CN117872991B - 一种曝气生物滤池水处理工艺自动运行控制方法 - Google Patents

一种曝气生物滤池水处理工艺自动运行控制方法 Download PDF

Info

Publication number
CN117872991B
CN117872991B CN202410060682.9A CN202410060682A CN117872991B CN 117872991 B CN117872991 B CN 117872991B CN 202410060682 A CN202410060682 A CN 202410060682A CN 117872991 B CN117872991 B CN 117872991B
Authority
CN
China
Prior art keywords
filter
water
total
filter tank
tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202410060682.9A
Other languages
English (en)
Other versions
CN117872991A (zh
Inventor
程晓玲
吴海涛
刘冬琴
程强
郑俊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Huaqi Environment Protection Science And Technology Co ltd
Original Assignee
Huaqi Environment Protection Science And Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huaqi Environment Protection Science And Technology Co ltd filed Critical Huaqi Environment Protection Science And Technology Co ltd
Priority to CN202410060682.9A priority Critical patent/CN117872991B/zh
Publication of CN117872991A publication Critical patent/CN117872991A/zh
Application granted granted Critical
Publication of CN117872991B publication Critical patent/CN117872991B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/006Regulation methods for biological treatment
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/418Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS] or computer integrated manufacturing [CIM]
    • G05B19/41865Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS] or computer integrated manufacturing [CIM] characterised by job scheduling, process planning, material flow
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/32Operator till task planning
    • G05B2219/32252Scheduling production, machining, job shop

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Health & Medical Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Quality & Reliability (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Microbiology (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Abstract

本发明公开了一种曝气生物滤池水处理工艺自动运行控制方法,属于水处理技术领域。本发明根据滤池类型,在滤池进、出水端分别设置水质监测仪表,在进水管线上设置进水流量计;监测仪表在各个采样时间点进行采样,经过一段检测时间后输出对应数据;并每隔一个检测周期进行采样;进水流量计采集并获取滤池总进水流量;最终根据滤池类型计算滤池需要投入的格数,进而控制滤池实际投入运行的格数,进行滤池的启动或停止选择。本发明可通过PLC/计算机系统实现对滤池的全自动运行,达到充分发挥滤池功能,减少运营压力,节约滤池运行能耗,保障出水水质的目的。

Description

一种曝气生物滤池水处理工艺自动运行控制方法
技术领域
本发明涉及水处理技术领域,更具体地说,涉及一种曝气生物滤池水处理工艺自动运行控制方法。
背景技术
曝气生物滤池(BAF)是一种广泛应用于水处理领域的生物处理技术,最初应用于城镇污水领域的深度处理,后来发展直接用于二级处理,并且拓展到再生水、工业水、初期雨水、微污染水源水等各个领域。曝气生物滤池(BAF)根据处理对象的不同分为硝化曝气生物滤池(N)、碳氧化曝气生物滤池(C)、碳氧化/部分硝化曝气生物滤池(C/N)以及反硝化生物滤池(DN)。根据处理的需求,可将上述单一功能的滤池进行组合,形成前置反硝化生物滤池+后置曝气生物滤池(DN+C/N)、前置曝气生物滤池+后置反硝化生物滤池(C/N+DN)、前置反硝化生物滤池+中置硝化曝气生物滤池+后置反硝化生物滤池(DN+N+DN)等多种组合工艺,达到去除CODcr、BOD5、氨氮、总氮的目的,此外还可以与高级氧化技术组合应用于难降解有机物的处理。
曝气生物滤池(BAF)水处理工艺在设计时,会综合考虑诸多因素的影响(总进水量、进水各污染物浓度、温度等),布置滤池的格数和尺寸,可模块化组合。在实际应用中,厂区普遍会按照设计的滤池格数全部投入运行,由此会带来一定的问题。由于日常进水水量、水质不尽相同,即进水负荷不同,会导致滤池在进水负荷低的时候,内部的微生物无法获得充足的营养物质,造成微生物量的减少,在进水负荷高的时候,滤池微生物量不足,容易导致出水不达标,并且形成恶性循环。特别是伴随着一年四季中水温的变化,微生物的生化处理能力随温度的降低而下降,在冬季的时候厂区不得不降水量运行,造成厂区生产能力下降,不能及时处理管网内的污水,甚至造成外管网污水溢流。如果不根据进水情况,长期按照滤池全投入的方式运行,滤池内部无法保持足够多的微生物量,应对进水负荷变化,导致滤池的抗冲击能力变弱、处理效率下降、出水水质存在风险等问题;同时,在进水负荷低的时间段,投入运行的滤池数量过多,运行不经济,不利于厂区的节能降耗。因此,为了充分发挥曝气生物滤池(BAF)在水处理领域中的作用,急需一种高效的自动运行控制方法。
发明内容
1.发明要解决的技术问题
针对目前曝气生物滤池应用中运行不畅、影响处理效率以及不利于节能降耗的情况,本发明拟提供一种曝气生物滤池水处理工艺自动运行控制方法,以解决上述提到的运行难题。
2.技术方案
为达到上述目的,本发明提供的技术方案为:
本发明的一种曝气生物滤池水处理工艺自动运行控制方法,包括以下过程:
S1、根据滤池类型,在滤池进、出水端分别设置水质监测仪表,在进水管线上设置进水流量计;监测仪表在各个采样时间点进行采样,经过一段检测时间后输出对应数据;并每隔一个检测周期进行采样;进水流量计采集并获取滤池总进水流量;
S2、水质监测仪表采样点与滤池进水口位置之间有通道连接,当滤池正常进水时,当前时刻T下,滤池进水口的水质需要追溯到仪表监测值C,T时刻滤池的进水水样,在t时刻经过仪表采样点,比对求解t与各监测时刻中的某个时刻tx更接近,时刻tx对应的水质数据Cx,取为滤池进水水质;
S3、根据滤池类型计算滤池需要投入的格数,进而控制滤池实际投入运行的格数,进行滤池的启动或停止选择。
更进一步地,S1中水质监测仪表会在t1、t2、......、tn时间点进行采样,每个采集的水样会经过一段检测时间T1,在t1+T1、t2+T1、......、tn+T1时间点输出对应数据C1、C2、......、Cn,仪表每隔一段时间检测周期T2进行采样检测;其中检测时间T1、检测周期T2根据仪表类型所设时间不同,T1=0~1h,T2=0~2h,T2=tn-tn-1
通过采集各进水管线流量计实时数据Q1、Q2、......、Qn,获取滤池总进水流量Q,Q=Q1+Q1+......+Qn
更进一步地,S2中具体过程为:水质监测仪表采样点与滤池进水口位置之间需通过管道或者渠道连接,两者之间的通道有效容积为V,项目建成后,根据实际通道有效容积设置;当滤池正常进水时,当前时刻T下,滤池进水口的水质需要追溯到仪表监测值C,根据可以得出T时刻滤池的进水水样,在t时刻经过仪表采样点,通过比对,t与各监测时刻t1、t2、......、tn中某个时刻tx更接近,tx可通过下列方式求解:
如果0≤min[t-t1-min(|t-t1|,|t-t2|,......,|t-tn|),t-t2-min(|t-t1|,|t-t2|,......,|t-tn|),......,t-tn-min(|t-t1|,|t-t2|,......,|t-tn|)]≤0.1,tx=t-min(|t-t1|,|t-t2|,......,|t-tn|),否则tx=t+min(|t-t1|,|t-t2|,......,|t-tn|);
时刻tx对应的水质数据Cx,取为滤池进水水质。
更进一步地,S3中根据滤池类型计算滤池需要投入的格数,可按以下方式计算:
n1=ceiling[24×Q×(C'COD进-CCOD出)/(1000×qCOD×h×L×B)]
其中,n1为采用有机物容积负荷计算滤池运行格数,ceiling表示计算值向上取值函数,C'COD进表示滤池进水COD检测值,CCOD出表示滤池出水COD控制值,qCOD表示滤池有机物容积负荷控制值,h表示滤池内滤料层高度,L表示滤池池长,B表示滤池池宽;
n2=ceiling[24×Q×(C'NH3-N进-CNH3-N出)/(1000×qNH3-N×h×L×B)]
其中,n2为采用硝化容积负荷计算滤池运行格数,C'NH3-N进表示滤池进水氨氮检测值,CNH3-N出表示滤池出水氨氮控制值,qNH3-N表示滤池硝化容积负荷控制值;
n3=ceiling[24×Q×(C'NOX-N进-CNOX-N出)/(1000×qNOX-N×h×L×B)]
其中,n3为采用反硝化容积负荷计算滤池运行格数,C'NOX-N进表示滤池进水硝酸盐氮检测值,CNOX-N出表示滤池出水硝酸盐氮控制值,qNOX-N表示滤池反硝化容积负荷控制值;
n4=ceiling[Q×T/(h×L×B)]
其中,n4为采用空床停留时间计算滤池运行格数,T表示滤池空床停留时间控制值;
n5=ceiling[Q/(q×L×B)]
其中,n5为采用滤速(表面水力负荷)计算滤池运行格数,q表示滤池滤速控制值。
更进一步地,S3中滤池实际投入运行格数控制如下:
N=max(n1,n2,n3,n4,n5),且n≥nmin
其中,N为滤池需投入运行格数计算值,nmin表示滤池最少运行格数控制值;
当N≤N建设,则n启或停=N-N当前
其中,N建设为实际工程建设的滤池格数,n启或停为启动或停止滤池的格数,根据滤池运行格数计算值N与当前滤池实际运行格数N当前之间的差值,n启或停>0,则启动|N-N当前|格,n启或停<0,则停止|N-N当前|格,n启或停=0,则维持当前运行格数;
当N>N建设,则n=N-N当前
当滤池运行格数计算所需值超过了滤池建设的数量,说明进水负荷高,超过滤池自身处理能力,出水将有风险,此时将启动所有停运滤池,并且启动报警程序,由运营人员调控进水水量或采取应急措施。
更进一步地,S3中滤池的启动或停止选择过程如下:
当需要启动|N-N当前|格滤池时,需在当前停运滤池中进行选择,选择条件为最近单个运行周期内停运时间长的滤池优先启动,相邻2次滤池反洗之间为一个运行周期;
当需要停止|N-N当前|格滤池时,需在当前停运滤池中进行选择,选择条件为最近单个运行周期内运行时间短的滤池优先停止,但是运行时间少于最低运行时间T运行min要求的滤池不纳入比选;相邻2次滤池反洗之间为一个运行周期。为避免滤池短期内运行数量波动较大,在滤池停运的过程中,设置滤池停运间隔时间T停运间隔,即每隔时间T停运间隔,才停运一格。
更进一步地,还包括S4:停运滤池维护控制,具体如下:
维护一:为避免长期停运导致滤池内部微生物减量甚至消失,需设置停运周期T停运,当停运滤池的停止时间达到T停运,则需启动该格滤池,同时在现有运行中的滤池进行选择相应格数的滤池停止运行,即两者交替运行,选择条件为最近单个运行周期内运行时间短的滤池优先停止,但是运行时间少于最低运行时间T运行min要求的滤池不纳入比选;
维护二:针对需曝气的滤池,为维持滤池内部微生物活性,需设置曝气周期T曝气周期和曝气时间T曝气时间,当滤池停运时间达到曝气周期T曝气周期,则启动滤池曝气系统,启动时间达到曝气时间T曝气时间后,停止曝气系统。
更进一步地,还包括S5:容积负荷修正,具体过程如下:
根据滤池进、出水端分别设置水质监测仪表反馈的检测值,针对不同滤池类型,可进行滤池实际容积负荷的复核:
q'COD=24×Q×(C'COD进-C'COD出)/(1000×N当前×h×L×B)
其中,q'COD表示滤池有机物容积负荷实际值,C'COD进、C'COD出分别表示滤池进出水COD检测值,具体地,出水检测值根据出水仪表数据,参照步骤S1、S2中进水检测的具体计算原理,进行取值;即进水水质监测追踪用到的是:进水仪表检测点到滤池进水口的通道容积,出水水质监测追踪用的是:滤池出水口到出水仪表检测点的通道容积,对于监测时刻的比对计算和对应水质数据的选取过程,均可同理参考步骤S1和S2的计算原理,在此不予赘述。
q'NH3-N=24×Q×(C'NH3-N进-C'NH3-N出)/(1000×N当前×h×L×B)
其中,q'NH3-N表示滤池硝化容积负荷实际值,C'NH3-N进、C'NH3-N出分别表示滤池进出水氨氮检测值,出水检测值根据出水仪表数据,同理参照步骤S1、S2的计算原理,进行取值;
q'NOX-N=24×Q×(C'NOX-N进-C'NOX-N出)/(1000×N当前×h×L×B)
其中,q'NOX-N表示滤池反硝化容积负荷实际值,C'NOX-N进、C'NOX-N出分别表示滤池进出水硝酸盐氮检测值,出水检测值根据出水仪表数据,同理步骤参照S1、S2的计算原理,进行取值;
通过仪表的前后反馈,得到滤池实际的的有关容积负荷值,将其作为当前滤池处理能力的表征,纳入滤池运行格数的计算中,实现根据滤池实际处理能力,达到修正运行格数的功能,来应对进水负荷、水温及相关潜在因素对滤池功能的影响。
更进一步地,还包括S6:超负荷运行调节,具体过程如下:
当系统采用实际滤池容积负荷计算滤池投入运行格数N超出建设数量N建设,则根据相关容积负荷控制滤池总进水量;
根据有机物容积负荷计算滤池允许总进水量Q'总1:
Q'总1=(1000×N建设×h×L×B×q'COD)/[24×(C'COD进-C'COD出)]
根据硝化容积负荷计算滤池允许总进水量Q'总2:
Q'总2=(1000×N建设×h×L×B×q'NH3-N)[24×(C'NH3-N进-C'NH3-N出)]
根据反硝化容积负荷计算滤池允许总进水量Q'总3:
Q'总3=(1000×N建设×h×L×B×q'NOX-N)/[24×(C'NOX-N进-C'NOX-N出)]
实际滤池允许总进水量Q':
Q'=min(Q'总1,Q'总2,Q'总3)
当滤池所需运行数量超出建设数量,则控制滤池总进水量不超过Q',保障滤池出水水质,同时启动报警程序,提醒运营人员关注进水情况,采取应急措施。
3.有益效果
采用本发明提供的技术方案,与现有技术相比,具有如下有益效果:
本发明的一种曝气生物滤池水处理工艺自动运行控制方法,可通过PLC/计算机系统实现对滤池的全自动运行,达到充分发挥滤池功能,减少运营压力,节约滤池运行能耗,保障出水水质的目的。
附图说明
图1为实施例中碳氧化/部分硝化生物滤池的应用示意图;
图2为实施例中反硝化生物滤池的应用示意图;
图3为实施例中碳氧化/部分硝化生物滤池和反硝化生物滤池的组合应用示意图。
具体实施方式
为进一步了解本发明的内容,结合附图对本发明作详细描述。
在本发明的描述中,需要说明的是,术语“中心”、“上”、“下”、“左”、“右”、“竖直”、“水平”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。此外,术语“第一”、“第二”、“第三”仅用于描述目的,而不能理解为指示或暗示相对重要性。
下面结合实施例对本发明作进一步的描述。
实施例
由于曝气生物滤池采用模块化设计,多格并联运行的方式,在实际运行中,可以针对不同的进水情况,合理控制滤池运行格数的方式,来维持单格滤池内部足够的微生物量,保证滤池处理能力。本实施例提供的滤池运行格数具体控制的方法如下:
S1、根据滤池类型,在滤池进、出水端分别设置水质监测仪表,在进水管线上设置进水流量计;监测仪表在各个采样时间点进行采样,经过一段检测时间后输出对应数据;并每隔一个检测周期进行采样;进水流量计采集并获取滤池总进水流量;具体过程如下:
A1、首先根据滤池的类型,在滤池进、出水端分别设置需要的水质监测仪表,包括COD检测仪、氨氮检测仪、硝酸盐氮检测仪、总氮检测仪等,在进水管线上设置进水电磁流量计,其数量可根据进水管线数量进行配置。
A2、水质监测仪表会在t1、t2、......、tn时间点进行采样,每个采集的水样会经过一段检测时间T1,在t1+T1、t2+T1、......、tn+T1时间点输出对应数据C1、C2、......、Cn,仪表每隔一段时间检测周期T2进行采样检测;其中检测时间T1、检测周期T2根据仪表类型所设时间不同,T1=0~1h,T2=0~2h,T2=tn-tn-1
A3、通过采集各进水管线电磁流量计实时数据Q1、Q2、......、Qn,获取滤池总进水流量Q,Q=Q1+Q1+......+Qn
S2、比对计算,以准确获取滤池进水水质;具体过程为:
A4、水质监测仪表采样点与滤池进水口位置之间需通过管道或者渠道连接,两者之间的通道有效容积为V,项目建成后,根据实际通道有效容积设置;当滤池正常进水时,当前时刻T下,滤池进水口的水质需要追溯到仪表监测值C,根据V=∫t TQdt,可以得出T时刻滤池的进水水样,在t时刻经过仪表采样点,通过比对,t与各监测时刻t1、t2、......、tn中某个时刻tx更接近,tx可通过下列方式求解:
如果0≤min[t-t1-min(|t-t1|,|t-t2|,......,|t-tn|),t-t2-min(|t-t1|,|t-t2|,......,|t-tn|),......,t-tn-min(|t-t1|,|t-t2|,......,|t-tn|)]≤0.1,tx=t-min(|t-t1|,|t-t2|,......,|t-tn|),否则tx=t+min(|t-t1|,|t-t2|,......,|t-tn|)
时刻tx对应的水质数据Cx,取为滤池进水水质,本实施例中的时间单位均为小时。
S3、根据滤池类型计算滤池需要投入的格数,进而控制滤池实际投入运行的格数,进行滤池的启动或停止选择,具体过程分别包括:
A5、根据滤池类型,滤池需要投入的格数可按以下几种方式进行计算:
n1=ceiling[24×Q×(C'COD进-CCOD出)/(1000×qCOD×h×L×B)]
其中,n1为采用有机物容积负荷计算滤池运行格数,ceiling表示计算值向上取值函数;C'COD进表示滤池进水COD检测值,CCOD出表示滤池出水COD控制值,单位均为mg/L;qCOD表示滤池有机物容积负荷控制值,单位为kgCOD/(m3滤料·d);h表示滤池内滤料层高度,L表示滤池池长,B表示滤池池宽,单位均为米。
n2=ceiling[24×Q×(C'NH3-N进-CNH3-N出)/(1000×qNH3-N×h×L×B)]
其中,n2为采用硝化容积负荷计算滤池运行格数,C'NH3-N进表示滤池进水氨氮检测值,CNH3-N出表示滤池出水氨氮控制值,单位均为mg/L;qNH3-N表示滤池硝化容积负荷控制值,单位为kgNH3-N/(m3滤料·d)。
n3=ceiling[24×Q×(C'NOX-N进-CNOX-N出)/(1000×qNOX-N×h×L×B)]
其中,n3为采用反硝化容积负荷计算滤池运行格数,C'NOX-N进表示滤池进水硝酸盐氮检测值,CNOX-N出表示滤池出水硝酸盐氮控制值,单位均为mg/L;qNOX-N表示滤池反硝化容积负荷控制值,单位为kgNOx-N/(m3滤料·d)。
n4=ceiling[Q×T/(h×L×B)]
其中,n4为采用空床停留时间计算滤池运行格数,T表示滤池空床停留时间控制值。
n5=ceiling[Q/(q×L×B)]
其中,n5为采用滤速,即表面水力负荷,计算滤池运行格数,q表示滤池滤速控制值,单位为m3/(m2·h),即m/h。
A6、滤池实际投入运行格数控制:
N=max(n1,n2,n3,n4,n5),且n≥nmin
其中,N为滤池需投入运行格数计算值,nmin表示滤池最少运行格数控制值。
当N≤N建设,则n启或停=N-N当前
其中,N建设为实际工程建设的滤池格数,n启或停为启动或停止滤池的格数,根据滤池运行格数计算值N与当前滤池实际运行格数N当前之间的差值,n启或停>0,则启动|N-N当前|格,n启或停<0,则停止|N-N当前|格,n启或停=0,则维持当前运行格数。
当N>N建设,则n=N-N当前
当滤池运行格数计算所需值超过了滤池建设的数量,说明进水负荷高,超过滤池自身处理能力,出水将有风险,此时将启动所有停运滤池,并且启动报警程序,由运营人员调控进水水量或采取应急措施。
A7、滤池启动或停止选择:
当需要启动|N-N当前|格滤池时,需在当前停运滤池中进行选择,选择条件为最近单个运行周期内停运时间长的滤池优先启动,相邻2次滤池反洗之间为一个运行周期。
当需要停止|N-N当前|格滤池时,需在当前停运滤池中进行选择,选择条件为最近单个运行周期内运行时间短的滤池优先停止,但是运行时间少于最低运行时间T运行min要求的滤池不纳入比选;相邻2次滤池反洗之间为一个运行周期。为避免滤池短期内运行数量波动较大,在滤池停运的过程中,设置滤池停运间隔时间T停运间隔,即每隔时间T停运间隔,才停运一格。
实践中进一步优选地,还包括以下过程:
A8、停运滤池维护控制:
维护一:为避免长期停运导致滤池内部微生物减量甚至消失,需设置停运周期T停运,当停运滤池的停止时间达到T停运,则需启动该格滤池,同时在现有运行中的滤池进行选择相应格数的滤池停止运行,即两者交替运行,选择条件为最近单个运行周期内运行时间短的滤池优先停止,但是运行时间少于最低运行时间T运行min要求的滤池不纳入比选;相邻2次滤池反洗之间为一个运行周期。
维护二:针对需曝气的滤池,为维持滤池内部微生物活性,需设置曝气周期T曝气周期和曝气时间T曝气时间,当滤池停运时间达到曝气周期T曝气周期,则启动滤池曝气系统,启动时间达到曝气时间T曝气时间后,停止曝气系统。
更进一步优选地,实践中可选择地,还包括以下过程:
A9、容积负荷修正:
根据滤池进、出水端分别设置的水质监测仪表,如COD检测仪、氨氮检测仪、硝酸盐氮检测仪、总氮检测仪等反馈的检测值,针对不同滤池类型,可进行滤池实际容积负荷的复核:
q'COD=24×Q×(C'COD进-C'COD出)/(1000×N当前×h×L×B)
其中,q'COD表示滤池有机物容积负荷实际值,C'COD进、C'COD出分别表示滤池进出水COD检测值,出水检测值根据出水仪表数据,参照S1、S2的步骤,进行取值。
q'NH3-N=24×Q×(C'NH3-N进-C'NH3-N出)/(1000×N当前×h×L×B)
其中,q'NH3-N表示滤池硝化容积负荷实际值,C'NH3-N进、C'NH3-N出分别表示滤池进出水氨氮检测值,出水检测值根据出水仪表数据,参照S1、S2的步骤,进行取值。
q'NOX-N=24×Q×(C'NOX-N进-C'NOX-N出)/(1000×N当前×h×L×B)
其中,q'NOX-N表示滤池反硝化容积负荷实际值,C'NOX-N进、C'NOX-N出分别表示滤池进出水硝酸盐氮检测值,出水检测值根据出水仪表数据,参照S1、S2的步骤,进行取值。
通过仪表的前后反馈,得到滤池实际的的有关容积负荷值,将其作为当前滤池处理能力的表征,纳入滤池运行格数的计算中,即取代步骤A5过程有关计算式中的qCOD、qNH3-N、qNOX-N,实现根据滤池实际处理能力,达到修正运行格数的功能,来应对进水负荷、水温及相关潜在因素对滤池功能的影响。
更进一步优选地,实践中可选择地,还包括以下过程:
A10、超负荷运行调节
当系统采用实际滤池容积负荷计算滤池投入运行格数N超出建设数量N建设,则根据相关容积负荷控制滤池总进水量。
根据有机物容积负荷计算滤池允许总进水量Q'总1:
Q'总1=(1000×N建设×h×L×B×q'COD)/[24×(C'COD进-C'COD出)]
根据硝化容积负荷计算滤池允许总进水量Q'总2:
Q'总2=(1000×N建设×h×L×B×q'NH3-N)[24×(C'NH3-N进-C'NH3-N出)]
根据反硝化容积负荷计算滤池允许总进水量Q'总3:
Q'总3=(1000×N建设×h×L×B×q'NOX-N)/[24×(C'NOX-N进-C'NOX-N出)]
实际滤池允许总进水量Q':
Q'=min(Q'总1,Q'总2,Q'总3)
当滤池所需运行数量超出建设数量,则控制滤池总进水量不超过Q',保障滤池出水水质,同时启动报警程序,提醒运营人员关注进水情况,采取应急措施。
实践中,滤池的应用类型可以根据需求进行灵活的选择和组合,如图1中采用的是碳氧化/部分硝化生物滤池,图2中采用的是反硝化生物滤池,图3中采用的是碳氧化/部分硝化生物滤池和反硝化生物滤池的组合应用,均可采用上述实施例中的控制方法予以运行,具有明显的优势,能够通过PLC/计算机系统实现对滤池的全自动运行,达到充分发挥滤池功能,减少运营压力,节约滤池运行能耗,保障出水水质的目的。
以上示意性的对本发明及其实施方式进行了描述,该描述没有限制性,只是本发明的实施方式之一,实际并不局限于此。所以,如果本领域的普通技术人员受其启示,在不脱离本发明创造宗旨的情况下,不经创造性的设计出与该技术方案相似的结构方式及实施例,均应属于本发明的保护范围。

Claims (5)

1.一种曝气生物滤池水处理工艺自动运行控制方法,其特征在于,包括以下过程:
S1、根据滤池类型,在滤池进、出水端分别设置水质监测仪表,在进水管线上设置进水流量计;监测仪表在各个采样时间点进行采样,经过一段检测时间后输出对应数据;并每隔一个检测周期进行采样;进水流量计采集并获取滤池总进水流量;
具体过程为:水质监测仪表会在t1、t2、......、tn时间点进行采样,每个采集的水样会经过一段检测时间T1,在t1+T1、t2+T1、......、tn+T1时间点输出对应数据C1、C2、......、Cn,仪表每隔一段时间检测周期T2进行采样检测;其中检测时间T1、检测周期T2根据仪表类型所设时间不同,T1=0~1h,T2=0~2h,T2=tn-tn-1
通过采集各进水管线流量计实时数据Q1、Q2、......、Qn,获取滤池总进水流量Q,Q=Q1+Q1+......+Qn;
S2、水质监测仪表采样点与滤池进水口位置之间有通道连接,当滤池正常进水时,当前时刻T下,滤池进水口的水质需要追溯到仪表监测值C,T时刻滤池的进水水样,在t时刻经过仪表采样点,比对求解t与各监测时刻中的某个时刻tx更接近,时刻tx对应的水质数据Cx,取为滤池进水水质;
具体过程为:水质监测仪表采样点与滤池进水口位置之间需通过管道或者渠道连接,两者之间的通道有效容积为V,项目建成后,根据实际通道有效容积设置;当滤池正常进水时,当前时刻T下,滤池进水口的水质需要追溯到仪表监测值C,根据,可以得出T时刻滤池的进水水样,在t时刻经过仪表采样点,通过比对,t与各监测时刻t1、t2、......、tn中某个时刻tx更接近,tx可通过下列方式求解:
如果0≤min[t-t1-min(|t-t1|,|t-t2|,......,|t-tn|),t-t2-min(|t-t1|,|t-t2|,......,|t-tn|),......,t-tn- min(|t-t1|,|t-t2|,......,|t-tn|)]≤0.1,tx=t -min(|t-t1|,|t-t2|,......,|t-tn|),否则tx=t +min(|t-t1|,|t-t2|,......,|t-tn|);
时刻tx对应的水质数据Cx,取为滤池进水水质;
S3、根据滤池类型计算滤池需要投入的格数,进而控制滤池实际投入运行的格数,进行滤池的启动或停止选择;
根据滤池类型计算滤池需要投入的格数,按以下方式计算:
n1=ceiling[24×Q×(C'COD进- CCOD出)/(1000×qCOD×h×L×B)]
其中,n1为采用有机物容积负荷计算滤池运行格数,ceiling表示计算值向上取值函数,C'COD进表示滤池进水COD检测值,CCOD出表示滤池出水COD控制值,qCOD表示滤池有机物容积负荷控制值,h表示滤池内滤料层高度,L表示滤池池长,B表示滤池池宽;
n2=ceiling[24×Q×(C'NH3-N进- CNH3-N出)/(1000×qNH3-N×h×L×B)]
其中,n2为采用硝化容积负荷计算滤池运行格数,C'NH3-N进表示滤池进水氨氮检测值,CNH3-N出表示滤池出水氨氮控制值,qNH3-N表示滤池硝化容积负荷控制值;
n3=ceiling[24×Q×(C'NOX-N进- CNOX-N出)/(1000×qNOX-N×h×L×B)]
其中,n3为采用反硝化容积负荷计算滤池运行格数,C'NOX-N进表示滤池进水硝酸盐氮检测值,CNOX-N出表示滤池出水硝酸盐氮控制值,qNOX-N表示滤池反硝化容积负荷控制值;
n4=ceiling[Q×T/(h×L×B)]
其中,n4为采用空床停留时间计算滤池运行格数,T表示滤池空床停留时间控制值;
n5=ceiling[Q/(q×L×B)]
其中,n5为采用滤速(表面水力负荷)计算滤池运行格数,q表示滤池滤速控制值;
滤池实际投入运行格数控制如下:
N=max(n1,n2,n3,n4,n5),且n≥nmin
其中,N为滤池需投入运行格数计算值,nmin表示滤池最少运行格数控制值;
当N≤N建设,则n启或停=N-N当前
其中,N建设为实际工程建设的滤池格数,n启或停为启动或停止滤池的格数,根据滤池运行格数计算值N与当前滤池实际运行格数N当前之间的差值,n启或停>0,则启动|N-N当前|格,n启或停<0,则停止|N-N当前|格,n启或停=0,则维持当前运行格数;
当N>N建设,则n=N-N当前
当滤池运行格数计算所需值超过了滤池建设的数量,说明进水负荷高,超过滤池自身处理能力,出水将有风险,此时将启动所有停运滤池,并且启动报警程序,由运营人员调控进水水量或采取应急措施。
2.根据权利要求1所述的一种曝气生物滤池水处理工艺自动运行控制方法,其特征在于:S3中滤池的启动或停止选择过程如下:
当需要启动|N-N当前|格滤池时,需在当前停运滤池中进行选择,选择条件为最近单个运行周期内停运时间长的滤池优先启动,相邻2次滤池反洗之间为一个运行周期;
当需要停止|N-N当前|格滤池时,需在当前停运滤池中进行选择,选择条件为最近单个运行周期内运行时间短的滤池优先停止,但是运行时间少于最低运行时间T运行min要求的滤池不纳入比选;相邻2次滤池反洗之间为一个运行周期。
3.根据权利要求1-2任一项所述的一种曝气生物滤池水处理工艺自动运行控制方法,其特征在于,还包括S4:停运滤池维护控制,具体如下:
维护一:为避免长期停运导致滤池内部微生物减量甚至消失,需设置停运周期T停运,当停运滤池的停止时间达到T停运,则需启动该格滤池,同时在现有运行中的滤池进行选择相应格数的滤池停止运行,即两者交替运行,选择条件为最近单个运行周期内运行时间短的滤池优先停止,但是运行时间少于最低运行时间T运行min要求的滤池不纳入比选;
维护二:针对需曝气的滤池,为维持滤池内部微生物活性,需设置曝气周期T曝气周期和曝气时间T曝气时间,当滤池停运时间达到曝气周期T曝气周期,则启动滤池曝气系统,启动时间达到曝气时间T曝气时间后,停止曝气系统。
4.根据权利要求1所述的一种曝气生物滤池水处理工艺自动运行控制方法,其特征在于,还包括S5:容积负荷修正,具体过程如下:
根据滤池进、出水端分别设置水质监测仪表反馈的检测值,针对不同滤池类型,可进行滤池实际容积负荷的复核:
q'COD=24×Q×(C'COD进- C'COD出)/(1000×N当前×h×L×B)
其中,q'COD表示滤池有机物容积负荷实际值,C'COD进、C'COD出分别表示滤池进出水COD检测值,出水检测值根据出水仪表数据,参照步骤S1、S2计算原理进行取值;
q'NH3-N=24×Q×(C'NH3-N进- C'NH3-N出)/(1000×N当前×h×L×B)
其中,q'NH3-N表示滤池硝化容积负荷实际值,C'NH3-N进、C'NH3-N出分别表示滤池进出水氨氮检测值,出水检测值根据出水仪表数据,参照步骤S1、S2计算原理进行取值;
q'NOX-N=24×Q×(C'NOX-N进- C'NOX-N出)/(1000×N当前×h×L×B)
其中,q'NOX-N表示滤池反硝化容积负荷实际值,C'NOX-N进、C'NOX-N出分别表示滤池进出水硝酸盐氮检测值,出水检测值根据出水仪表数据,参照步骤S1、S2计算原理进行取值;
通过仪表的前后反馈,得到滤池实际的的有关容积负荷值,将其作为当前滤池处理能力的表征,纳入滤池运行格数的计算中,实现根据滤池实际处理能力,达到修正运行格数的功能,来应对进水负荷、水温及相关潜在因素对滤池功能的影响。
5.根据权利要求1所述的一种曝气生物滤池水处理工艺自动运行控制方法,其特征在于,还包括S6:超负荷运行调节,具体过程如下:
当系统采用实际滤池容积负荷计算滤池投入运行格数N超出建设数量N建设,则根据相关容积负荷控制滤池总进水量;
根据有机物容积负荷计算滤池允许总进水量Q'总1:
Q'总1=(1000×N建设×h×L×B×q'COD)/[24×(C'COD进- C'COD出)]
根据硝化容积负荷计算滤池允许总进水量Q'总2:
Q'总2=(1000×N建设×h×L×B×q'NH3-N)[24×(C'NH3-N进- C'NH3-N出)]
根据反硝化容积负荷计算滤池允许总进水量Q'总3:
Q'总3=(1000×N建设×h×L×B×q'NOX-N)/[24×(C'NOX-N进- C'NOX-N出)]
实际滤池允许总进水量Q':
Q'=min(Q'总1,Q'总2,Q'总3
当滤池所需运行数量超出建设数量,则控制滤池总进水量不超过Q',保障滤池出水水质,同时启动报警程序,提醒运营人员关注进水情况,采取应急措施。
CN202410060682.9A 2024-01-16 2024-01-16 一种曝气生物滤池水处理工艺自动运行控制方法 Active CN117872991B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202410060682.9A CN117872991B (zh) 2024-01-16 2024-01-16 一种曝气生物滤池水处理工艺自动运行控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202410060682.9A CN117872991B (zh) 2024-01-16 2024-01-16 一种曝气生物滤池水处理工艺自动运行控制方法

Publications (2)

Publication Number Publication Date
CN117872991A CN117872991A (zh) 2024-04-12
CN117872991B true CN117872991B (zh) 2024-07-05

Family

ID=90592914

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202410060682.9A Active CN117872991B (zh) 2024-01-16 2024-01-16 一种曝气生物滤池水处理工艺自动运行控制方法

Country Status (1)

Country Link
CN (1) CN117872991B (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112723444A (zh) * 2021-01-06 2021-04-30 北控水务(中国)投资有限公司 智慧分配滤池水量的控制方法及系统
CN113354086A (zh) * 2021-06-03 2021-09-07 北京首创股份有限公司 一种能实现多模式运行的曝气生物滤池及其控制方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE1003962A3 (fr) * 1989-07-20 1992-07-28 Gilson Robert Filtre biologique immergeable pour l'epuration des eaux usees.
KR200185506Y1 (ko) * 1999-11-19 2000-06-15 주식회사범한엔지니어링 포기조의 유입유량 제어 장치
CN107032486A (zh) * 2017-05-31 2017-08-11 桂林理工大学 升流式厌氧生物滤池的进出水检测与控制系统

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112723444A (zh) * 2021-01-06 2021-04-30 北控水务(中国)投资有限公司 智慧分配滤池水量的控制方法及系统
CN113354086A (zh) * 2021-06-03 2021-09-07 北京首创股份有限公司 一种能实现多模式运行的曝气生物滤池及其控制方法

Also Published As

Publication number Publication date
CN117872991A (zh) 2024-04-12

Similar Documents

Publication Publication Date Title
CN110790381B (zh) 一种基于aao污水处理工艺的全流程智能控制系统
US9512021B2 (en) Membrane system and method for treating sewage and wastewater capable of automated removal/destruction of scum/foam with high energy efficiency, high flux and low operation costs and haying process conversion method from constant level continuous batch reactor process
CN110451721A (zh) 一种垃圾焚烧厂渗滤液除碳脱氮处理装置及方法
BR112015005607B1 (pt) Método e aparelho para remoção de nitrogênio no tratamento de água de rejeito
CN113044973B (zh) 一种污水处理控制系统及出水tn控制方法
CN101759290A (zh) 连续流工艺中快速实现并稳定维持短程硝化的装置和方法
CN210122541U (zh) 基于微纳米气泡技术的智能化污水深度处理系统
CN113277685B (zh) 一种aao工艺碳源投加控制方法
CN108383320B (zh) 一种畜禽养殖废水的集成处理方法
CN111320272A (zh) 一种多条件控制的反硝化生物滤池自动反冲洗装置及其运行方法
CN112723542B (zh) 一种适用于高污泥浓度的强化脱氮系统及方法
Münch et al. Suspended carrier technology allows upgrading high-rate activated sludge plants for nitrogen removal via process intensification
CN112875859A (zh) 基于aoa工艺的污水脱氮除磷控制系统
CN111056698A (zh) 一种多级生物接触氧化法的废水处理工艺
CN110655176B (zh) 一种基于聚类的污水处理曝气量前馈控制方法
CN109133333A (zh) 一种膜池滚动曝气的节能型mbr工艺
CN216997850U (zh) 用于aao工艺污水处理的碳源投加装置
CN111547948A (zh) 一种一体化污水处理设备优化运行方法
CN214299633U (zh) 反硝化深床滤池反洗废水处理装置
CN117872991B (zh) 一种曝气生物滤池水处理工艺自动运行控制方法
Jardin et al. Treatment of sludge return liquors: experiences from the operation of full-scale plants
CN115028265B (zh) 连续流分段进水耦合预处理发酵污泥分段回流强化pd/a处理城市污水的装置与方法
CN111115973A (zh) 一种多级兼氧膜生物污水处理装置
CN216513325U (zh) 一种硝化反硝化和过滤的多用型深床滤池
CN217148887U (zh) 一种aao工艺碳源投加控制系统

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant