO:36示出了由来自酿酒酵母的Dak1基因编码的合适的二羟基丙酮激酶蛋白的氨基酸序列。SEQ ID NO:41展示了Dak1基因本身的核酸序列。
如果重组酵母细胞包含编码二羟基丙酮激酶的一个或多个过表达的核酸序列,则重组酵母细胞因此最优选地包含编码衍生自酿酒酵母的二羟基丙酮激酶的一个或多个过表达的核苷酸序列,如SEQ ID NO:41中示出的核酸序列所示例。
因此,优选地,具有二羟基丙酮激酶活性的蛋白质包含以下或由以下组成:
-SEQ ID NO:36、SEQ ID NO:37、SEQ ID NO:38、SEQ ID NO:39或SEQ ID NO:40的氨基酸序列;或者
-SEQ ID NO:36、SEQ ID NO:37、SEQ ID NO:38、SEQ ID NO:39或SEQ ID NO:40的功能性同源物,该功能性同源物与SEQ ID NO:36、SEQ ID NO:37、SEQ ID NO:38、SEQ IDNO:39或SEQ ID NO:40的氨基酸序列具有至少40%、至少45%、至少50%、至少55%、至少60%、至少65%、至少70%、至少75%、至少80%、至少85%、至少90%、至少95%、至少98%或至少99%序列同一性;或者
-SEQ ID NO:36、SEQ ID NO:37、SEQ ID NO:38、SEQ ID NO:39或SEQ ID NO:40的功能性同源物,该功能性同源物当与SEQ ID NO:36、SEQ ID NO:37、SEQ ID NO:38、SEQ IDNO:39或SEQ ID NO:40的氨基酸序列相比时具有一个或多个突变、取代、插入和/或缺失,更优选当与SEQ ID NO:36、SEQ ID NO:37、SEQ ID NO:38、SEQ ID NO:39或SEQ ID NO:40的氨基酸序列相比时具有不超过300个、不超过250个、不超过200个、不超过150个、不超过100个、不超过75个、不超过50个、不超过40个、不超过30个、不超过20个、不超过10个或不超过5个氨基酸突变、取代、插入和/或缺失的功能性同源物。
具有SEQ ID NO:36的氨基酸序列的蛋白质及其功能性同源物是最优选的。
优选地,编码具有二羟基丙酮激酶活性的蛋白质的核酸序列包含以下或由以下组成:
-SEQ ID NO:41或SEQ ID NO:42的核酸序列;或者
-SEQ ID NO:41或SEQ ID NO:42的功能性同源物,该功能性同源物与SEQ ID NO:41或SEQ ID NO:42的核酸序列具有至少40%、至少45%、至少50%、至少55%、至少60%、至少65%、至少70%、至少75%、至少80%、至少85%、至少90%、至少95%、至少98%或至少99%序列同一性;或者
-SEQ ID NO:41或SEQ ID NO:42的功能性同源物,该功能性同源物当与SEQ IDNO:41或SEQ ID NO:42的核酸序列相比时具有一个或多个突变、取代、插入和/或缺失,更优选当与SEQ ID NO:41或SEQ ID NO:42的核酸序列相比时具有不超过300个、不超过250个、不超过200个、不超过150个、不超过100个、不超过75个、不超过50个、不超过40个、不超过30个、不超过20个、不超过10个或不超过5个核酸突变、取代、插入和/或缺失的功能性同源物。
可以将编码二羟基丙酮激酶蛋白的核酸序列(例如,基因)适当地掺入重组酵母细胞的基因组中。
合适的二羟基丙酮激酶的示例列于表7(a)至表7(d)中。在每个表的顶部,提到了在实例中使用且经BLAST的DAK。
表7(a):BLAST查询-来自酿酒酵母的DAK1
表7(b):BLAST查询-来自肺炎克雷伯菌的dhaK
表7(c):BLAST查询-来自解脂耶氏酵母的DAK1
表7(d):BLAST查询-来自粟酒裂殖酵母的DAK1
甘油转运蛋白
重组酵母细胞可以任选地包含(即,可以包含或可以不包含)编码甘油转运蛋白的核苷酸序列。这种甘油转运蛋白可以允许将任何甘油转运至细胞中并且转化为乙醇,甘油是在培养基中外部可获得的(例如,来自玉米醪中的回流)或在内部细胞合成后分泌的。
如果存在甘油转运蛋白,则重组酵母优选地包含编码由氨基酸序列SEQ ID NO:43、SEQ ID NO:44或其功能性同源物表示的异源甘油转运蛋白的一个或多个核酸序列,该功能性同源物与SEQ ID NO:43和/或SEQ ID NO:44的氨基酸序列具有至少50%,优选至少60%、70%、75%、80%、85%、90%、95%、98%或99%的氨基酸序列同一性。
在一个实施例中,重组酵母可以进一步包含编码甘油输出蛋白(例如,FPS1)的一个或多个内源核苷酸序列的缺失或破坏。
葡糖淀粉酶
优选地,重组酵母细胞进一步功能性地表达编码葡糖淀粉酶(EC 3.2.1.20或3.2.1.3)的核酸序列。
具有葡糖淀粉酶活性的蛋白质在本文中也被称为“葡糖淀粉酶(glucoamylaseenzyme)”、“葡糖淀粉酶蛋白”或被简称为“葡糖淀粉酶(glucoamylase)”。葡糖淀粉酶在本文中已经缩写为“GA”。
葡糖淀粉酶(也称为淀粉葡糖苷酶、α-葡糖苷酶、葡聚糖1,4-α葡糖苷酶、麦芽糖酶葡糖淀粉酶和麦芽糖酶-葡糖淀粉酶)至少催化末端1,4连接的α-D-葡萄糖残基从直链淀粉链的非还原端水解,以释放游离D-葡萄糖。葡糖淀粉酶可以进一步由其氨基酸序列定义。同样地,葡糖淀粉酶可以进一步由编码葡糖淀粉酶的核苷酸序列定义。如上文在定义下详细解释的,由编码酶的核苷酸序列定义的某种葡糖淀粉酶包括(除非另有限制)与编码葡糖淀粉酶的这种核苷酸序列杂交的核苷酸序列。
优选地,具有葡糖淀粉酶活性的蛋白质包含以下或由以下组成:
-SEQ ID NO:45、SEQ ID NO:46或SEQ ID NO:47的氨基酸序列;或者
-SEQ ID NO:45、SEQ ID NO:46或SEQ ID NO:47的功能性同源物,该功能性同源物与SEQ ID NO:45、SEQ ID NO:46或SEQ ID NO:47的氨基酸序列具有至少40%、至少45%、至少50%、至少55%、至少60%、至少65%、至少70%、至少75%、至少80%、至少85%、至少90%、至少95%、至少98%或至少99%序列同一性;或者
-SEQ ID NO:45、SEQ ID NO:46或SEQ ID NO:47的功能性同源物,该功能性同源物当与SEQ ID NO:45、SEQ ID NO:46或SEQ ID NO:47的氨基酸序列相比时具有一个或多个突变、取代、插入和/或缺失,更优选当与SEQ ID NO:45、SEQ ID NO:44或SEQ ID NO:47的氨基酸序列相比时具有不超过300个、不超过250个、不超过200个、不超过150个、不超过100个、不超过75个、不超过50个、不超过40个、不超过30个、不超过20个、不超过10个或不超过5个氨基酸突变、取代、插入和/或缺失的功能性同源物。
SEQ ID NO:45的多肽编码“成熟葡糖淀粉酶”,其是指在翻译和任何翻译后修饰(诸如N末端处理、C末端截短、糖基化和磷酸化)后呈其最终形式的酶。
在一个实施例中,核苷酸序列编码具有SEQ ID NO:46的氨基酸序列的多肽或其变体,该变体与SEQ ID NO:46的氨基酸序列具有至少50%,优选至少60%、70%、75%、80%、85%、90%、95%、98%或99%的氨基酸序列同一性。SEQ ID NO:46的氨基酸1-17可以编码天然信号序列。
在另一个实施例中,允许表达葡糖淀粉酶的核苷酸序列编码具有SEQ ID NO:47的氨基酸序列的多肽或其变体,该变体与SEQ ID NO:47的氨基酸序列具有至少50%,优选至少60%、70%、75%、80%、85%、90%、95%、98%或99%的氨基酸序列同一性。SEQ ID NO:47的氨基酸1-19可以编码信号序列。
信号序列(也称为信号肽、靶向信号、定位信号、定位序列、转运肽、前导序列或前导肽)可以存在于多肽(此处为葡糖淀粉酶)的N末端,在此处它发出多肽将被分泌(例如,分泌到细胞外和培养基中)的信号。
重组表达
重组酵母细胞是这样的重组细胞。也就是说,重组酵母细胞包含在所讨论的细胞中非天然存在的核苷酸序列,或者用该核苷酸序列转化或用该核苷酸序列基因修饰。用于在细胞中重组表达酶以及用于对重组酵母细胞进行另外的基因修饰的技术是本领域技术人员熟知的。典型地,此类技术涉及用包含相关序列的核酸构建体转化细胞。此类方法例如从标准手册中获知,诸如Sambrook和Russel(2001)"Molecular Cloning:A LaboratoryManual"[“分子克隆:实验室手册”],(第3版),由Cold Spring Harbor Laboratory Press[冷泉港实验室出版社]出版,或F.Ausubel等人编辑,"Current protocols in molecularbiology"[“分子生物学的当前方案”],Green Publishing and Wiley Interscience[格林出版公司与美国威立出版公司],纽约(1987)。用于对真菌宿主细胞进行转化和基因修饰的方法从例如EP-A-0635574、WO 98/46772、WO 99/60102、WO 00/37671、WO 90/14423、EP-A-0481008、EP-A-0635574和US 6265186获知。
发酵方法
本发明进一步提供了用于生产乙醇的方法,该方法包括使用如本说明书中所述的重组酵母细胞转化碳源、优选碳水化合物或另一种有机碳源,从而形成乙醇。
用于该发酵方法的进料适当地包含一种或多种可发酵碳源。可发酵碳源优选地包含一种或多种可发酵碳水化合物或由其组成。更优选地,可发酵碳源包含一种或多种单糖、二糖和/或多糖。例如,可发酵碳源可以包含一种或多种选自由以下组成的组的碳水化合物:葡萄糖、果糖、蔗糖、麦芽糖、木糖、阿拉伯糖、半乳糖、甘露糖和海藻糖。优选地包含一种或多种碳水化合物或由其组成的可发酵碳源可以适当地从淀粉、纤维素、半纤维素、木质纤维素和/或果胶获得。适当地,可发酵碳源可以呈优选地水性的浆料、悬浮液或液体的形式。
发酵过程中可发酵碳水化合物(例如像葡萄糖)的浓度优选地等于或大于80g/L。也就是说,在发酵开始时葡萄糖的初始浓度优选地等于或大于80g/L,更优选等于或大于90g/L,甚至更优选等于或大于100g/L,还更优选等于或大于110g/L,又甚至更优选等于或大于120g/L、等于或大于130g/L、等于或大于140g/L、等于或大于150g/L、等于或大于160g/L、等于或大于170g/L或者等于或大于180g/L。发酵的开始可以是使可发酵碳水化合物与本发明的重组细胞接触的时刻。
可发酵碳源可以通过使淀粉、木质纤维素和/或果胶与酶组合物接触来制备,其中产生一种或多种单糖、二糖和/或多糖,并且其中产生的单糖、二糖和/或多糖随后被发酵以得到发酵产物。
在酶处理前,可以预处理木质纤维素材料。预处理可以包括使木质纤维素材料暴露于酸、碱、溶剂、热、过氧化物、臭氧,机械粉碎,研磨,碾磨或快速减压,或其任何两种或更多种的组合。通常将这种化学预处理与热预处理(例如,在150℃-220℃之间持续1至30分钟)组合。随后,可以对预处理的材料进行酶水解以释放可以根据本发明发酵的糖。这可以用常规方法进行,例如与纤维素酶(例如,一种或多种纤维二糖水解酶、一种或多种内切葡聚糖酶、一种或多种β-葡糖苷酶和任选地其他酶)接触。可以在环境温度或更高温度下,在释放足够量的一种或多种糖的反应时间下,用纤维素酶进行转化。酶水解的结果是包含C5/C6糖的水解产物,在本文中称为糖组合物。
优选地,根据本发明的方法的至少一部分(例如像如下文所述的好氧增殖步骤的至少一部分和/或厌氧发酵步骤的至少一部分)在存在糖解酶的情况下进行。在本文中将糖解酶理解为能够分解寡糖或多糖的酶。糖解酶的示例包括葡糖淀粉酶、一种或多种内切葡聚糖酶、一种或多种β-葡糖苷酶。更优选地,根据本发明的方法的至少一部分在存在葡糖淀粉酶的情况下进行。这种葡糖淀粉酶可以外部添加,或者它可以通过重组酵母细胞本身原位产生。最优选地,重组酵母细胞是这样的重组酵母细胞,其进一步包含编码葡糖淀粉酶的优选地异源的核酸序列,例如像WO 2019/063543(通过援引并入本文)中所示例。
在一个实施例中,可发酵碳水化合物是诸如玉米秸秆或玉米纤维水解产物的生物质水解产物或由其组成。这种生物质水解产物反过来可以包含或衍生自玉米秸秆和/或玉米纤维。
在本文中将“水解产物”理解为包含多糖的材料(诸如玉米秸秆、玉米淀粉、玉米纤维或木质纤维素材料),这些多糖已经通过加水解聚以形成单糖和寡糖。水解产物可以通过含多糖材料的酶水解或酸水解产生。
生物质水解产物可以是木质纤维素生物质水解产物。本文的木质纤维素包括生物质的半纤维素和半纤维素部分。木质纤维素还包括生物质的木质纤维素级分。合适的木质纤维素材料可以在以下列表中找到:果园底料、查帕拉尔群落、磨坊废弃物、城市木材废弃物、市政废弃物、砍伐废弃物、森林抚育间伐废弃物(forest thinning)、短期轮种木本作物、工业废弃物、小麦秸秆、燕麦秸秆、水稻秸秆、大麦秸秆、黑麦秸秆、亚麻秸秆、大豆壳、稻壳、水稻秸秆、玉米谷蛋白饲料、燕麦壳、甘蔗、玉米秸秆、玉米秆、玉米芯、玉米皮、柳枝稷、芒草、甜高粱、卡诺拉油菜茎、大豆茎、草原禾草、鸭茅状磨擦禾、狐尾草;甜菜渣、柑橘果渣、种子壳、纤维素动物粪便、草坪修剪废弃物(lawn clipping)、棉花、海草、藻类(包括大型藻类和微型藻类)、树木、软木材、硬木材、杨树、松树、灌木(shrub)、草、小麦、小麦秸秆、甘蔗渣、玉米、玉米皮、玉米芯、玉米粒、来自谷粒的纤维、来自谷物湿磨或干磨的产物和副产物、市政固体废弃物、废纸、庭院废弃物、草本材料、农业残余物、林业残余物、市政固体废弃物、废纸、纸浆、造纸厂残余物、树枝、灌木(bush)、甘蔗、玉米、玉米皮、能源作物、森林、水果、花、谷物、草、草本作物、叶、树皮、针叶、原木、根、幼树、灌木(shrub)、柳枝稷、树木、蔬菜、果皮、藤本植物、甜菜渣、小麦麸皮、燕麦壳、硬木材或软木材、由农业过程产生的有机废弃物材料、林业木材废弃物,或其任何两种或更多种的组合。藻类(诸如大型藻类和微型藻类)具有以下优点:它们可以包含大量的糖醇(诸如山梨糖醇和/或甘露糖醇)。可以被认为是潜在的可再生原料的木质纤维素通常包含多糖纤维素(葡聚糖)和半纤维素(木聚糖、杂木聚糖和木葡聚糖)。此外,一些半纤维素可以作为葡甘露聚糖存在于例如木材衍生的原料中。这些多糖在协同作用的不同酶的作用下发生酶水解成为可溶性糖(包括单体和多聚体两者,例如葡萄糖、纤维二糖、木糖、阿拉伯糖、半乳糖、果糖、甘露糖、鼠李糖、核糖、半乳糖醛酸、葡糖醛酸以及其他己糖和戊糖)。此外,果胶和其他果胶物质(诸如阿拉伯聚糖)可以占来自非木本植物组织的典型的细胞壁干质量的相当大的比例(约四分之一至二分之一的干质量可以是果胶)。可以预处理木质纤维素材料。预处理可以包括使木质纤维素材料暴露于酸、碱、溶剂、热、过氧化物、臭氧,机械粉碎,研磨,碾磨或快速减压,或其任何两种或更多种的组合。通常将这种化学预处理与热预处理(例如,在150℃-220℃之间持续1至30分钟)组合。
用于生产乙醇的方法可以包括好氧增殖步骤和厌氧发酵步骤。更优选地,根据本发明的方法是包括以下步骤的方法:好氧增殖步骤,其中形成重组酵母细胞群体;以及厌氧发酵步骤,其中通过使用重组酵母细胞群体将碳源转化为乙醇。
在本文中将增殖理解为使得初始重组酵母细胞群体增加的重组酵母细胞生长的过程。增殖的主要目的是使用重组酵母细胞作为活生物体的自然繁殖能力来增加重组酵母细胞的群体。也就是说,增殖是为了生物质的生产,而不是为了乙醇的生产。增殖条件可以包括适当的碳源、通气、温度和营养物添加。增殖是好氧过程,因此增殖罐必须适当通气以维持一定水平的溶解氧。通常通过在进入增殖罐的管道上安装的空气电感器来实现适当的通气,该空气电感器在罐填充时和在再循环过程中将空气引入增殖混合物中。增殖混合物保留溶解氧的能力随添加的空气量和混合物稠度变化,这是通常以50:50至90:10之间的醪液与水的比率添加水的原因。“粘稠的”增殖混合物(80:20及更高的醪液与水的比率)通常需要添加压缩空气来弥补降低的保留溶解氧的能力。增殖混合物中溶解氧的量也随气泡尺寸变化,因此一些乙醇工厂通过与空气电感器相比产生更小气泡的喷洒器添加空气。适当的通气以及较低的葡萄糖对于促进增殖过程中的好氧呼吸是重要的,使得增殖过程中的环境不同于发酵过程中的厌氧环境。
在本文中将厌氧发酵过程理解为在厌氧条件下运行的发酵步骤。
厌氧发酵优选地在对于细胞最佳的温度下运行。因此,对于大部分重组酵母细胞,发酵过程在低于约50℃、低于约42℃或低于约38℃的温度下进行。对于重组酵母细胞或丝状真菌宿主细胞,发酵过程优选地在低于约35℃、约33℃、约30℃或约28℃的温度且高于约20℃、约22℃或约25℃的温度下进行。
在根据本发明的方法中,基于木糖和/或葡萄糖的乙醇产率优选地为至少约50%、约60%、约70%、约80%、约90%、约95%或约98%。在本文中将乙醇产率定义为理论最大产率的百分比。
根据本发明的方法以及其中适当地包括的增殖步骤和/或发酵步骤可以以分批、补料分批或连续模式进行。也可以应用分步水解和发酵(separate hydrolysis andfermentation,SHF)工艺或同时糖化和发酵(simultaneous saccharification andfermentation,SSF)工艺。
根据本发明的重组酵母和方法有利地允许更稳健的方法。有利地,该方法或该方法过程中的任何厌氧发酵可以在存在高浓度的碳源的情况下进行。因此,该方法(对应地其中的任何厌氧发酵步骤)优选地在存在以下浓度的葡萄糖的情况下进行:25g/L或更高、30g/L或更高、35g/L或更高、40g/L或更高、45g/L或更高、50g/L或更高、55g/L或更高、60g/L或更高、65g/L或更高、70g/L或更高、75g/L或更高、80g/L或更高、85g/L或更高、90g/L或更高、95g/L或更高、100g/L或更高、110g/L或更高、120g/L或更高,或者可以例如在25g/L-250g/L、30g/L-200g/L、40g/L-200g/L、50g/L-200g/L、60g/L-200g/L、70g/L-200g/L、80g/L-200g/L或90g/L-200g/L的范围内。
为了回收发酵产物,使用现有技术。对于不同的发酵产物,不同的回收方法是适当的。从水性混合物中回收乙醇的现有方法通常使用分级和吸附技术。例如,啤酒蒸馏器可以用于处理在水性混合物中含有乙醇的发酵产物,以产生富含乙醇的混合物,然后对其进行分级(例如,分馏或其他类似技术)。接下来,可以使含有最高浓度乙醇的级分通过吸附剂以从乙醇中除去大部分(如果不是全部的话)剩余的水。在一个实施例中,除了回收发酵产物之外,可以回收利用酵母。
因此,本发明还提供了用于生产乙醇的方法,该方法包括使用如上文所述的重组酵母细胞转化碳源,优选碳水化合物。
优选地,该方法至少部分地在包含以下葡萄糖浓度的葡萄糖的培养基中进行:25g/L或更高、30g/L或更高、35g/L或更高、40g/L或更高、45g/L或更高、50g/L或更高、55g/L或更高、60g/L或更高、65g/L或更高、70g/L或更高、75g/L或更高、80g/L或更高、85g/L或更高、90g/L或更高、95g/L或更高、100g/L或更高、110g/L或更高或者120g/L或更高。
优选地,该方法至少部分地在存在糖解酶(诸如葡糖淀粉酶)的情况下进行。
如上文所指示,该方法优选地包括好氧增殖步骤,其中形成重组酵母细胞群体;以及厌氧发酵步骤,其中通过使用重组酵母细胞群体将碳源转化为乙醇。更优选地,厌氧发酵步骤至少部分地在包含以下葡萄糖浓度的葡萄糖的培养基中进行:25g/L或更高、30g/L或更高、35g/L或更高、40g/L或更高、45g/L或更高、50g/L或更高、55g/L或更高、60g/L或更高、65g/L或更高、70g/L或更高、75g/L或更高、80g/L或更高、85g/L或更高、90g/L或更高、95g/L或更高、100g/L或更高、110g/L或更高或者120g/L或更高。此外,厌氧发酵步骤优选地至少部分地在存在糖解酶(诸如葡糖淀粉酶)的情况下进行。
将在本说明书中引用的所有专利和参考文献都通过援引以其全文并入本文。
提供以下实例仅出于说明目的,而不旨在以任何方式限制本发明的范围。
实例
通用分子生物学技术
除非另有指示,否则使用的方法是标准生化技术。合适的通用方法教科书的示例包括Sambrook等人,Molecular Cloning,a Laboratory Manual[分子克隆,实验室手册](1989)和Ausubel等人,Current Protocols in Molecular Biology[分子生物学的当前方案](1995),John Wiley&Sons,Inc[约翰·威利父子公司]。
HPLC分析
HPLC分析典型地如以下文献中所述的进行:"Determination of sugars,byproducts and degradation products in liquid fraction in process sample"[“工艺样品中液体级分中糖、副产物和降解产物的确定”];实验室分析程序(LaboratoryAnalytical Procedure,LAP),发布日期:12/08/2006;A.Sluiter,B.Hames,R.Ruiz,C.Scarlata,J.Sluiter和D.Templeton;Technical Report[技术报告](NREL/TP-51042623);2008年1月;National Renewable Energy Laboratory[国家可再生能源实验室]。
在发酵后,通过使离心后的澄清上清液通过0.2μm孔径的过滤器,将用于HPLC分析的样品与酵母生物质和不溶性组分(玉米醪)分离。
实例1.酵母参考菌株RX19的构建。
非预先公开的美国专利申请US 63087642解释了如何制备包含NADH依赖性硝酸盐和/或亚硝酸盐同化途径的酵母细胞。包含这种NADH依赖性硝酸盐和/或亚硝酸盐同化途径的这种酵母菌株在下文中称为RX19
实例2:新菌株NX20的构建(根据本发明,预示性的)
可以通过如下转化参考菌株RX19来构建新菌株NX20:
编译了DNA片段,其包含酿酒酵母ANB1启动子(由SEQ ID NO:29所展示)、巴斯德毕赤酵母TKL1基因(由SEQ ID NO:24所展示)和酿酒酵母TDH1终止子。该DNA片段被命名为“片段A”(由SEQ ID NO:48所展示)。使用Golden Gate克隆组装DNA片段A(如例如以下文献所述:Engler等人,"Generation of Families of Construct Variants Using Golden GateShuffling"[“使用Golden Gate改组产生构建体变体家族”],(2011),发表于Chaofu Lu等人(编辑),cDNA Libraries:Methods and Applications,Methods in Molecular Biology[cDNA文库:方法与应用,分子生物学方法],第729卷,第167-180页的第11章,通过援引并入本文)。使用CRISPR-Cas9和INT95原型间隔子(由SEQ ID NO:49所展示)以及用于同源整合的以下两个序列,可以将该表达盒整合至位于酿酒酵母参考菌株RX19的X号染色体上的SOD1(YJR104C)和ADO1(YJR105W)之间的INT95基因座中:Sc_INT95B_侧翼5(由SEQ ID NO:50所展示)以及Sc_INT95B_侧翼3(由SEQ ID NO:51所展示)。
可以进行诊断性PCR以确认促进型TKL1表达盒在INT95基因座处正确组装和整合。然后选择无质粒菌落,并且这得到了新菌株NX20,其含有促进型TKL1表达盒的两个拷贝(关于详细的基因型,参见表6)。
实例3:发酵(预示性的)
可以如下制备以上新“NX”菌株的预培养物:将甘油储备液(-80℃)在室温下解冻,并且用于接种在无挡板的0.5L摇瓶中的pH 6.0(用2M H2SO4/4N KOH调节)的补充有2%(w/v)葡萄糖的0.2L矿质培养基(如以下文献所述:Luttik,MLH.等人(2000)"TheSaccharomyces cerevisiae ICL2 Gene Encodes a Mitochondrial 2-MethylisocitrateLyase Involved in Propionyl-Coenzyme A Metabolism"[“酿酒酵母ICL2基因编码参与丙酰辅酶A代谢的线粒体2-甲基异柠檬酸裂解酶”].J.Bacteriol.[细菌学杂志]182:7007-13)。将预培养物在32℃下孵育18小时,并且在200RPM下振荡。在通过OD600测量(使用现有的CDW与OD600校准的关系线)估计酵母细胞干重(CDW)后,将与增殖所需的0.5g CDW/L接种物浓度相对应的量的预培养物离心(3min,5300x g),用一样品体积的无菌脱矿质水洗涤一次,再离心一次,并且重悬于增殖培养基中。
可以如下进行以上NX菌株的增殖:在500mL摇瓶中使用100mL的补充有1.25g/L尿素和以下抗生素的过滤且稀释的玉米醪(70%v/v玉米醪:30%v/v水)进行增殖步骤:终浓度分别为50μg/mL和100μg/mL的新霉素和青霉素G。在所有添加后,使用2M H2SO4/4N KOH将pH调节至5.0。在增殖开始时以0.1mL/L的浓度给药葡糖淀粉酶(T,诺维信公司(Novozymes))。使所有菌株在32℃下增殖6小时,并且在200RPM下振荡。
可以如下进行以上NX菌株的主发酵:在140rpm下震荡并施加32℃的温度的同时,在配备有压力记录/释放盖(安康科技公司(Ankom Technology),美国纽约州马西登)的500ml的Schott瓶中使用200ml培养基进行主发酵步骤。发酵过程中不控制pH。用具有36%w/w DS的增加的干固体含量的玉米醪进行发酵。随后,为玉米醪补充1.0g/L尿素和以下抗生素:终浓度分别为50μg/mL和100μg/mL的新霉素和青霉素G;止泡剂(巴西尔登公司(Basildon),大约0.5mL/L)。在所有添加后,使用2M H2SO4/4N KOH将pH调节至5.0。在发酵开始时以0.24mL/L的浓度给药葡糖淀粉酶(T,诺维信公司)。从增殖至发酵所需的酵母添加量(pitch)为发酵体积的1.5%。在高固体(即,36%w/w DS)条件下测试所有菌株。
可以如下进行发酵的取样:样品仅取自主发酵。在18、24、42、48和66小时采集用于HPLC分析的样品。可以分析每个时间点的乙醇产量(g/l)和每个时间点的剩余葡萄糖浓度(g/l)。
结论可以如下:剩余葡萄糖浓度是酵母菌株的稳健性的指标。由于葡糖淀粉酶的存在,持续产生葡萄糖。不希望受任何类型的理论的限制,据信较不稳健的菌株(诸如参考菌株RX19)在接近发酵结束时将变得受抑制较多,因此将在样品中鉴定出较高浓度的未转化的葡萄糖。较稳健的菌株(诸如NX20)在接近发酵结束时将变得受抑制较少,因此将在样品中鉴定出较低浓度的未转化的葡萄糖。
参考文献
Entian KD,P.Yeast genetic strain and plasmidcollections.Method Microbiol.2007;629-66.
Nijkamp JF,van den Broek M,Datema E,de Kok S,Bosman L,Luttik MA,Daran-Lapujade P,Vongsangnak W,Nielsen J,Heijne WHM,Klaassen P,Paddon CJ,Platt D,P,van Ham RC,Reinders MJT,Pronk JT,de Ridder D,Daran J-M.Denovo sequencing,assembly and analysis of the genome of the laboratory strainSaccharomyces cerevisiae CEN.PK113-7D,a model for modern industrialbiotechnology.Microb Cell Fact.2012;11:36.
Verduyn C,Postma E,Scheffers WA,van Dijken JP.Effect of benzoic acidon metabolic fluxes in yeasts:A continuous-culture study on the regulation ofrespiration and alcoholic fermentation.Yeast.1992;8:501-17.
Mans R,van Rossum HM,Wijsman M,Backx A,Kuijpers NG,van den Broek M,Daran-Lapujade P,Pronk JT,van Maris AJA,Daran J-M.CRISPR/Cas9:a molecularSwiss army knife for simultaneous introduction of multiple geneticmodifications in Saccharomyces cerevisiae.FEMS Yeast Res.2015;15:fov004.
DiCarlo JE,Norville JE,Mali P,Rios X,Aach J,Church GM.Genomeengineering in Saccharomyces cerevisiae using CRISPR-Cas systems.NucleicAcids Res.2013;1-8.
Mikkelsen MD,Buron LD,Salomonsen B,Olsen CE,Hansen BG,Mortensen UH,Halkier BA.Microbial production of indolylglucosinolate through engineeringof a multi-gene pathway in a versatile yeast expression platform.MetabEng.2012;14:104-11.
Knijnenburg TA,Daran JM,van den Broek MA,Daran-Lapujade PA,de WindeJH,Pronk JT,Reinders MJ,Wessels LF.Combinatorial effects of environmentalparameters on transcriptional regulation in Saccharomyces cerevisiae:Aquantitative analysis of a compendium of chemostat-based transcriptomedata.BMC Genomics.2009;10:53.
Mumberg D,Müller R,Funk M.Yeast vectors for the controlled expressionof heterologous proteins in different genetic backgrounds.Gene.1995;156:119-22.
Gueldener U,Heinisch J,Koehler GJ,Voss D,Hegemann JH.A second set ofloxP marker cassettes for Cre-mediated multiple gene knockouts in buddingyeast.Nucleic Acids Res.2002;30:e23.
Guadalupe-Medina V,Wisselink H,Luttik M,de Hulster E,Daran J-M,PronkJT,van Maris AJA.Carbon dioxide fixation by Calvin-Cycle enzymes improvesethanol yield in yeast.Biotechnol Biofuels.2013;6:125.
Daniel Gietz R,Woods RA:Transformation of yeast by lithium acetate/single-stranded carrier DNA/polyethylene glycol method.Methods Enzymol.2002:87-96.
Solis-Escalante D,Kuijpers NGA,Bongaerts N,Bolat I,Bosman L,Pronk JT,Daran J-M,Daran-Lapujade P.amdSYM,a new dominant recyclable marker cassettefor Saccharomyces cerevisiae.FEMS Yeast Res.2013;13:126-39.
Guadalupe-Medina V,Almering MJH,van Maris AJA,Pronk JT.Elimination ofglycerol production in anaerobic cultures of a Saccharomyces cerevisiaestrain engineered to use acetic acid as an electron acceptor.Appl EnvironMicrob.2010;76:190-5.
Papapetridis I,van Dijk M,Dobbe AP,Metz B,Pronk JT,van MarisAJA.Improving ethanol yield in acetate-reducing Saccharomyces cerevisiae bycofactor engineering of 6-phosphogluconate dehydrogenase and deletion ofALD6.Microb Cell Fact.2016;15:1-16.
Heijnen JJ,van Dijken JP.In search of a thermodynamic description ofbiomass yields for the chemotrophic growth of microorganisms.BiotechnolBioeng.1992;39:833-58.
Postma E,Verduyn C,Scheffers WA,van Dijken JP.Enzymic analysis of thecrabtree effect in glucose-limited chemostat cultures of Saccharomycescerevisiae.Appl Environ Microbiol.1989;55:468-77.
Verduyn C,Postma E,Scheffers WA,van Dijken JP.Physiology ofSaccharomyces cerevisiae in anaerobic glucose-limited chemostat cultures.JGen Microbiol.1990;136:395-403.
Kwast et al.Genomic Analysis of Anaerobically induced genes inSaccharomyces cerevisiae:Functional roles of ROX1 and other factors inmediating the anoxic response,2002,Journal of bacteriology vol 184,no1p250-265.
Keng,T.1992.HAP1 and ROX1 form a regulatory pathway in the repressionof HEM13 transcription in Saccharomyces cerevisiae.Mol.Cell.Biol.12:2616–2623.
Labbe-Bois,R.,and P.Labbe.1990.Tetrapyrrole and heme biosynthesis inthe yeast Saccharomyces cerevisiae,p.235–285.In H.A.Dailey(ed.),Biosynthesisof heme and chlorophylls.McGraw-Hill,New York,N.Y.
Zitomer,R.S.,and C.V.Lowry.1992.Regulation of gene expression byoxygen in Saccharomyces cerevisiae.Microbiol.Rev.56:1–11.
Zitomer,R.S.,P.Carrico,and J.Deckert.1997.Regulation of hypoxic geneexpression in yeast.Kidney Int.51:507–513.
Cohen et al.,Induction and repression of DAN1 and the family ofanaerobic mannoprotein genes in Saccharomyces cerevisiae occurs through acomplex array of regulatory sites.Nucleic Acid Research,2001 Vol.29,No3,799-808
Ter Kinde and de Steensma,A microarray-assisted screen for potentialHap1 and Rox1 target genes in Saccharomyces cerevisiae,2002,Yeast 19:825-840.
Sertil et al.The DAN1 gene of S cerevisiae is regulated in parallelwith the hypoxic gene,but by a different mechanism,1997,Gene Vol 192,pag199-205.
Nissen et al.,"Anaerobic and aerobic batch cultivations ofSaccharomyces cerevisiae mutants impaired in glycerol Synthesis",(2000),Yeast,vol.16,pages 463-474.
Sambrook et al.,Molecular Cloning-A Laboratory Manual,2nd ed.,Vol.1-3(1989),published by Cold Spring Harbor Publishing.
Kruskal et al,"An overview of sequence comparison:Time warps,stringedits,and macromolecules",(1983),Society for Industrial and AppliedMathematics(SIAM),Vol 25,No.2,pages 201-237.
D.Sankoff and J.B.Kruskal,(ed.),Time warps,string edits andmacromolecules:the theory and practice of sequence comparison,pp.1-44Addison-Wesley Publishing Company.
Needleman et al"A General Method Applicable to the Search forSimilarities in the Amino Acid Sequence of Two Proteins"(1970)J.Mol.Biol.Vol.48,pages 443-453.
Sherman,F.,et al.,Methods in Yeast Genetics,Cold Spring HarborLaboratory(1986)
Rice et al,"EMBOSS:The European Molecular Biology Open SoftwareSuite"(2000),Trends in Genetics vol.16,(6)pages 276—277,http:// emboss.bioinformatics.nl/.
Neves et al.,"Yeast orthologues associated with glycerol transportand metabolism",(2004),FEMS Yeast Res.Vol.5,pages 51-62.
Neves et al"New insights on glycerol transport in Saccharomycescerevisiae",(2004),FEBS Letters 565(2004)160-162.
Kwast et al.,"Genomic Analysis of Anaerobically induced genes inSaccharomyces cerevisiae:Functional roles of ROX1 and other factors inmediating the anoxic response",(2002),Journal of bacteriology vol 184,no1pages 250-265.
Molin et al(2003)"Dihydroxy-acetone kinases in Saccharomycescerevisiae are involved in detoxification of dihydroxyacetone"(2003),J.Biol.Chem.,vol.278:pages 1415–1423.
Guadalupe-Medina et al.,"Carbon dioxide fixation by Calvin-Cycleenzymes improves ethanol yield in yeast",published in Biotechnol,Biofuels,2013,vol.6,p.125 onwards.
Yébenes et al.,“Chaperonins:two rings for folding”(2011),Trends inBiochemical Sciences,Vol.36,No.8,pages 424-432.
Zeilstra-Ryalls et al.,"The universally conserved GroE(Hsp60)chaperonins",published in Annu Rev Microbiol.(1991)vol.45,pages301–25.
Horwich et al.,"Two Families of Chaperonin:Physiology and Mechanism",(2007),Annu.Rev.Cell.Dev.Biol.Vol.23,pages 115–45.
Sonderegger et al.,"Metabolic Engineering of a PhosphoketolasePathway for Pentose Catabolism in Saccharomyces cerevisiae",(2004),Applied&Environmental Microbiology,vol.70(5),pages 2892-2897.
Membrillo-Hernandez et al.,"Evolution of the adhE Gene Product ofEscherichia coli from a Functional Reductase to a Dehydrogenase",(2000)J.Biol.Chem.275:pages 33869-33875.
Tamarit et al."Identification of the Major Oxidatively DamagedProteins in Escherichia coli Cells Exposed to Oxidative Stress"(1998)J.Biol.Chem.273:pages 3027-3032.
Smith et al."Purification,Properties,and Kinetic Mechanism ofCoenzyme A-Linked Aldehyde Dehydrogenase from Clostridium kluyveri"(1980)Arch.Biochem.Biophys.203:pages 663-675.
Toth et al."The ald Gene,Encoding a Coenzyme A-Acylating AldehydeDehydrogenase,Distinguishes Clostridium beijerinckii and Two Other Solvent-Producing Clostridia from Clostridium acetobutylicum",(1999),Appl.Environ.Microbiol.65:pages 4973-4980.
Powlowski and Shingler"Genetics and biochemistry of phenoldegradation by Pseudomonas sp.CF600",(1994),Biodegradation vol.5,pages 219-236.
Shingler et al.,"Nucleotide Sequence and Functional Analysis of theComplete Phenol/3,4-Dimethylphenol Catabolic Pathway of Pseudomonas sp.StrainCF600",(1992),J.Bacteriol.,Vol.174,pages 711-724.
Ferrandez et al.,"Genetic Characterization and Expression inHeterologous Hosts of the 3-(3-Hydroxyphenyl)Propionate Catabolic Pathway ofEscherichia coli K-12"(1997)J.Bacteriol.179:pages2573-2581.
Lutstorf and Megnet,"Multiple Forms of Alcohol Dehydrogenase inSaccharomyces Cerevisiae",(1968),Arch.Biochem.Biophys.,vol.126,pages 933-944.
Ciriacy,"Genetics of Alcohol Dehydrogenase in Saccharomycescerevisiae I.Isolation and genetic analysis of adh mutants",(1975),Mutat.Res.29,pages 315-326.
Engler et al.,"Generation of Families of Construct Variants UsingGolden Gate Shuffling",(2011),published in chapter 11 of Chaofu Lu et al.(eds.),cDNA Libraries:Methods and Applications,Methods in Molecular Biology,vol.729,pages 167-180.
DiCarlo et al.,"Genome engineering in Saccharomyces cerevisiae usingCRISPR-Cas systems",(2013),Nucleic Acids Res Vol 41,pages 4336-4343.
Sikorski and Hieter,"A System of Shuttle Vectors and Yeast HostStrains Designed for Efficient Manipulation of DNA in Saccharomycescerevisiae",(1989),Genetics,vol.122,pages 19-27

Claims (17)

1.一种重组酵母细胞,所述重组酵母细胞功能性地表达:
a)编码具有NADH依赖性硝酸盐还原酶活性的酶的核酸序列和/或编码具有NADH依赖性亚硝酸盐还原酶活性的酶的核酸序列;以及
b)编码具有转酮酶活性的蛋白质(EC 2.2.1.1)的核酸序列,
其中编码具有转酮酶活性的所述蛋白质的所述核酸序列的表达在启动子(“TKL启动子”)的控制下,所述TKL启动子对转酮酶的厌氧/好氧表达比率为2或更高。
2.根据权利要求1所述的重组酵母细胞,其中所述TKL启动子是选自由以下组成的列表的基因的启动子:FET4、ANB1、YHR048W、DAN1、AAC3、TIR2、DIP5、HEM13、YNR014W、YAR028W、FUN 57、COX5B、OYE2、SUR2、FRDS1、PIS1、LAC1、YGR035C、YAL028W、EUG1、HEM14、ISU2、ERG26、YMR252C、SML1、TIR2、TIR4、TIR3、PAU7、PAU5、YLL064C、YGR294W、DAN3、YIL176C、YGL261C、YOL161C、PAU1、PAU6、DAN2、YDR542W、YIR041W、YKL224C、PAU3、YLL025W、YOR394W、YHL046C、YMR325W、YAL068C、YPL282C、PAU2、PAU4。
3.根据权利要求1或2所述的重组酵母菌株,其中所述TKL启动子是合成的寡核苷酸。
4.根据权利要求1至3中任一项所述的重组酵母细胞,其中编码具有转酮酶活性的蛋白质的天然核酸序列在所述TKL启动子的控制下。
5.根据权利要求1至4中任一项所述的重组酵母细胞,其中所述重组酵母细胞功能性地表达编码具有转酮酶活性的蛋白质的异源核酸序列。
6.根据权利要求5所述的重组酵母细胞,其中具有转酮酶活性的所述蛋白质包含以下或由以下组成:
-SEQ ID NO:9、SEQ ID NO:10、SEQ ID NO:11、SEQ ID NO:12、SEQ ID NO:13、SEQ IDNO:14、SEQ ID NO:15、SEQ ID NO:16、SEQ ID NO:17、SEQ ID NO:18、SEQ ID NO:19、SEQ IDNO:20、SEQ ID NO:21、SEQ ID NO:22、SEQ ID NO:23或SEQ ID NO:25的氨基酸序列;或者
-SEQ ID NO:9、SEQ ID NO:10、SEQ ID NO:11、SEQ ID NO:12、SEQ ID NO:13、SEQ IDNO:14、SEQ ID NO:15、SEQ ID NO:16、SEQ ID NO:17、SEQ ID NO:18、SEQ ID NO:19、SEQ IDNO:20、SEQ ID NO:21、SEQ ID NO:22、SEQ ID NO:23或SEQ ID NO:25的功能性同源物,所述功能性同源物与SEQ ID NO:9、SEQ ID NO:10、SEQ ID NO:11、SEQ ID NO:12、SEQ ID NO:13、SEQ ID NO:14、SEQ ID NO:15、SEQ ID NO:16、SEQ ID NO:17、SEQ ID NO:18、SEQ IDNO:19、SEQ ID NO:20、SEQ ID NO:21、SEQ ID NO:22、SEQ ID NO:23或SEQ ID NO:25的氨基酸序列具有至少40%、至少45%、至少50%、至少55%、至少60%、至少65%、至少70%、至少75%、至少80%、至少85%、至少90%、至少95%、至少98%或至少99%序列同一性;或者
-SEQ ID NO:9、SEQ ID NO:10、SEQ ID NO:11、SEQ ID NO:12、SEQ ID NO:13、SEQ IDNO:14、SEQ ID NO:15、SEQ ID NO:16、SEQ ID NO:17、SEQ ID NO:18、SEQ ID NO:19、SEQ IDNO:20、SEQ ID NO:21、SEQ ID NO:22、SEQ ID NO:23或SEQ ID NO:25的功能性同源物,所述功能性同源物当与SEQ ID NO:9、SEQ ID NO:10、SEQ ID NO:11、SEQ ID NO:12、SEQ ID NO:13、SEQ ID NO:14、SEQ ID NO:15、SEQ ID NO:16、SEQ ID NO:17、SEQ ID NO:18、SEQ IDNO:19、SEQ ID NO:20、SEQ ID NO:21、SEQ ID NO:22、SEQ ID NO:23或SEQ ID NO:25的氨基酸序列相比时具有一个或多个突变、取代、插入和/或缺失,更优选地当与SEQ ID NO:9、SEQID NO:10、SEQ ID NO:11、SEQ ID NO:12、SEQ ID NO:13、SEQ ID NO:14、SEQ ID NO:15、SEQID NO:16、SEQ ID NO:17、SEQ ID NO:18、SEQ ID NO:19、SEQ ID NO:20、SEQ ID NO:21、SEQID NO:22、SEQ ID NO:23或SEQ ID NO:25的氨基酸序列相比时具有不超过300个、不超过250个、不超过200个、不超过150个、不超过100个、不超过75个、不超过50个、不超过40个、不超过30个、不超过20个、不超过10个或不超过5个氨基酸突变、取代、插入和/或缺失的功能性同源物。
7.根据权利要求5或6所述的重组酵母细胞,其中编码具有转酮酶活性的所述蛋白质的所述异源核酸序列在所述TKL启动子的控制下。
8.根据权利要求5至7中任一项所述的重组酵母细胞,其中所述重组酵母细胞是重组酿酒酵母(Saccharomyces cerevisiae)酵母细胞,其功能性地表达编码具有转酮酶活性的蛋白质的异源核酸序列,其中:
-具有转酮酶活性的所述蛋白质包含以下氨基酸序列或由以下氨基酸序列组成,所述氨基酸序列与SEQ ID NO:7的氨基酸序列具有在等于或大于30%至等于或小于80%的范围内、更优选地在等于或大于35%至等于或小于75%的范围内、最优选地在等于或大于35%至等于或小于70%或甚至等于或小于65%的范围内的序列同一性;或者
-所述异源核酸序列包含以下核酸序列或由以下核酸序列组成,所述核酸序列与SEQID NO:8的核酸序列具有在等于或大于30%至等于或小于80%的范围内、更优选地在等于或大于35%至等于或小于75%的范围内、最优选地在等于或大于35%至等于或小于70%或甚至等于或小于65%的范围内的序列同一性。
9.根据权利要求5至8中任一项所述的重组酵母细胞,其中编码具有转酮酶活性的蛋白质的天然核酸序列已经被破坏或缺失。
10.根据权利要求5至8中任一项所述的重组酵母细胞,其中除了编码具有转酮酶活性的蛋白质的天然核酸序列之外,所述重组酵母细胞还包含编码具有转酮酶活性的所述蛋白质的所述异源核酸序列。
11.根据权利要求1至10中任一项所述的重组酵母细胞,其中所述重组酵母细胞进一步功能性地表达编码具有硝酸盐和/或亚硝酸盐转运蛋白活性的酶的核酸序列。
12.根据权利要求1至11中任一项所述的重组酵母细胞,其中所述重组酵母细胞是重组酵母(Saccharomyces)属酵母细胞,优选酿酒酵母酵母细胞。
13.根据权利要求1至12中任一项所述的重组酵母细胞,其中所述重组酵母细胞进一步功能性地表达:
-编码甘油脱氢酶(E.C.1.1.1.6)的核酸序列;
-编码二羟基丙酮激酶(E.C.2.7.1.28或E.C.2.7.1.29)的核酸序列;以及
-任选地编码甘油转运蛋白的核酸序列。
14.根据权利要求1至13中任一项所述的重组酵母细胞,其中所述重组酵母细胞进一步功能性地表达编码葡糖淀粉酶(EC 3.2.1.20或3.2.1.3)的核酸序列。
15.一种用于生产乙醇的方法,所述方法包括使用根据权利要求1至14中任一项所述的重组酵母细胞转化碳源,优选碳水化合物。
16.根据权利要求15所述的方法,其中所述方法至少部分地在包含以下葡萄糖浓度的葡萄糖的培养基中进行:25g/L或更高、30g/L或更高、35g/L或更高、40g/L或更高、45g/L或更高、50g/L或更高、55g/L或更高、60g/L或更高、65g/L或更高、70g/L或更高、75g/L或更高、80g/L或更高、85g/L或更高、90g/L或更高、95g/L或更高、100g/L或更高、110g/L或更高或者120g/L或更高。
17.根据权利要求15或权利要求16所述的方法,其中所述方法至少部分地在存在诸如葡糖淀粉酶的糖解酶的情况下进行。
CN202280059115.0A 2021-07-12 2022-07-07 重组酵母细胞 Pending CN117881773A (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US202163220910P 2021-07-12 2021-07-12
US63/220,910 2021-07-12
EP22150430.1 2022-01-06
PCT/EP2022/068996 WO2023285297A1 (en) 2021-07-12 2022-07-07 Recombinant yeast cell

Publications (1)

Publication Number Publication Date
CN117881773A true CN117881773A (zh) 2024-04-12

Family

ID=90590522

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202280059115.0A Pending CN117881773A (zh) 2021-07-12 2022-07-07 重组酵母细胞

Country Status (1)

Country Link
CN (1) CN117881773A (zh)

Similar Documents

Publication Publication Date Title
EP3638770B1 (en) Recombinant yeast cell
EP3298133A1 (en) Acetate consuming yeast cell
EP3359655B1 (en) Eukaryotic cell with increased production of fermentation product
EP4370651A1 (en) Recombinant yeast cell
WO2021089877A1 (en) Process for producing ethanol
CN117881773A (zh) 重组酵母细胞
CN117897490A (zh) 重组酵母细胞
CN117940571A (zh) 重组酵母细胞
CN117940570A (zh) 重组酵母细胞
CN117916381A (zh) 重组酵母细胞
WO2019063544A1 (en) ACETIC ACID CONSUMER STRAIN
CN118056011A (zh) 重组酵母细胞
WO2023285280A1 (en) Recombinant yeast cell
US20230374443A1 (en) Saccharomyces yeast cell and fermentation process using such
WO2023285294A1 (en) Recombinant yeast cell
CN118176296A (zh) 重组酵母细胞
WO2023079050A1 (en) Recombinant yeast cell
WO2023208762A2 (en) Mutant yeast cell and process for the production of ethanol

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication