CN117860901A - 乳糜微粒仿生载体、蛋白药物制剂及其制备方法和应用 - Google Patents

乳糜微粒仿生载体、蛋白药物制剂及其制备方法和应用 Download PDF

Info

Publication number
CN117860901A
CN117860901A CN202410038968.7A CN202410038968A CN117860901A CN 117860901 A CN117860901 A CN 117860901A CN 202410038968 A CN202410038968 A CN 202410038968A CN 117860901 A CN117860901 A CN 117860901A
Authority
CN
China
Prior art keywords
chylomicron
carrier
chitosan
water phase
protein
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202410038968.7A
Other languages
English (en)
Inventor
熊炜
张翠花
姚雅文
李颖
吴海强
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shenzhen University
Original Assignee
Shenzhen University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shenzhen University filed Critical Shenzhen University
Priority to CN202410038968.7A priority Critical patent/CN117860901A/zh
Publication of CN117860901A publication Critical patent/CN117860901A/zh
Pending legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/30Macromolecular organic or inorganic compounds, e.g. inorganic polyphosphates
    • A61K47/36Polysaccharides; Derivatives thereof, e.g. gums, starch, alginate, dextrin, hyaluronic acid, chitosan, inulin, agar or pectin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/17Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • A61K38/22Hormones
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/17Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • A61K38/22Hormones
    • A61K38/28Insulins
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/02Inorganic compounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/06Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
    • A61K47/08Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite containing oxygen, e.g. ethers, acetals, ketones, quinones, aldehydes, peroxides
    • A61K47/14Esters of carboxylic acids, e.g. fatty acid monoglycerides, medium-chain triglycerides, parabens or PEG fatty acid esters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/06Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
    • A61K47/22Heterocyclic compounds, e.g. ascorbic acid, tocopherol or pyrrolidones
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/06Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
    • A61K47/24Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite containing atoms other than carbon, hydrogen, oxygen, halogen, nitrogen or sulfur, e.g. cyclomethicone or phospholipids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/06Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
    • A61K47/28Steroids, e.g. cholesterol, bile acids or glycyrrhetinic acid
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/08Drugs for disorders of the metabolism for glucose homeostasis
    • A61P3/10Drugs for disorders of the metabolism for glucose homeostasis for hyperglycaemia, e.g. antidiabetics

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Medicinal Chemistry (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Epidemiology (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Diabetes (AREA)
  • Endocrinology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Zoology (AREA)
  • Immunology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Obesity (AREA)
  • Hematology (AREA)
  • Emergency Medicine (AREA)
  • Biophysics (AREA)
  • Molecular Biology (AREA)
  • Medicinal Preparation (AREA)

Abstract

本发明提供一种乳糜微粒仿生载体、蛋白药物制剂及其制备方法和应用,乳糜微粒仿生载体包括甘油三酯、大豆磷脂、溶血磷脂酰胆碱、胆固醇、壳聚糖以及非离子型表面活性剂。通过乳糜微粒(Chylomicron,CM)仿生纳米载体可直接与胞内乳糜微粒融合加速组装过程,从而实现了高效、纳米结构完好的跨膜转运,采用“借糜跨膜”递送策略跨越肠上皮屏障,运输各种蛋白药物。

Description

乳糜微粒仿生载体、蛋白药物制剂及其制备方法和应用
技术领域
本发明涉及药学技术领域,更具体地说,涉及一种乳糜微粒仿生载体、蛋白药物制剂及其制备方法和应用。
背景技术
蛋白药物在防治重大疾病中的作用日趋重要,但口服吸收效率低一直是影响蛋白药物开发的主要难题。近年来,采用微纳米载体口服递送蛋白药物是备受关注的前沿和热点问题。微纳米载体具有保护蛋白药物免遭胃酸和消化酶降解、破坏,减少黏蛋白吸附,提高黏液层穿透能力等诸多优点。然而,该类载体如何跨肠上皮屏障仍是目前亟待解决的关键问题。
乳糜微粒(Chylomicron,CM)是肠上皮细胞内的转运蛋白(载体),乳糜微粒(Chylomicron,CM)尺寸介于80-500nm。乳糜微粒(Chylomicron,CM)由三部分组成,分别是核心的甘油三酯(TG)、外部的磷脂、胆固醇以及表面的载脂蛋白。肠上皮细胞内乳糜微粒作为体内转运蛋白,负责食物来源甘油三酯(TG)的输送与吸收,具有运输能力大、跨膜效率高、血中代谢快等特性,可促进蛋白药物的口服吸收。因此,乳糜微粒(Chylomicron,CM)在提高药物口服吸收方面的发展潜力极大。但乳糜微粒(Chylomicron,CM)在胞内形成效率低,导致肠淋巴途径的吸收占比小,所以提高口服载体与乳糜微粒(Chylomicron,CM)的结合率、加速乳糜微粒(Chylomicron,CM)形成与分泌最为重要。
发明内容
本发明的目的在于提供一种乳糜微粒仿生载体、蛋白药物制剂及其制备方法和应,解决了现有技术中蛋白药物难以跨肠上皮屏障的问题。
本发明解决技术问题所采用的技术方案是:一种乳糜微粒仿生载体,包括甘油三酯、大豆磷脂、溶血磷脂酰胆碱、胆固醇、壳聚糖、三聚磷酸钠以及非离子型表面活性剂。
其中,乳糜微粒仿生载体中各组分的质量份数比:甘油三酯65-75份、大豆磷脂20-26份、溶血磷脂酰胆碱1-3份、胆固醇2-4份、壳聚糖20-25份、三聚磷酸钠1.5-11.25份以及非离子型表面活性剂1-3份。优选地,各组分的质量份数比:甘油三酯63-72份、大豆磷脂22-25份、溶血磷脂酰胆碱1.8-2.2份、胆固醇2.8-3.2份、壳聚糖20-25份、三聚磷酸钠3-4.5份以及非离子型表面活性剂1.8-2.2份。更优选地,各组分的质量份数比:甘油三酯70份、大豆磷脂23份、溶血磷脂酰胆碱2份、胆固醇3份、壳聚糖22.5份、三聚磷酸钠3.75份以及非离子型表面活性剂2份。
其中,所述非离子型表面活性剂选自苄泽c10、苄泽s10、苄泽o10、D-α-维生素E聚乙二醇琥珀酸酯、司盘40、司盘60、司盘80中的至少一种;所述甘油三酯选自甘油三肉豆寇酸酯、三棕榈酸甘油酯、三硬脂酸甘油酯、三油酸甘油酯中的至少一种。优选地,所述非离子型表面活性剂选自苄泽c10、苄泽o10、司盘60中的至少一种;进一步优选地,所述非离子型表面活性剂选自苄泽c10、苄泽o10中的至少一种;所述甘油三酯选自甘油三肉豆寇酸酯、三棕榈酸甘油酯、三油酸甘油酯中的至少一种。更优选地,所述非离子型表面活性剂为苄泽O10,所述甘油三酯为三油酸甘油酯。
其中,所述乳糜微粒仿生载体为纳米级微粒,其粒径范围在200nm左右。
本发明还提供了上述的乳糜微粒仿生载体的制备方法,包括:在壳聚糖纳米粒溶液中加入非离子型表面活性剂形成水相,其中,所述壳聚糖纳米粒溶液通过将壳聚糖溶液与三聚磷酸钠溶液之间利用离子交联法交联得到;具体地,例如,壳聚糖(CS)溶于水中,在磁力搅拌下不断滴加等体积的三聚磷酸钠,搅拌10-20min,冰浴超声8-15min;
将甘油三酯、大豆磷脂、溶血磷脂酰胆碱、胆固醇溶于有机溶剂中,得到油相,然后使有机溶剂蒸发去除,形成脂质薄膜;其中,有机溶剂包括但不限于二氯甲烷、甲醇、乙醇、氯仿、四氢呋喃等等;使有机溶剂蒸发去除的方式包括但不限于水浴旋蒸、溶剂挥发法等等;具体地,例如,将上述甘油三酯、大豆磷脂、溶血磷脂酰胆碱、胆固醇加入至有机溶剂中超声溶解,40-50℃水浴下旋蒸,溶剂蒸干后继续旋蒸1.5-2.5h;
将水相加入脂质薄膜中水化后冰浴超声,通过微孔过滤器挤出得到,其中,微孔过滤器包括但不限于0.45μm、0.22μm;具体地,例如,采用薄膜水化法将水相加入脂质薄膜中,水化1.5-2.5h,冰浴超声,然后依次经过0.45μm和0.22μm过滤器挤出即得。
其中,在制备壳聚糖纳米粒溶液的过程中,所用的壳聚糖溶液中的壳聚糖的浓度为2.5-3.5mg/ml,所述三聚磷酸钠溶液中三聚磷酸钠的浓度为0.2-1.5mg/ml,优选浓度为0.4-0.6mg/ml;
其中,所述甘油三酯与水相的质量体积比为4.3-5mg/ml,所述大豆磷脂与水相的质量体积比为1.3-1.8mg/ml、溶血磷脂酰胆碱与水相的质量体积比为0.06-0.2mg/ml、胆固醇与水相的质量体积比为0.13-0.27mg/ml,非离子型表面活性剂与水相的质量体积比为0.06-0.2mg/ml。
本发明还提供一种蛋白药物制剂,包括蛋白药物以及上述的乳糜微粒仿生载体,所述蛋白药物以物理或化学方式装载于所述乳糜微粒仿生载体。装载方式选自乳化超声旋蒸法、透析法、溶剂注入法、直接溶解法、溶剂挥发法中的一种或多种。其中,蛋白药物包括但不限于胰岛素、klotho等等。
本发明还提供了上述蛋白药物制剂的制备方法,包括:
在壳聚糖溶液中加入蛋白药物混合,加入等体积的三聚磷酸钠溶液,利用离子交联法交联得到含有蛋白药物的壳聚糖纳米粒溶液;其中含有蛋白药物的壳聚糖纳米粒溶液通过将混有蛋白药物和壳聚糖的溶液与三聚磷酸钠溶液之间利用离子交联法交联得到;具体地,例如,壳聚糖(CS)和蛋白药物溶于水中,在磁力搅拌下不断滴加等体积的三聚磷酸钠,搅拌10-20min,冰浴超声8-15min;
在含有蛋白药物的壳聚糖纳米粒溶液加入非离子型表面活性剂形成水相;
将甘油三酯、大豆磷脂、溶血磷脂酰胆碱、胆固醇溶于有机溶剂中,得到油相,然后使溶剂蒸发去除,形成脂质薄膜;其中,有机溶剂包括但不限于二氯甲烷、甲醇、乙醇、氯仿、四氢呋喃等等;使有机溶剂蒸发去除的方式包括但不限于水浴旋蒸、溶剂挥发法等等;具体地,例如,将上述甘油三酯、大豆磷脂、溶血磷脂酰胆碱、胆固醇加入至有机溶剂中超声溶解,40-50℃水浴下旋蒸,溶剂蒸干后继续旋蒸1.5-2.5h;
将水相加入脂质薄膜中水化后冰浴超声,通过微孔过滤器挤出得到,其中,微孔过滤器包括但不限于0.45μm、0.22μm;具体地,例如,采用薄膜水化法将水相加入脂质薄膜中,水化1.5-2.5h,冰浴超声,然后依次经过0.45μm和0.22μm过滤器挤出即得。
其中,所用的壳聚糖溶液中的壳聚糖的浓度为2.5-3.5mg/ml,所述三聚磷酸钠溶液中三聚磷酸钠的浓度为0.2-1.5mg/ml,优选浓度为0.4-0.6mg/ml;壳聚糖与蛋白药物的摩尔比约为10:1;其中,所述甘油三酯与水相的质量体积比为4.3-5mg/ml,所述大豆磷脂与水相的质量体积比为1.3-1.8mg/ml、溶血磷脂酰胆碱与水相的质量体积比为0.06-0.2mg/ml、胆固醇与水相的质量体积比为0.13-0.27mg/ml,非离子型表面活性剂与水相的质量体积比为0.06-0.2mg/ml。
本发明还提供了上述的乳糜微粒仿生载体在制备蛋白药物中的用途,所述乳糜微粒仿生载体搭载所述蛋白药物。
实施本发明的乳糜微粒仿生载体、蛋白药物制剂及其制备方法和应用,具有以下有益效果:通过乳糜微粒(Chylomicron.CM)仿生纳米载体可直接与胞内CM融合加速组装过程,解决口服蛋白药物吸收的三大屏障,以肠上皮细胞内载体乳糜微粒(Chylomicron,CM)为靶点,通过参照CM的组分与配比构建的CM仿生纳米载体可直接与胞内CM融合加速组装过程,从而实现了高效、纳米结构完好的跨膜转运,采用“借糜跨膜”递送策略,运输各种蛋白药物,例如胰岛素、klotho等,微纳米载体具有保护蛋白药物免遭胃酸和消化酶降解、破坏,减少黏蛋白吸附,提高黏液层穿透能力等诸多优点,通过结合非离子型表面活性剂实现该类载体跨肠上皮屏障。
附图说明
图1是实验例1中aCMs(人工乳糜微粒)以及采用不同种类非离子型表面活性剂制备的CMB(仿生载体纳米粒)的粒径和多分散系数(PDI)的对比图;
图2是实验例1中aCMs以及采用不同种类非离子型表面活性剂制备的CMB的ζ电位的对比图;
图3是实验例2中采用不同种类的甘油三酯制备的CMB与aCMs的结合率对比图;
图4是实验例2中采用不同种类的非离子型表面活性剂制备的CMB与aCMs的结合率对比图;
图5是实验例4中采用不同制备方法制备的CMB的粒径和多分散系数(PDI)的结果显示图;
图6是实验例4中采用不同制备方法制备的CMB的ζ电位的结果显示图;
图7是实验例5中包载蛋白药物Klotho的仿生载体纳米粒(Klotho-CMB-NPs)的β-葡萄糖醛酸酶活性检测的结果显示图;
图8是实验例6中FITC-CMB-NPs制剂组应用在大鼠小肠黏液层穿透性实验拍摄的荧光照片图;
图9是实验例6中FITC-CMB-NPs制剂组应用在大鼠小肠黏液层穿透性实验的荧光强度分析图;
图10是实验例6中FITC-CS-NPs制剂组应用在鼠小肠黏液层穿透性实验拍摄的荧光照片图;
图11是实验例6中FITC-CS-NPs制剂组应用在大鼠小肠黏液层穿透性实验的荧光强度分析图;
图12是实验例6中Free-FITC制剂组应用在大鼠小肠黏液层穿透性实验拍摄的荧光照片图;
图13是实验例6中Free-FITC制剂组应用在大鼠小肠黏液层穿透性实验的荧光强度分析图;
图14是实验例7中Free-FB组与FB-CMB-NPs组的荧光成像对比图;
图15是实验例7中腹腔注射环己酰亚胺溶液+FB-CMB-NPs组与FB-CMB-NPs组的荧光成像对比图;
图16是实验例7中蛋白药物Klotho在大鼠肠系膜血管和淋巴管的吸收占比结果显示图;
图17是实验例8中采用确定的制备方法制备的FB-CMB-NPs分别与aCMs(人工乳糜微粒)和bCMs(天然乳糜微粒)的结合率结果对比图;
图18是实验例10中不同组UUO小鼠在单侧输尿管梗阻(UUO)小鼠模型的肾形貌对比图;
图19是实验例10中不同组UUO小鼠在单侧输尿管梗阻(UUO)小鼠模型的组织病理学对比图;
图20是实验例10中不同组UUO小鼠在单侧输尿管梗阻(UUO)小鼠模型的肾功能指标血肌酐对比图。
具体实施方式
下面结合实施例,对本发明的乳糜微粒仿生载体、蛋白药物制剂及其制备方法和应用作进一步说明:
本发明针对现有蛋白药物递送策略口服生物利用度欠佳,探索内源性载体提高跨膜转运效率,以肠上皮细胞内载体乳糜微粒(CM)为靶点,构建了乳糜微粒仿生纳米载体(CMB-NPs),通过多种先进实验技术的结合,从细胞、在体、体内三个层面证明其跨肠上皮屏障效果好,以动物疾病模型系统证实其抗肾纤维化效果好。
参照内源性乳糜微粒的组分与配比构建的CM仿生纳米载体可直接与胞内乳糜微粒融合加速组装过程,从而实现高效、纳米结构完好的跨膜转运。因此,我们首次提出“借糜跨膜”递送策略,运输各种蛋白药物。初步以肾小管上皮细胞“抗纤维化”蛋白Klotho(KLO)作为模型药物,制备载KLO的乳糜微粒仿生纳米载体(KLO-CMB-NPs),基于乳糜微粒体内转运过程,证明了KLO-CMB-NPs跨肠上皮屏障效率高,经肠淋巴系统吸收进入血液循环,并证实其肾富集性能及抗肾纤维化效果好等,积极推动了蛋白药物口服递送相关研究。
实验例1:制备
(1)人工乳糜微粒(aCMs)的制备与表征:采用薄膜分散法制备aCMs,其组成与天然乳糜微粒(bCMs)相似。取橄榄油、磷脂酰胆碱、溶血磷脂酰胆碱、胆固醇油酸酯和胆固醇按照70:22:3:3:2质量比例溶于二氯甲烷中,旋蒸形成脂质薄膜,真空干燥,在4℃下水合过夜,冰浴超声,经0.45μm过滤器挤出的乳白液体即为aCMs。对所得aCMs进行粒径、电位测定。
(2)空白CM仿生载体纳米粒(CMB-NPs)的制备与表征:
薄膜水化法:取壳聚糖(CS)溶于水中(3mg/mL),在磁力搅拌下不断滴加等体积的0.5mg/ml的三聚磷酸钠,搅拌15min,冰浴超声10min,通过离子交联法制备壳聚糖纳米粒(CS-NPs);;称量三油酸甘油三酯(TG18=,78ul)70mg,大豆磷脂(CS-95)23mg,溶血磷脂酰胆碱(S-Lysopc)2mg,胆固醇(ChO-HP)3mg,以及2mg非离子型表面活性剂,加入20mL二氯甲烷超声溶解,得到油相,45℃水浴下旋蒸,溶剂蒸干后继续旋蒸2h,得到脂质薄膜。采用薄膜水化法将水相加入脂质薄膜中,水化2h,冰浴超声,依次经0.45μm和0.22μm过滤器挤出即得CMB-NPs。
对以上所得aCMs,CMB-NPs进行粒径(Size)、多分散系数(PDI)、ζ电位测定。
从图1、图2的结果可以看出,不同非离子型表面活性剂苄泽c10(Brij-c10)、苄泽s10(Brij-s10)、苄泽o10(Brij-o10)、D-α-维生素E聚乙二醇琥珀酸酯(TPGS)、司盘40(span40)、司盘60(span60)、司盘80(span80)制备的CMB的粒径(Size)、多分散系数(PDI)差别不大,但是从ζ电位(Zeta potential)可以看出来,Brij-o10的ζ电位最接近电中性,这样有利于与甘油三酯TG结合。
实验例2:人工乳糜与仿生载体纳米粒的结合率考察
以人工乳糜微粒aCMs结合率确定最优处方:以CMB-NPs与aCMs结合率为指标,筛选CMB-NPs处方中辅料的类型,如甘油三酯类(甘油三肉豆寇酸酯C14、三棕榈酸甘油酯C16、三硬脂酸甘油酯C18、三油酸甘油酯C18=)、磷脂类(大豆磷脂、蛋黄卵磷脂、溶血磷脂酰胆碱)与非离子型表面活性剂苄泽c10(Brij-c10)、苄泽s10(Brij-s10)、苄泽o10(Brij-o10)、D-α-维生素E聚乙二醇琥珀酸酯(TPGS)、司盘40(span40)、司盘60(span60)、司盘80(span80)。CMB-NPs与aCMs混合后高速离心,上层未结合的CMB-NPs通过甘油三酯试剂盒测定,确定CMB-NPs最优处方。
从图3和图4的结果可以看出,通过三油酸甘油酯和苄泽-o10(brij-o10)制备的CMB与aCMs的结合率是最好的。另外,也采用蛋黄卵磷脂替代大豆磷脂进行实验,发现容易氧化,水化效果不佳,无法实际应用。
实验例3:大鼠乳糜微粒与仿生载体纳米粒的结合率考察
通过直接在大鼠乳糜管插管取得大鼠乳糜微粒,按实验例2确定的最优处方,参照实验例1中CMB-NPs的制备方法,将异硫氰基荧光素FITC标记牛血清白蛋白BSA(FITC-BSA,简称FB)与壳聚糖溶解在一起,再与三聚磷酸钠离子交联,利用壳聚糖包载FB,利用三油酸甘油三酯、大豆磷脂、溶血磷脂酰胆碱、胆固醇以及添加的非离子型表面活性剂制得脂质薄膜,将水相加入脂质薄膜进行水化,依次经0.45μm和0.22μm过滤器挤出制备FB-CMB-NPs。
FB-CMB-NPs与bCMs混合后高速离心,上层中未结合的FB-CMB-NPs进行荧光测定,确认FB-CMB-NPs与bCMs之间具有高亲和力。
实验例4:将非离子型表面活性剂加入水相和加入油相中的制备工艺筛选
与实验例1中的空白CM仿生载体纳米粒(CMB-NPs)制备的不同之处在于:非离子型表面活性剂不再是加入油相中一起旋蒸得到脂质薄膜,而是改为加入在壳聚糖纳米粒溶液中共同形成水相,其它制备过程不变。
从图5和图6的结果与实验例1中的图1和图2的结果对比,可以看出将非离子型表面活性剂加入壳聚糖纳米粒溶液中共同形成水相的方式得到CMB粒径与PDI都得到了很好的改善,可以使粒径基本控制在200nm左右,PDI≤0.3,且ζ电位明显有优势,苄泽-o10(brij-o10)制备的CMB-NPs的ζ电位实现负电位接近零,与乳糜微粒的电位相接近,进而可以提高与乳糜微粒的亲和性能。
实验例5:CMB搭载Klotho蛋白(简称KLO)的蛋白药物制剂的酶活性考察
制备Klotho蛋白药物制剂:壳聚糖(CS)溶于水中(3mg/mL),加入KLO并与CS溶液混合均匀,在磁力搅拌下不断滴加等体积的0.5mg/ml的三聚磷酸钠,搅拌15min,冰浴超声10min,得到含Klotho的壳聚糖纳米粒溶液(Klotho-CS-NPs),然后加入苄泽o10为2mg,形成水相;称量三油酸甘油酯70mg,大豆磷脂(CS-95)23mg,溶血磷脂酰胆碱(S-Lysopc)2mg,胆固醇(ChO-HP)3mg,加入20mL二氯甲烷超声溶解,45℃水浴下旋蒸,溶剂蒸干后继续旋蒸2h,得到脂质薄膜,采用薄膜水化法将水相加入脂质薄膜中,水化2h,冰浴超声,依次经0.45μm和0.22μm过滤器挤出即得CMB搭载KLO的纳米粒(KLO-CMB-NPs)。
其中,KLO具有β-葡萄糖醛酸酶活性,可将4-甲基伞形酮β-D-葡萄糖苷专一地分解为4-甲基伞形酮(具有强烈荧光),利用试剂盒(含有4-甲基伞形酮β-D-葡萄糖苷)测定酶解游离出的4-甲基伞形酮的荧光吸光度,计算KLO酶活。通过KLO酶活测定,监测KLO-CMB-NPs的制备过程和胃肠道环境中KLO生物活性。
β-葡萄糖醛酸苷酶(β-glucuronidase,β-GD)活性检验,制备KLO-CMB-NPs取2ml加入透析袋(MWCO 14kDa)中,置于摇床12h后取出,用β-葡萄糖醛酸苷酶(β-glucuronidase,β-GD)试剂盒测定活性。以下为实验条件:100ml缓冲液;pH 1.2:0-2h,pH 6.8:2-6h,pH7.4:6-12h,摇床:37℃,100rpm。
结果分析:参见图7,通过β-葡萄糖醛酸苷酶活性计算的实验表明,与新制备的KLO-CMB-NPs相比,经历过12h的胃肠道模拟缓冲环境的KLO-CMB-NPs的活性有所下降,但仍保持在新制备的80%左右,保证了KLO在经过胃肠道的稳定性。
实验例6:小肠黏液层穿透性研究对比
制备FITC-CMB-NPs(第一组制剂):实验例2确定的最优处方和实验例4确定的制备方法制备包载异硫氰基荧光素FITC的仿生载体纳米粒(FITC-CMB-NPs)。
制备FITC-CS-NPs(第二组制剂):采用相同制备方式制备不含非离子型表面活性剂的包载异硫氰基荧光素FITC的壳聚糖纳米粒(FITC-CS-NPs)。
制备Free-FITC(第三组制剂):将异硫氰基荧光素FITC溶于水中得到FITC溶液(Free-FITC)。
SD大鼠禁食>24h,取空肠约2cm,用PBS缓冲溶液冲洗干净,两端系紧,分别注入三组制剂(n=3),肠段置于装有10ml Krebs-Hensleit’s Solution(克-亨氏液)的15ml离心管中振摇,摇床:37℃,100rpm,1h。剪开肠段,PBS冲洗干净,滴加Alexa Fluor 555(抗兔免疫荧光染色试剂)对黏液层染色,滴加抗荧光淬灭剂封片,共聚焦显微镜3D拍摄。
图8和图9显示FITC-CMB-NPs制剂组的荧光强度,图10和11显示FITC-CS-NPs制剂组的荧光强度,图12和13显示Free-FITC制剂组的荧光强度,从图8-13可以得出结论,FITC-CMB-NPs组的黏液层穿透性最好,远远高于FITC-CS-NPs与Free-FITC组,达到预期结果。
实验例7:利用实验例5制备的KLO-CMB-NPs经肠淋巴途径吸收研究
①肠淋巴转运抑制实验:通过腹腔注射环己酰亚胺溶液(CM抑制剂,剂量3mg/kg),确认肠淋巴转运参与口服吸收。将SD大鼠分为三组(参照实验例3所用的FB和FB-CMB-NPs):(a)游离FB(p.o.,10mg/kg),(b)FB-CMB-NPs(p.o.,相当于FB 10mg/kg)、(c)腹腔注射环己酰亚胺溶液+FB-CMB-NPs(p.o.,相当于FB 10mg/kg)。给药1h后解剖取材,将胃肠道及肠系膜在小动物成像仪进行荧光成像,观察荧光分布情况。
②经肠淋巴途径吸收占比测定:如图16所示,采用大鼠肠系膜淋巴管-颈静脉辅助回流模型,通过蠕动泵从十二指肠上端灌注KLO-CMB-NPs(0.2mL/min),分别收集0,0.25,0.5,0.75h时间点的血液和淋巴液,测定肠系膜血管和淋巴管的吸收量,计算经淋巴管吸收占比。
从图14-16可以得出结论,KLO-CMB-NPs经过乳糜吸收大部分都顺利进入淋巴循环。
实验例8:对实验例4确定的工艺验证
按照实验例1-3确定的处方以及实验例4确定的在水相中加入非离子型表面活性剂制备包载异硫氰基荧光素FITC标记牛血清白蛋白BSA(FITC-BSA,简称FB)的FB-CMB-NPs。利用FB-CMB-NPs分别与aCMs和bCMs混合后高速离心,上层中未结合的FB-CMB-NPs进行荧光测定,参见图17,确认FB-CMB-NPs分别与aCMs和bCMs之间均具有高亲和力,达到80%以上,证明采用在水相中加入非离子型表面活性剂制备的CMB-NPs效果显著。
实验例9:制备不同处方的CMB-NPs
实例1:取壳聚糖(CS)溶于水中(2.5mg/mL),在磁力搅拌下不断滴加等体积的0.2mg/ml的三聚磷酸钠,搅拌15min,冰浴超声10min,通过离子交联法制备壳聚糖纳米粒(CS-NPs)溶液;在壳聚糖纳米粒(CS-NPs)溶液加入1mg的苄泽o10;称量三油酸甘油三酯65mg、大豆磷脂20mg、溶血磷脂酰胆碱1mg、胆固醇2mg,加入20mL二氯甲烷超声溶解,得到油相,45℃水浴下旋蒸,溶剂蒸干后继续旋蒸2h,得到脂质薄膜。采用薄膜水化法将水相加入脂质薄膜中,水化2h,冰浴超声,依次经0.45μm和0.22μm过滤器挤出即得CMB-NPs。
对以上所得CMB-NPs进行粒径(Size)、多分散系数(PDI)、ζ电位测定,均符合粒径约200nm,PDI≤0.3,ζ电位接近中性电位。
实例2:实例1:取壳聚糖(CS)溶于水中(3.5mg/mL),在磁力搅拌下不断滴加等体积的1.5mg/ml的三聚磷酸钠,搅拌15min,冰浴超声10min,通过离子交联法制备壳聚糖纳米粒(CS-NPs)溶液;在壳聚糖纳米粒(CS-NPs)溶液加入3mg的苄泽o10;称量三油酸甘油三酯75mg、大豆磷脂26mg、溶血磷脂酰胆碱3mg、胆固醇4mg,加入20mL二氯甲烷超声溶解,得到油相,45℃水浴下旋蒸,溶剂蒸干后继续旋蒸2h,得到脂质薄膜。采用薄膜水化法将水相加入脂质薄膜中,水化2h,冰浴超声,依次经0.45μm和0.22μm过滤器挤出即得CMB-NPs。
对以上所得CMB-NPs进行粒径(Size)、多分散系数(PDI)、ζ电位测定,均符合粒径约200nm,PDI≤0.3,ζ电位接近中性电位。
实验例10:利用实验例5制备的KLO-CMB-NPs抗肾纤维化药效学研究
在单侧输尿管梗阻(UUO)小鼠考察抗肾纤维化效果:UUO模型为目前常用的肾间质纤维化模型,UUO手术操作如下:取雄性C57BL/6小鼠(22-24g),麻醉,后背剃毛,背部切口斜行,暴露右侧肾下极和上段输尿管,上下结扎两端后,中间切断输尿管,切口逐层缝合。正常组小鼠切口,游离输尿管,不结扎,直接缝合。将UUO小鼠分成4组,(a)UUO模型组(口服,饮用水),(b)Klotho组(腹腔注射,5μg/kg/天),(c)KLO-CS-NPs组(口服,相当于Klotho 30μg/kg/天,蛋白药物KLO搭载壳聚糖CS),(d)KLO-CMB-NPs组(口服,相当于Klotho 30μg/kg/天,蛋白药物KLO搭载仿生载体CMB)。UUO手术后开始给药,每天给药一次,手术后第8天,处死小鼠,取血,取材。对肾外观、血生化指标、肾组织病理学等进行检测。
KLO蛋白药物主要用于抗肾纤维化治疗。从图18-20可以看出,KLO-CMB-NPs组抗纤维化效果最好,优于腹腔注射的游离Klotho组,也优于KLO-CS-NPs组,由此可见利用仿生载体CMB包载蛋白药物可以极大地提高蛋白药物的口服吸收率。
应当理解的是,对本领域技术人员来说,可以根据上述说明加以改进或变换,但这些改进或变换都应属于本发明所附权利要求的保护范围之内。

Claims (10)

1.一种乳糜微粒仿生载体,其特征在于,包括甘油三酯、大豆磷脂、溶血磷脂酰胆碱、胆固醇、壳聚糖、三聚磷酸钠以及非离子型表面活性剂。
2.根据权利要求1所述的乳糜微粒仿生载体,其特征在于,包括如下质量份数比的组分:甘油三酯65-75份、大豆磷脂20-26份、溶血磷脂酰胆碱1-3份、胆固醇2-4份、壳聚糖20-25份、三聚磷酸钠1.5-11.25份以及非离子型表面活性剂1-3份。
3.根据权利要求1所述的乳糜微粒仿生载体,其特征在于,所述非离子型表面活性剂选自苄泽c10、苄泽s10、苄泽o10、D-α-维生素E聚乙二醇琥珀酸酯、司盘40、司盘60、司盘80中的至少一种;所述甘油三酯选自甘油三肉豆寇酸酯、三棕榈酸甘油酯、三硬脂酸甘油酯、三油酸甘油酯中的至少一种。
4.根据权利要求1所述的乳糜微粒仿生载体,其特征在于,所述非离子型表面活性剂选自苄泽c10、苄泽o10、司盘60中的至少一种。
5.一种权利要求1-4任一所述的乳糜微粒仿生载体的制备方法,其特征在于,包括:
在壳聚糖纳米粒溶液中加入非离子型表面活性剂形成水相;
将甘油三酯、大豆磷脂、溶血磷脂酰胆碱、胆固醇溶于有机溶剂中,然后使有机溶剂蒸发去除,形成脂质薄膜;
将水相加入脂质薄膜中水化后冰浴超声,通过微孔过滤器挤出得到。
6.根据权利要求5所述的制备方法,其特征在于,所述壳聚糖纳米粒溶液通过将壳聚糖溶液与三聚磷酸钠溶液之间利用离子交联法交联得到。
7.根据权利要求6所述的制备方法,其特征在于,所述壳聚糖溶液中的壳聚糖的浓度为2.5-3.5mg/ml,所述三聚磷酸钠溶液中三聚磷酸钠的浓度为0.2-1.5mg/ml;
所述甘油三酯与水相的质量体积比为4.3-5mg/ml,所述大豆磷脂与水相的质量体积比为1.3-1.8mg/ml、溶血磷脂酰胆碱与水相的质量体积比为0.06-0.2mg/ml、胆固醇与水相的质量体积比为0.13-0.27mg/ml,非离子型表面活性剂与水相的质量体积比为0.06-0.2mg/ml。
8.一种蛋白药物制剂,其特征在于,包括蛋白药物以及权利要求1-4任一所述的乳糜微粒仿生载体,所述蛋白药物以物理或化学方式装载于所述乳糜微粒仿生载体。
9.一种蛋白药物制剂的制备方法,其特征在于,包括:
在壳聚糖溶液中加入蛋白药物混合,加入等体积的三聚磷酸钠溶液,利用离子交联法交联得到含有蛋白药物的壳聚糖纳米粒溶液;
在含有蛋白药物的壳聚糖纳米粒溶液中加入非离子型表面活性剂形成水相;
将甘油三酯、大豆磷脂、溶血磷脂酰胆碱、胆固醇溶于有机溶剂中,然后使溶剂蒸发去除,形成脂质薄膜;
将水相加入脂质薄膜中水化后冰浴超声,通过微孔过滤器挤出得到。
10.权利要求1-4任一所述的乳糜微粒仿生载体在制备蛋白药物中的用途,所述乳糜微粒仿生载体搭载所述蛋白药物。
CN202410038968.7A 2024-01-10 2024-01-10 乳糜微粒仿生载体、蛋白药物制剂及其制备方法和应用 Pending CN117860901A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202410038968.7A CN117860901A (zh) 2024-01-10 2024-01-10 乳糜微粒仿生载体、蛋白药物制剂及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202410038968.7A CN117860901A (zh) 2024-01-10 2024-01-10 乳糜微粒仿生载体、蛋白药物制剂及其制备方法和应用

Publications (1)

Publication Number Publication Date
CN117860901A true CN117860901A (zh) 2024-04-12

Family

ID=90578790

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202410038968.7A Pending CN117860901A (zh) 2024-01-10 2024-01-10 乳糜微粒仿生载体、蛋白药物制剂及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN117860901A (zh)

Similar Documents

Publication Publication Date Title
Wang et al. Protein corona liposomes achieve efficient oral insulin delivery by overcoming mucus and epithelial barriers
Elnaggar et al. Anionic versus cationic bilosomes as oral nanocarriers for enhanced delivery of the hydrophilic drug risedronate
Elnaggar Multifaceted applications of bile salts in pharmacy: an emphasis on nanomedicine
Damiano et al. Templated high density lipoprotein nanoparticles as potential therapies and for molecular delivery
EP2288336B1 (en) Nanostructures suitable for sequestering cholesterol
Parmentier et al. Stability of liposomes containing bio-enhancers and tetraether lipids in simulated gastro-intestinal fluids
Kong et al. Cationic solid lipid nanoparticles derived from apolipoprotein-free LDLs for target specific systemic treatment of liver fibrosis
US6951655B2 (en) Pro-micelle pharmaceutical compositions
JP6051157B2 (ja) 一種インスリンの脂質複合物及び作製方法や製剤
US8859004B2 (en) pH-sensitive nanoparticles for oral insulin delivery
Xu et al. Advances in lipid carriers for drug delivery to the gastrointestinal tract
Bao et al. Oral delivery of exenatide-loaded hybrid zein nanoparticles for stable blood glucose control and β-cell repair of type 2 diabetes mice
Le Dévédec et al. PEGylated bile acids for use in drug delivery systems: enhanced solubility and bioavailability of itraconazole
CN108451929A (zh) 一种包载固相内核的重组脂蛋白及其制备和应用
Xiong et al. Preparation, characterization and evaluation of breviscapine lipid emulsions coated with monooleate–PEG–COOH
JP2002531518A (ja) インスリン含有医薬組成物
Zhu et al. Oral delivery of therapeutic antibodies with a transmucosal polymeric carrier
CN108096188B (zh) 负载疏水药物和营养物的水包油复合纳米乳液及其制备方法
Wang et al. “Oil-soluble” reversed lipid nanoparticles for oral insulin delivery
JPH07505408A (ja) 治療及び診断用組成物及びその製造方法,ならびにその用途
Liu et al. Preparation and in vivo safety evaluations of antileukemic homoharringtonine-loaded PEGylated liposomes
CN109432049B (zh) 一种具有肾脏靶向分布特性的大黄酸脂质囊纳米粒及应用
Kim et al. Nanoparticle oral absorption and its clinical translational potential
CN117860901A (zh) 乳糜微粒仿生载体、蛋白药物制剂及其制备方法和应用
Ramasamy et al. Nanocochleate—a new drug delivery system

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination