CN117859260A - 具有开关电容器驱动电源的电源发生器/电源调制器 - Google Patents

具有开关电容器驱动电源的电源发生器/电源调制器 Download PDF

Info

Publication number
CN117859260A
CN117859260A CN202280056637.5A CN202280056637A CN117859260A CN 117859260 A CN117859260 A CN 117859260A CN 202280056637 A CN202280056637 A CN 202280056637A CN 117859260 A CN117859260 A CN 117859260A
Authority
CN
China
Prior art keywords
voltage
capacitor
power
circuit
modulator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202280056637.5A
Other languages
English (en)
Inventor
约翰·R·霍弗斯滕
大卫·J·佩罗
叶夫根尼·A·特卡琴科
阿伦·库克
卡皮尔·克萨尔瓦尼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Publication of CN117859260A publication Critical patent/CN117859260A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/06Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using resistors or capacitors, e.g. potential divider
    • H02M3/07Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using resistors or capacitors, e.g. potential divider using capacitors charged and discharged alternately by semiconductor devices with control electrode, e.g. charge pumps
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • H02M1/0006Arrangements for supplying an adequate voltage to the control circuit of converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0067Converter structures employing plural converter units, other than for parallel operation of the units on a single load
    • H02M1/007Plural converter units in cascade
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0095Hybrid converter topologies, e.g. NPC mixed with flying capacitor, thyristor converter mixed with MMC or charge pump mixed with buck
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • H02M3/1582Buck-boost converters
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/02Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation
    • H03F1/0205Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers
    • H03F1/0211Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers with control of the supply voltage or current
    • H03F1/0216Continuous control
    • H03F1/0222Continuous control by using a signal derived from the input signal
    • H03F1/0227Continuous control by using a signal derived from the input signal using supply converters

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dc-Dc Converters (AREA)

Abstract

一种被配置成接收第一电压和第二电压并且生成输出电压的电路,该电路包括:第一电容器,该第一电容器被配置成充电至等于第一电压与输出电压之间的差的电压;第二电容器,该第二电容器被配置成充电至等于第一电压与第二电压之间的差的电压;以及多个导电路径,所述多个导电路径耦接至第一电容器和第二电容器。在第一状态下,导电路径被配置成使第二电容器充电至等于第一电压与第二电压之间的差的电压。在第二状态下,导电路径被配置成使第二电容器与第一电容器并联连接,以使第一电容器充电至等于第一电压与输出电压之间的差的电压。

Description

具有开关电容器驱动电源的电源发生器/电源调制器
背景技术
如本领域已知的,射频(rf)功率放大器(PA)是包括无线rf系统(例如,手机或基站)的rf系统中的重要功率消耗者。可以通过“电源调制”(或“漏极调制”或“集电极调制”)来提高rf PA的效率(功率效率(PE)和功率附加效率(PAE)二者),其中,根据提供给PA的rf输入的rf信号的特性,随着时间调整(或“调制”)提供给PA的电源电压。为了实现相对大的效率提高,可以在跟踪或动态地适应rf信号幅度的快速变化(其中,这样的变化有时被称为“包络”)的短时间范围上连续地调整或离散地(即,在离散数目的电压水平之间)调整电源电压,诸如,在将数据编码在rf信号中时,或者在rf信号幅度随高包络带宽改变时(例如,如在包络跟踪、高级包络跟踪(envelope tracking advanced)、极性调制、“G类”功率放大、多级回退(multilevel back-off)、多级LINC、非对称多级异相等中)可能发生的变化。
提供给PA的电源电压(或电压水平)还可以被调整以适应期望的rf包络的长期变化(例如,“自适应偏置”),例如与针对rf“流量”变化等调整发射器输出强度以使数据传送中的错误减小(或理想地,最小化)相关联的变化。
可以通过从一组离散电源电压中动态地选择中间电压,然后进一步调节(例如,减小或“逐步降低”)该中间电压以创建要提供给PA的连续可变电源电压来有利地实现这样的连续电源调制(例如,上述“包络跟踪”或“自适应偏置”技术)。一些rf放大器系统利用其中电源电压在一组离散电压水平之间切换的“离散”电源调制(或离散“漏极调制”),可能包括附加的滤波或调制以对水平之间的电压转变进行整形。该类型的系统可以包括例如其他类型中的“G类”放大器、多级LINC(MLINC)功率放大器、非对称多级异相(AMO)功率放大器、多级回退放大器(包括“非对称多级回退”放大器)和数字化极性发射器。还可以实现利用连续电源调制和离散电源调制的组合的混合系统。
发明内容
本文描述的构思、系统、电路和技术提供了小型且有效的装置以生成高于用于电源调制的水平的水平的驱动电源电压。这样的电压水平可以使得能够使用可能以其他方式不可能用于电路/不适于电路的电路系统部件。例如,可以与至少在以下项中的改进的开关实现方式结合使用生成的栅极驱动电源电压:(1)电源发生器;(2)电源调制器;以及(3)辅助开关系统,从而通过使得能够使用更小型和更高效的NMOS晶体管来实现rf电源调制系统的改进的总体尺寸和效率。
在一方面,电路被配置成接收第一电压和第二电压,并且生成大于第一电压和第二电压二者的输出电压。电路包括:第一电容器,该第一电容器被配置成充电至等于第一电压与输出电压之间的差的电压;第二电容器,该第二电容器被配置成充电至等于第一电压与第二电压之间的差的电压;以及多个导电路径,所述多个导电路径耦接至第一电容器和第二电容并且具有两种状态。在第一状态下,多个导电路径被配置成使第二电容器充电至等于第一电压与第二电压之间的差的电压。在第二状态下,多个导电路径被配置成使第二电容器与第一电容器并联连接,以使第一电容器充电至等于第一电压与输出电压之间的差的电压。
实现方式可以包括以下特征中的一个或更多个。
在一些实现方式中,输出电压等于第一电压加上第一电压与第二电压之间的差。
在一些实现方式中,对输出电压进行滤波、调节或者对输出电压进行滤波和调节,以产生经滤波和/或经调节的输出电压。
在一些实现方式中,将经滤波和/或经调节的输出电压施加至驱动器电路系统,该驱动器电路系统被配置成为NMOS晶体管的栅极供电。
在一些实现方式中,第一电压和第二电压均太小而不能为NMOS晶体管的栅极供电。
在一方面,系统包括电路,该电路被配置成接收第一电压和第二电压,并且生成大于第一电压和第二电压二者的输出电压。该电路包括:第一电容器,该第一电容器被配置成充电至等于第一电压与输出电压之间的差的电压;第二电容器,该第二电容器被配置成充电至等于第一电压与第二电压之间的差的电压;以及多个导电路径,所述多个导电路径耦接至第一电容器和第二电容器,并且具有两种状态。在第一状态下,多个导电路径被配置成使第二电容器充电至等于第一电压与第二电压之间的差的电压。在第二状态下,多个导电路径被配置成使第二电容器与第一电容器并联连接,以使第一电容器充电至等于第一电压与输出电压之间的差的电压。该系统还包括:电源发生器,该电源发生器被配置成向电路提供第一电压和第二电压;以及电源调制器,该电源调制器被配置成接收第一电压和第二电压并且提供调制器电压。
实现方式可以包括以下特征中的一个或更多个。
在一些实现方式中,电源调制器包括具有由输出电压供电的栅极的NMOS晶体管。
在一些实现方式中,该系统包括滤波器电路系统,该滤波器电路系统被配置成接收调制器电压并且对调制器电压进行滤波以提供经滤波的调制器电压。
在一些实现方式中,滤波器电路系统包括具有由输出电压供电的栅极的NMOS晶体管。
在一些实现方式中,调制器电压或经滤波的调制器电压用于为系统的放大器供电。
在一方面,电路被配置成接收第一电压和第二电压,并且生成大于第一电压和第二电压的输出电压。电路包括:第一电容器,该第一电容器被配置成充电至等于第一电压与输出电压之间的差的电压;以及第二电容器,该第二电容器被配置成充电至等于第一电压与第二电压之间的差的电压。当第一电容器和第二电容器并联连接时,第一电容器充电至等于第一电压与输出电压之间的差的电压。
实现方式可以包括以下特征中的一个或更多个。
在一些实现方式中,一旦第二电容器被充电,与第一电容器并联连接的第二电容器使第一电容器充电至等于第一电压与第二电压之间的差的电压。
在一些实现方式中,电路包括开关网络,该开关网络被配置成以不同的配置将第一电容器和第二电容器连接至电路。
在一些实现方式中,输出电压等于第一电压加上第一电压与第二电压之间的差。
在一些实现方式中,对输出电压进行滤波、调节或者对输出电压进行滤波和调节,以产生经滤波和/或经调节的输出电压。
在一些实现方式中,将经滤波和/或经调节的输出电压施加至驱动器电路系统,该驱动器电路系统被配置成为NMOS晶体管的栅极供电。
在一些实现方式中,第一电压和第二电压均太小而不能为NMOS晶体管的栅极供电。
在一方面,电路被配置成至少接收第一电压和第二电压并且生成输出电压。电路包括:开关网络,该开关网络包括第一对开关和第二对开关;第一电容器,该第一电容器被配置成接收第一电压并且耦接至开关网络;以及第二电容器,该第二电容器耦接至开关网络。当第一对开关断开并且第二对开关闭合时,第二电容器被配置成充电至等于第一电压与第二电压之间的差的电压。当第一对开关闭合并且第二对开关断开时,第二电容器与第一电容器并联连接以生成输出电压。输出电压大于第一电压和第二电压二者。
附图说明
制造和使用所公开的构思、系统、设备、电路和本文所描述的技术的方式和过程可以参照附图中的图来理解。应当理解的是,图中所示的构思、系统、设备、电路和技术不一定成比例,而是把重点放在示出本文所描述的构思的原理上。在不同的视图中相似的附图标记指示对应的部分。此外,在图中通过示例而非限制的方式示出了实施方式,在附图中:
图1A是实现为差分开关电容器转换器的驱动电源的框图;
图1B是实现为差分开关电容器转换器的示例驱动电源的示意图;
图2是实现为多输入差分开关电容器转换器的示例驱动电源的示意图;
图3是系统的示例多级电源调制器的示意图,在该系统中,Vn是出于驱动目的的最高可用电压。用PMOS器件来实现Sn;
图4是实现为差分开关电容器转换器的示例驱动电源的示意图;
图5是系统的示例多级电源调制器的示意图,在该系统中,例如,图4的驱动电源可用。因此,可以用NMOS器件来实现Sn
图6是利用多个电源水平的示例射频(rf)功率放大器系统的框图,并且示出了包括供应多个功率放大器的系统架构;
图7是rf功率放大器系统的示例实现方式的框图,该rf功率放大器系统包括作为电源发生器的单电感器多输出升压转换器、“并联”电源调制器和可选的LC滤波器;
图8是示例混合磁/开关电容器多输出电源发生器的示意图;
图9A是示出了与4水平“串联”电源调制器相对应的示例性开关网络的结构的示意图;
图9B是示出了与4水平“并联”电源调制器相对应的示例性开关网络的结构的示意图;以及
图10是示出在电源调制器系统中包含开关的示例性辅助子系统的系统的框图。示例性辅助子系统包括开关,以将单独的电源调制器输出路由至一个或更多个功率放大器,以使得滤波器、能量储存装置或脉冲整形网络能够被连接或断开,并且以使得滤波器网络的特性能够被动态地重新配置。
具体实施方式
射频(rf)功率放大器系统可以包括“电源调制系统”,该电源调制系统包括两个子系统:(a)“电源发生器”,该电源发生器可以合成来自单个输入源的多个电源电压,并且可能调节那些电源电压中的一个或更多个,以及(b)一个或更多个“电源调制器”,所述一个或更多个“电源调制器”各自可以在由电源发生器提供的电源电压之间快速切换,以向rf放大器提供经调制的电源电压。此外,可以存在与电源调制系统相关联的辅助网络,该电源调制系统包括与电源调制器输出至负载(例如,功率放大器)的连接相关联的开关元件。电源调制系统可以包括:(1)连接开关网络,所述连接开关网络使得一个或更多个管芯上电源调制器输出能够被路由至一个或更多个功率放大器输出;(2)可切换的滤波器部件,所述可切换的滤波器部件用于调整对所提供的调制器输出进行的滤波;以及(3)关断开关,所述关断开关使得电源调制器输出能够与功率放大器和/或滤波器断开。
根据构思、系统、电路和技术,已经认识到最佳实现这些子系统的方式可能取决于rf放大器系统的功率水平、电压水平和应用空间。然而,值得注意的是,对于许多移动应用,可能期望将电源发生器和电源调制器二者的电子元件以及辅助电路的各部分单片集成在单个半导体管芯上(例如,在CMOS或BCD工艺中),并且在一些情况下,可能期望将这些电子器件与功率放大器一起集成在单个管芯上。然而,在所有情况下,电源生成、电源调制和辅助网络中涉及的开关的有效驱动对于实现小型、高性能设计来说是有价值的。
如下面所描述的,使用PMOS晶体管来实现(即,在实际系统中实现)电源调制系统的电路中使用的开关中的许多开关。这通常由于——至少部分地因为——驱动NMOS晶体管所需的电源电压水平不可用(即,其中使用开关的电路可能不携带高到足以驱动NMOS晶体的任何电压)。这防止了在电路的许多部分中对NMOS晶体管的使用。
因为典型的CMOS工艺中的PMOS晶体管具有比NMOS晶体管差得多的(即,更高的)特定导通电阻(例如,典型的3至4倍),并且还具有差得多的(即,更高的)RC乘积(即,RC电路的时间常数),所以与可能可以使用NMOS晶体管的情况相比,PMOS晶体管有助于晶体管和相关联的电路更大且不太有效。因此,根据本文所描述的构思,已经认识到存在提供使得能够在电路中使用NMOS晶体管的紧凑且有效的装置的强烈动机。
为了解决上述限制,本文所描述的构思、系统、电路和技术涉及生成具有高于用于电源调制的电压水平(如可以例如在无线系统中使用)的电源电压(例如,栅极驱动电源电压)的装置。可以与以下项中的改进的开关实现方式结合使用生成的栅极驱动电源电压:(1)电源发生器,(2)电源调制器,(3)辅助开关系统;以及(4)可以受益于NMOS晶体管的使用(例如,与使用PMOS器件的系统和电路的尺寸和效率相比,可以受益于由NMOS器件提供的更小的尺寸和改进的效率)的任何其他系统,从而实现系统的改进的总体尺寸和效率,包括但不限于rf电源调制系统。
现在参照图1A,电路100(有时在本文中被称为“驱动电源电路”或更简单地被称为“驱动电源”)包括耦接至可选的滤波和/或信号调理电路114的差分开关电容器转换器101。总的来说,电路100接收端子100a处的电压Vp、端子100b处的电压Vq,并且在驱动电源电路端子104处提供输出电压VO。第一电压Vp大于第二电压Vq。在一些实现方式中,电压Vp、Vq可以由电源发生器(图1中未示出)提供,并且因此有时被称为电源电压。
电路100进行操作使得输出电压VO的值可以大于第一电压Vp和第二电压Vq二者。因此,在电压Vp表示包括电路100的系统中的最高可用电压(例如,最高轨电压)的情况下,电路100可以提供比系统中的最高轨电压高的输出电压。
特别地,差分开关电容器转换器101进行操作使得输出电压VO的值可以大于第一电源电压Vp和第二电源电压Vq二者。例如,输出电压VO可以具有等于第一电源电压Vp加上第一电源电压Vp与第二电源电压Vq之间的差的值。也就是说,在实施方式中,可以操作差分开关电容器转换器101以在端子104处提供如下的输出电压VO
VO=Vp+(Vp-Vq)。
为了实现该电路操作,电路100包括第一电容器106(例如,旁路电容器),该第一电容器106具有电容CB并且具有耦接至在其处提供有电压Vp的端子102a的第一端子。电容器106的第二端子耦接至节点105。在其处提供有输出电压V′O的端子116也耦接至节点105。在图1A的说明性实施方式中,节点105通过可选的信号调理电路114耦接至端子116。
电路100还包括具有电容Cf的第二电容器108(例如,能量传送电容器)。能量传送电容器108经由一个或更多个开关网络选择性地耦接在电压Vq(在端口102b处)与耦接有电容器106的第二端子和端子104二者的节点105之间。
在该示例中,为了便于描述,在说明寻求保护的广泛构思中,示出了两个开关网络107a、107b。然而,应当理解的是,在一些实施方式中,可以使用一个开关网络,而在其他实施方式中,可以使用多于两个开关网络。还应当理解的是,开关网络可以包括一个或多个开关元件。例如,在实施方式中,可以使用包括多个开关的单个开关网络。此外,一个或更多个开关网络可以包括以下开关中的一个或更多个:SPST开关;SPDT开关或单刀开关、多刀开关;和/或多刀、多掷开关。也可以使用上述类型的开关中的任一种的组合。此外,还应当理解的是,在实施方式中,电容器106、108可以被实现为适合于应用的需求的任何类型的电容元件。
通常,开关网络107a、107b被配置成在第一状态和第二状态(例如,“导通”和“截止”状态)下操作,以使其中的一个或更多个导电路径改变电容器106、108的连接。
在第一状态下,开关网络107a、107b被配置成使得第一电容器106和第二电容器108被耦接,使得第二电容器108充电至等于第一电源电压Vp与第二电源电压Vq之间的差的电压。特别地,在第一状态下,第二电容器108跨第一电源电压Vp和第二电源电压Vq连接。
在第二状态下,第一电容器106和第二电容器108并联连接。这使第一电容器106充电至等于第一电源电压Vp与第二电源电压Vq0之间的差的电压。继而,这使端子104处的输出电压VO基本上处于等于第一电压Vp加上第一电压Vp与第二电压Vq之间的差的电压水平(即,VO=Vp+(Vp-Vq),或VO=2Vp-Vq)。因此,通过适当地操作开关网络109a、109b,可以提供端子104处的具有大于提供给端子102a、102b的电压中的任一个(即,高于图1A的示例中的电压Vp、Vq)的值的输出电压VO
在一些实施方式中,电路100可以包括可选的滤波和/或调节电路系统114(通常被称为信号调理电路系统114)。信号调理电路系统114允许在端子116处提供经滤波和/或经调节的输出电压VO′。因此,不是端子104处的输出电压VO直接被用作栅极驱动电压(例如),而是可以在端子116处提供经滤波和/或经调节的输出电压VO′。可以将这样的经滤波和/或经调节的电压提供给例如驱动器电路系统(图1A中未示出),该驱动器电路系统被配置成为NMOS晶体管的栅极(图1A中未示出)供电。
在图1A的示例中,参照端子100a处出现的电压Vp示出了滤波和/或调节电路系统114。当然,应当理解的是,滤波和/或调节电路系统114反而可以可选地参照另一电位诸如系统接地。在一些实现方式中,滤波和/或调节电路系统可以具有从端子104处的输出电压VO供电的多个线性调节器,以提供基本上处于或低于输出电压VO的多个经调节的电压(例如,VO′、VO″等)。这在高于第一电源电压Vp 102a的电压(例如,多个电压)处需要栅极驱动电源(例如,以驱动高电压和其源极可能需要达到与第一电源电压Vp 102a一样高的核心NMOS器件,如下文更详细描述)的应用中是有用的。
现在参照其中提供有图1A的具有相同附图标记的相同元件的图1B,根据本文所描述的构思提供了电路100(有时在本文中被称为“驱动电源电路”或更简单地被称为“驱动电源”)的示例实现方式(或实施方式)。在该示例实施方式中,示例驱动电源电路100包括耦接至可选的滤波或信号调理电路114的差分开关电容器转换器103。差分开关电容器转换器103可以在功能上与上面结合图1A描述的差分开关电容器转换器101相同或相似。
如上所述,差分开关电容器转换器101进行操作使得输出电压VO的值可以大于第一电源电压Vp和第二电源电压Vq二者。例如,输出电压VO可以具有等于第一电源电压Vp加上第一电源电压Vp与第二电源电压Vq之间的差的值。也就是说,在实施方式中,可以操作差分开关电容器转换器101以在端子104处提供如下输出电压VO
VO=Vp+(Vp-Vq)。
为了实现该电路操作,电路100包括第一电容器106(例如,旁路电容器),该第一电容器106具有电容CB并且具有耦接至在其处提供有电压Vp的端子102a的第一端子。电容器106的第二端子耦接至节点105。在其处提供有输出电压V′O的端子116也耦接至节点105。在图1B的说明性实施方式中,节点105通过可选的信号调理电路114耦接至端子116。
电路100还包括具有电容Cf的第二电容器108(例如,能量传送电容器)。能量传送电容器108经由一个或更多个开关网络选择性地耦接在电压Vq(在端口102b处)与耦接有电容器106的第二端子和端子104二者的节点105之间。
在图1B的示例实施方式中,示出了可以与图1A中的开关网络107a、107b相同或相似的两个开关网络109a、109b。开关网络109a、109b和电容器106、108被耦接,以提供电容器可以被耦接的至少两种不同的配置。
开关网络109a、109b可以以多种方式实现。图1B示出了开关网络109a、109b的一个示例实现方式,其中,每个开关网络包括一对串联耦接的开关(例如,开关网络109a中的开关110a、112a和开关网络109b中的开关110b、112b)。
通常,开关网络109a、109b被配置成在第一状态与第二不同的状态(例如,“导通”和“截止”状态)之间切换,以使其中的一个或更多个开关和/或一个或更多个导电路径改变第一电容器106和第二电容器108的连接。
在第一状态下,第一电容器106和第二电容器108被耦接,使得第二电容108充电至等于第一电源电压Vp与第二电源电压Vq之间的差的电压。特别地,在第一状态下,第二电容器108跨第一电源电压Vp和第二电源电压Vq连接。
在第二状态下,第二电容器108与第一电容器106并联连接。这使第一电容器充电至等于第一电源电压Vp与第二电源电压Vq之间的差的电压。继而,这使端子104处的输出电压VO基本上处于等于第一电源电压Vp加上第一电源电压Vp与第二电源电压Vq之间的差的电压水平(即,VO=Vp+(Vp-Vq),或VO=2Vp-Vq)。因此,通过适当地操作开关网络109a、109b,可以提供端子104处的具有大于提供给端子102a、102b的电压中的任一个(即,高于图1B的示例中的电压Vp、Vq)的值的输出电压VO。电压Vp、Vq可以例如是(例如,由电源发生器提供的)电源电压。
因此,如果电压Vp与系统中的可用的最高轨电压相对应,并且如果这样的电压不处于能够偏置NMOS器件的水平,在结合图1A和图1B描述电路和技术的情况下,则现在可以利用在没有针对增加的输出电压VO(即,增加到高于电压水平Vp)的情况下在电路100中以其他方式不可用的器件(例如,NMOS器件)。例如,由于在端子104处生成较大的输出电压VO,因此仍然可以使用需要高于第一电源电压Vp和第二电源电压Vq的栅极驱动电压的NMOS晶体管。
在图1B的示例实施方式中,并且还参照提供有图1B的具有相同附图标记的相同元件的图2,可以用开关网络来实现差分开关电容器转换器103,该开关网络至少包括连接至第一电容器CB 106和第二电容器Cf 108的第一对开关Sx1 110a、Sx2 110b和第二对开关Sy1112a、Sy2 112b。第一对开关Sx1 110a、Sx2 110b可以一起接通和关断,以及第二对开关Sy1112a、Sy2 112b可以一起接通和关断,其中,开关Sx 110以特定的开关频率fsw与开关Sy 112互补地切换(例如,具有50%的占空比)。
关于开关电路109a、109b的第一状态和第二状态,第一对开关Sx1 110a、Sx2 110b断开并且第二对开关Sy1 112a、Sy2 112b闭合可以与第一状态相对应,以及第一对开关Sx1110a、Sx2 110b闭合并且第二对开关Sy1112a、Sy2 112b断开可以与第二状态相对应。在第一电源电压Vp 102a是最高的电源发生器输出电压并且第二电源电压Vq 102b是较低的电压的情况下,驱动电源输出电压VO是高于Vp的量的量(Vp-Vq),使得在选择了适当的第二电源电压Vq的情况下,电压Vo其可以用于向其源极电压上升到第一电源电压Vp 102a的NMOS器件提供栅极驱动电源电压。
图1B中还示出了上面结合图1A讨论的可选的信号调理电路系统114。
如图1A的示例中一样,参照第一电源电压Vp 102a示出了信号调理电路系统114。当然,应当理解的是,信号调理电路系统114反而可以可选地参照另一电位诸如系统接地。在一些实现方式中,一个信号调理电路系统可以具有从端子104处的输出电压VO供电的多个线性调节器,以提供处于或低于电压输出电压VO的多个经调节的电压(例如,VO'、VO”等)。这在一个信号调理电路系统114在高于第一电源电压Vp 102a的电压(例如,多个电压)处需要栅极驱动电源(例如,以驱动高电压和其源极可能需要达到与第一电源电压Vp 102a一样高的核心NMOS器件,如下面更详细描述)的情况下会是有用的。
在一些实现方式中,开关Sx2 110b/Sy2 112b和Sx1 110a/Sy1 112a可以实现为CMOS对(例如,用PMOS器件实现的Sx1 110a和Sx2 110b以及用NMOS器件实现的Sy1 112a和Sy2112b),或者使用CMOS工艺的核心器件或CMOS或BCD工艺的更高电压器件实现开关Sx2 110b/Sy2 112b和Sx1110a/Sy1 112a。在一些实现方式中,替代地可以优选地将第二对开关Sy1112a、Sy2 112b中的一者或二者也实现为PMOS器件,以便简化其栅极驱动控制。在一些实现方式中,可以优选地将Sx1 110a和Sy1 112a实现为有源开关,以及将Sx2 110b和Sy2 112b实现为MOS二极管、肖特基二极管或其他二极管以便进一步简化栅极驱动要求。
可以提供具有以下电容CB的电容器106,其被选择成足够大以保持提供给具有允许电路在期望应用中的操作的纹波的期望输出电压VO的电压并且被选择成提供足够的旁路以实现如上面描述的用于电源栅极驱动电力所需的峰值输出电流的量。可以提供具有以下电容Cf的第二电容器108,其被选择成足够大以提供电荷传送,该电荷传送在特定开关频率fsw下限制(并且理想地消除)输出电压VO的下降。
端子104处(即,输出电压VO出现的地方)的由差分SC转换器贡献的输出电阻在差分开关电容器驱动电源的慢开关极限下为Rout=1/(Cffsw),使得在电源IL上的平均负载电流下,输出电压VO将理想地从其开路电压下降了第一电源电压Vp 102a与第二电源电压Vq102b之间的差(例如,Vp-Vq)的量ILRout。
在快开关极限下,在Rx是开关Sx 110的导通状态电阻以及Ry是开关Sy 112的导通状态电阻的情况下,输出电阻将为2(Rx+Ry)。对于低输出电力系统,可以使用在半导体管芯上实现的电容器(例如,基于MOS电容器、MIM电容器、沟槽电容器或其他电容元件中的一个或更多个)可选地实现第二电容器Cf 108。对于较高电力水平系统,第二电容器Cf 108可以被实现为管芯外电容器。因此,在一些实施方式中,可能期望电路100在单个管芯上(即,电容器106、108被提供为管芯上电容器)。这种方法避免了可能引入电阻和寄生电容和/或电感和/或电阻的外部互连。然而,在一些实施方式中,可能期望将电容器106、108中的一者或二者提供为外部电容器。在阅读了本文提供的本公开内容之后,本领域的普通技术人员将理解如何利用管芯上电容器还是外部电容器来满足特定应用的需求。
对于使用包含开关电容器能量传送级的多输出电源发生器的系统实现方式,可能期望与电源发生器的差分开关电容器驱动电源电路同步地切换图1A和图1B的差分开关电容器驱动电源电路100,以便产生时间对准的开关噪声生成和/或简化驱动控制电路系统。在其他应用中,差分开关电容器驱动电源电路可以与电源发生器的差分开关电容器驱动电源电路独立地(例如,以不同的频率和相位)进行切换。在这样的情况下,可能期望基于差分开关电容器驱动电源电路的负载或输出电压来调整差分开关电容器驱动电源电路的特定开关频率fsw。可以这样做以通过使用如上面描述的驱动电源电路100的输出电阻随开关频率的可变性来改善电路100上的负载电流与效率的关系以及/或者提供输出电压VO相对于期望参考电压VO,ref的调节(控制)。此外,驱动电源开关的切换也可以随着时间被关断和接通(例如,突发模式操作),以便允许有效地实现非常低的电力操作。
在许多应用中,可以基于系统的操作条件调整电源发生器电压(例如,比率式相关的(ratiometrically-related)电压V1,…,Vn可以随着时间随系统的特定运行点而变化。)因此,在Vp和Vq取自电源发生器电压(例如,Vp=Vn和Vq=Vn-1)的情况下,VO-Vp将随Vp-Vq而变化。对于开关电容器驱动电源,可能期望生成具有随着时间比Vp与Vq之间的差小的变化的输出电压VO(或差电压VO-Vp)。为了实现这一点,开关电容器驱动电源可以利用额外的电源电压输入,如图2中所示。
与所公开的构思、系统、电路和技术一致,图2示出了用多输入差分开关电容器转换器201实现的示例驱动电源的电路200。第一电源电压Vp 102a、第二电源电压Vq 102b和第三电源电压Vr 102c是其中Vp>Vq>Vr的三个输入电位,Vp>Vq>Vr可以可选地从三个电源发生器电压输入得出。
在图2的示例实施方式中,示出了三个开关网络109a、109b、109c。开关网络109a、109b、109c可以以各种方式来实现。图2示出了开关网络109a、109b、109c的一个示例实现方式,其中,每个开关网络包括一对串联耦接的开关(例如,开关网络109a中的开关Sx1 110a和Sy1 112a、开关网络109b中的开关Sx2 110b和Sy2 112b以及开关网络109c中的开关Sx3 110c和Sy3 112c)。在第一操作模式下,开关Sx3 110c和Sy3 112c可以保持断开,Sx1 110a和Sx2110b可以一起接通和关断,以及Sy1 112a和Sy2112b可以一起接通和关断,其中,操作开关Sx110以特定的开关频率fsw与操作开关Sy 112互补地切换(例如,具有50%的占空比)。在该模式下,电路提供生成的驱动电压VOp=Vp-Vq(或接地参考输出电压VO,其等于2Vp-Vq)。在第二操作模式下,开关Sx2 110b和Sy2 112b可以保持断开。Sx3 110c和Sx2 110b可以一起接通和关断,以及Sy3 112c和Sy2 112b可以一起接通和关断,其中,操作开关Sx 110以特定开关频率fsw与操作开关Sy 112互补地切换(例如,具有50%的占空比)。在该模式下,电路200提供生成的驱动电压VOp=Vp-Vr(或接地参考输出电压VO,其等于2Vp-Vr)。例如,我们可以基于电源电压Vp 102a、Vq 102b、Vr 102c的可用值在操作模式之间进行选择,使得输出电压VO保持尽可能接近目标电压,或者使得其在高于最小目标电压时尽可能小。利用这种更复杂的实现方式,可以随着Vp、Vq、Vr在不同操作条件下变化而减小vop的变化。将理解的是,虽然图2的实现方式使用三个输入并且具有两种操作模式,但是同样可以实现具有多于三个输入和多于两个相关联的操作模式的实现方式。
作为这样的电路100、200的益处的示例,考虑具有电源发生器的系统,该电源发生器生成一组比率式电源电压V1,…,Vn,其中,Vn=nV1,其中,根据期望的操作条件在0.5V至0.9V之间的示例范围内调节V1。进一步假设用CMOS工艺构建系统,该CMOS工艺具有低电压“核心”PMOS晶体管和NMOS晶体管以及“扩展电压”PMOS晶体管和NMOS晶体管,低电压“核心”PMOS晶体管和NMOS晶体管具有2V电压额定和1V的最小期望驱动电压,“扩展电压”PMOS晶体管和NMOS晶体管具有5V电压额定和1.5V的最小期望驱动电压。
图3示出了可以与其中电压Vn是最高可用电压的系统一起使用的示例性多级电源调制器300,用该最高可用电压来驱动晶体管。主体切换可以与开关304中的一个或更多个被一起采用,以使得能够在不同的需求条件下实现这些器件的双向阻断。可替选地,可以用以背靠背配置耦接的晶体管(所谓的“背靠背晶体管”)代替这些器件,以提供双向阻断能力。将理解的是,5V晶体管可以用于开关304中的一个或更多个,或者也可以利用2V器件将开关中的一个或更多个实现为级联(堆叠或串联连接)的开关结构。
特别地,在图3的调制器中,因为具有可用于栅极驱动的最大Vn不足以利用NMOS器件,所以用PMOS器件(例如,5V或2V PMOS器件)实现第一开关Sn 304a。因为可用的电压输入足以为这些NMOS器件的栅极供电,所以用NMOS器件(例如,5V或2V NMOS器件)实现第二开关Sn-1 304b、第三开关S2 304c和第四开关S1 304d。虽然该调制器可以实现高性能,但是其所需要的尺寸和可用性能受到针对第一开关Sn 304a使用PMOS器件的要求的限制。在一些实现方式中,针对第一开关Sn 304a使用的PMOS器件可以特别大并且有损耗。
图4示出了实现为差分开关电容器转换器401的驱动电源电路400的示例,该差分开关电容器转换器401通常基于至少图1A、图1B和图2中所示的构思。电路400可以生成可用的输出电压VO 404,该可用的输出电压VO 404是高于Vn的量Vn-Vn-3。这将提供足够的驱动电源,以使得NMOS器件能够用于调制器中的开关Sn(例如,图3的)。同样地,输出电压VO 404可以被向下调节(如用可选的滤波和/或信号调理电路系统414所示的)至充分高于Vn以使得NMOS器件能够用于电路400中可能示出或可能未示出的开关的经滤波和/或经调节的输出电压V'O 416(例如,提供电压V'On)。可以将经滤波和/或经调节的输出电压V'O 416提供给驱动器电路系统,诸如为NMOS器件的栅极供电的栅极驱动器418。
图5示出了用于其中例如图4的驱动电源电路400可用的系统的示例多级电源调制器500。因此,与图3的调制器300相比之下,高于Vn的电压可用。特别地,可以将等于Vn+Vn-Vn-3的电压(例如,经滤波和/或经调节的输出电压V'o 416)提供给用于为NMOS器件(例如,5V或2V NMOS器件)形式的第一开关504a的栅极供电的驱动器电路系统诸如栅极驱动器518a。可以切换开关Sn 504a、S3 504b、S2 504c、S1 504d以基于可用的电源电压502a、502b、502c、502d来提供特定的调制器电压VMOD 506。如下面所描述的,在将调制器电压VMOD 506提供给功率放大器之前,可以用可选的滤波器和/或调节电路系统对调制器电压VMOD 506进行滤波和/或调节。额外的栅极驱动器518b至518d可以用于为调制器500的其他开关504b至504d的栅极供电。
本文所描述的构思、系统、电路和技术可以在射频(rf)放大器系统中以各种方式实现。将描述这样的实现方式的示例,但是应当理解的是,出于示例性的目的,提供了这些实现方式,并且其他实现方式在权利要求的范围内。
图6示出了利用多个电源水平V1至Vn的rf放大器系统600的示例性系统架构的框图。系统600包括向多输出电源发生器604提供电力的能量源602,多输出电源发生器604被配置成提供电源水平(例如,电源电压)。系统600包括:多个电源调制器606a至606n;可选的多个滤波和/或调节电路系统608a至608n,所述可选的多个滤波和/或调节电路系统608a至608n被配置成接收调制器电压(例如,图5的VMOD 506)以及对调制器电压(例如,图5的VMOD506)进行滤波和/或调节以提供经滤波和/或经调节的调制器电压;以及多个功率放大器610a至610n,所述多个功率放大器610a至610n被配置成基于电源调制器606a至606n的操作接收电压电源。从图6中省略了系统600的信号处理和控制的一个或更多个方面。
图7示出了rf放大器系统700的示例性系统架构的框图,该rf放大器系统700包括作为电源发生器704的单电感器多输出升压转换器、并联电源调制器706和可选的LC滤波器708。电源调制器706基于电源调制器706的操作将电源电压V1至V3中的一个提供给功率放大器710。
图6和图7的系统600、700包括“电源调制系统”,该电源调制系统包括两个子系统:(a)“电源发生器”,该“电源发生器”可以合成来自单个输入源的多个电源电压,并且可以调节那些电源电压中的一个或更多个,以及(b)一个或更多个“电源调制器”,所述一个或更多个“电源调制器”各自可以在由电源发生器提供的电源电压之间快速切换,以向rf放大器提供经调制的电源电压。此外,可以存在与电源调制系统相关联的辅助网络,该电源调制系统包括与电源调制器输出至负载(例如,功率放大器)的连接相关联的开关元件。电源调制系统包括:(1)连接开关网络,所述连接开关网络使得一个或更多个管芯上电源调制器输出能够被路由至一个或更多个功率放大器输出;(2)可切换的滤波器部件,所述可切换的滤波器部件用于调整对所提供的调制器输出进行的滤波;(3)关断开关,所述关断开关使得电源调制器输出能够与功率放大器和/或滤波器断开。
根据构思、系统、电路和技术,已经认识到最佳实现这些子系统的方式可能取决于rf放大器系统的功率水平、电压水平和应用空间。然而,值得注意的是,对于许多移动应用,可能期望将电源发生器和电源调制器二者的电子元件以及辅助电路的各部分单片集成在单个半导体管芯上(例如,在CMOS或BCD工艺中),并且在一些情况下,可能期望将电子器件这些电子器件与功率放大器一起集成在单个管芯上。然而,在所有情况下,电源生成、电源调制和辅助网络中涉及的开关的有效驱动对于实现小型、高性能设计来说是有价值的。
电源发生器可以通过各种方法实现。已经使用如下实现了电源发生器:多个单独的转换器、多输出磁转换器、多输出开关电容器转换器以及提供比率式的一组输出电压的混合磁/开关电容器转换器和为离散电源电压的相关但非比率式分布提供差分电容能量传送的混合磁/开关电容器转换器。
图8中示出了提供比率式输出电压的一个混合SC/磁设计。图8是示例混合磁/开关电容器多输出电源发生器804的示意图。发生器804可以提供具有低器件和电感器应力的降压-升压能力。由于可用的栅极驱动电压限制,通常将用PMOS晶体管而不是NMOS晶体管来实现磁级器件qA和qD。同样,出于相同的原因,将用PMOS晶体管来实现开关电容器级中的顶部开关组(例如,连接在Vn与Vn-1之间的半桥中的开关)中的一些或所有。由缺乏可用的电源电压来驱动那些位置中的NMOS开关而导致的这种要求在可实现的管芯面积(尺寸)和电源发生器的效率方面导致了显著的不利影响。然而,通过利用上面描述的获得高于由电源发生器提供的最高可用电压的电压水平的技术,可以用NMOS器件代替图8中所示的开关中的一个或更多个。
可以利用各种不同的开关电路来实现电源调制器子系统(例如,图6的606)。在图9A和图9B中示出了两个示例性网络:在图9A中示出了示例性4水平“串联”电源调制器900,以及在图9B中示出了示例性4水平“并联”电源调制器910。串联电源调制器900被配置成接收多个电源电压902a至902d,并且包括被配置成改变状态以提供特定电压作为调制器电压VMOD 904的多个开关。同样,并联电源调制器910被配置成接收多个电源电压912a至912d,并且包括被配置成改变状态以提供特定电压作为调制器电压VMOD 914的多个开关。还可以使用各种各样的其他开关网络拓扑。注意,虽然所示的调制器设计用于在四(4)个电源发生器水平之间切换,但是用于在不同数目的水平之间切换的设计是可能的。例如,一个设计可以选择n水平电源调制器以与图8的n水平电源发生器一起使用,其中,一个电源调制器输入连接至每个输出水平(电源发生器的V1至Vn)。一个设计还可以具有连接至单个电源发生器的多个电源调制器。
图10是系统1000的框图,该系统1000示出了在包括滤波器电路系统的电源调制器系统中包含开关的示例性辅助子系统。系统1000包括耦接至相应滤波器1004a至1004n的多个电源调制器1002a至1002n。滤波器1004a至1004n耦接至包括多个开关的开关网络,并且开关网络耦接至多个滤波器网络1006a至1006e。滤波器1004a至1004n和滤波器网络1006a至1006e有时在本文中被统称为“滤波器电路系统”。滤波器电路系统被配置成接收由相应电源调制器1002a至1002n提供的调制器电压并且对所述调制器电压进行滤波,以提供经滤波的调制器电压。经滤波的调制器电压可以经由滤波器1004a至1004n中的一个或更多个和/或滤波器网络1006a至1006e中的一个或更多个来提供。开关网络进行操作以使来自滤波器1004a至1004n的输出在一些情况下经由滤波器网络1006a至1006e中的一个或更多个提供给一个或更多个功率放大器1008a至1008f。例如,开关网络可以用于将各个电源调制器输出(例如,以调制器电压和/或经滤波的调制器电压的形式)路由至一个或更多个功率放大器1008a至1008f,以使得滤波器、能量储存装置或脉冲整形网络能够被连接或断开,使得滤波器网络的特性能够被动态地重新配置,以及/或者使得多个电源调制器的并联能够驱动单个输出。可以由开关实现的滤波器网络1006a至1006e可以包括脉冲整形网络、线性调节器等,以在一个或更多个电源调制器输出与功率放大器1008a至1008f中的一个或更多个的输入之间被连接或断开。在一些实施方式中,晶体管可以在一些条件下充当线性调节器,以及在其他条件下充当开关。这样的开关(包括一部分时间用作开关的晶体管)可能对于实现针对不同的操作条件的系统的重新配置是有价值的。在许多这样的辅助子系统中可能遇到的限制在于这些开关还必须能够具有其在最高电源发生器输出电压处的端子中的一者或二者。在不存在可用于栅极驱动的足够高的电压时,通常必须用PMOS器件来实现这样的开关,这对其可实现的尺寸和效率(与可以使用NMOS器件的情况相比)有显著不利影响。然而,通过利用上面描述的技术,可以提供足够的栅极驱动电压,使得可以使用要求高于由电源发生器提供的最高可用电压的栅极驱动电压的NMOS器件。特别地,滤波器电路系统(例如,滤波器1004a至1004n中的一个或更多个和/或滤波器网络1006a至1006e中的一个或更多个)可以包括NMOS晶体管(例如,2V或5V NMOS器件),该NMOS晶体管具有由例如图4的输出电压VO 404(或,例如,经滤波和/或经调节的输出电压V'O 416)供电的栅极。
应理解的是,所公开的主题在其应用中不限于描述中阐述或附图中示出的构造的细节和部件的布置。所公开的主题能够具有其他实施方式,并且能够以各种方式实践和执行。此外,应理解的是,本文采用的措词和术语是用于描述的目的并且不应当被视为进行限制。因此,本领域技术人员将理解的是,本公开内容所基于的构思可以容易地被用作用于设计用于执行所公开的主题的若干目的的其他结构、方法和系统的基础。因此,权利要求应当被视为包括这样的等效构造,只要它们不脱离所公开的主题的精神和范围。
尽管已经在示例性实施方式中描述和示出了所公开的主题,但是应理解的是,本公开内容已经仅通过示例的方式进行,并且在不脱离所公开的主题的精神和范围的情况下,可以对所公开的主题的实现方式的细节进行多种改变。
因此,已经描述了示出所描述的构思、系统、电路和技术的至少一个实施方式的若干方面,应理解的是,本领域技术人员将容易想到各种改变、修改和改进。
这样的改变、修改和改进旨在成为本公开内容的一部分,并且旨在落入本文所描述的构思、系统、电路和技术的精神和范围内。此外,尽管指示了本文所描述的构思、系统、电路和技术的优点,但是应当理解的是,并非本文所描述的示例系统、电路和技术的每个实施方式将包括每个描述的优点。一些实施方式可以不实现在本文中被描述为有利的任何特征,并且在一些情况下,可以实现所描述的特征中的一个或更多个以实现另外的实施方式。因此,本领域普通技术人员将理解的是,上述描述和附图仅作为示例。
本文所描述的构思、系统、电路和技术的各个方面可以单独地、组合地使用或者在本文所描述的实施方式中未具体讨论的各种布置中使用,并且因此在其应用中不限于在描述中阐述的或在附图中示出的部件的布置和细节。例如,一个实施方式中描述的方面可以以任何方式与其他实施方式中所描述的方面组合。
此外,本文所描述的构思、系统、电路和技术可以被体现为一种或更多种方法,已经提供了一种或更多种方法的示例。可以以任何合适的方式对作为方法的一部分执行的动作进行排序。因此,可以构造其中以与所示出的不同的顺序执行动作的实施方式,这可以包括同时执行一些动作,即使在说明性实施方式中被示出为顺序动作。
本文参照相关附图描述了寻求保护的构思、系统、设备、结构和技术的各种实施方式。可以在不脱离本文所描述的构思、系统、设备、结构和技术的范围的情况下设计替选实施方式。应注意的是,阐述了在上面描述和附图中的元件之间的各种连接。除非另有说明,否则这些连接可以是直接的或间接的,并且所描述的构思、系统、设备、结构和技术不旨在在这方面进行限制。因此,对耦接元件或元件的耦接的提及可以是指直接耦接或间接耦接。
作为间接关系的示例,在本说明书中对将元件“A”耦接至元件“B”的提及包括一个或更多个中间元件(例如,元件“C”)在元件“A”与元件“B”之间的情况,只要元件“A”和元件“B”的相关特性和功能不被中间元件实质上改变即可。以下定义和缩写将用于解释权利要求和说明书。如本文所使用的,术语“包括(comprise)”、“包括有(comprising)”、“包含(include)”、“包含有(including)”、“有(has)”、“具有(having)”、“包含(contain)”或“含有(containing)”或其任何其他变型旨在涵盖非排他性的包括。例如,包括一列元素的组合物、混合物、处理、方法、制品或装置不一定仅限于这些元素,而是可以包括未明确列出的或这样的组合物、混合物、处理、方法、制品或装置固有的其他元素。
在权利要求书中使用诸如“第一”、“第二”、“第三”等的顺序术语来修饰权利要求元素本身并不意味着一个权利要求元素相对于另一权利要求元素的任何优先权、优先级或顺序或者执行方法的动作的时间顺序,而是仅仅用作标记来区分具有某个名称的一个权利要求元素与具有相同名称的另一元素(除了使用顺序术语以外)以区分权利要求元素。
术语“近似”和“大约”可以用于意指在一些实施方式中在目标值的±20%内、在一些实施方式中在目标值的±10%内、在一些实施方式中在目标值的±5%内、而在一些实施方式中在目标值的±2%内。术语“近似”和“大约”可以包括目标值。术语“基本上相等”可以用于是指在一些实施方式中彼此相差在±20%内的值、在一些实施方式中彼此相差在±10%内的值、在一些实施方式中彼此相差在±5%内的值、而在一些实施方式中彼此相差在±2%内的值。
术语“基本上”可以用于是指在一些实施方式中在比较度量的±20%内的值、在一些实施方式中在比较度量的±10%内的值、在一些实施方式中在比较度量的±5%内的值、而在一些实施方式中在比较度量的±2%内的值。例如,“基本上”垂直于第二方向的第一方向可以是指在一些实施方式中与第二方向成90°角的±20%内的第一方向、在一些实施方式中与第二方向成90°角的±10%内的第一方向、在一些实施方式中与第二方向成90°角的±5%内的第一方向、而在一些实施方式中与第二方向成90°角的±2%内的第一方向。
另外,本文所使用的措辞和术语是出于描述的目的,并且不应当被认为是限制性的。使用“含有”、“包括”或“具有”、“包含”、“涉及”以及本文中的其变型意在涵盖之后列出的项及其等同物以及附加项。
此外,术语“示例性”在本文中用于意指“用作示例、实例或说明”。本文中被描述为“示例性”的任何实施方式或设计不一定被解释为比其他实施方式或设计优选或有利。术语“一个或更多个”和“一个或更多个”被理解成包括大于或等于一的任何整数,即,一、二、三、四等。术语“多个”被理解成包括大于或等于二的任何整数,即,二、三,四、五等。术语“连接/耦接”可以包括间接“连接/耦接”和直接“连接/耦接”。
说明书中对“一个实施方式”、“实施方式”、“示例实施方式”等的提及指示所描述的实施方式可以包括特定特征、结构或特性,但是每个实施方式可以包括该特定特征、结构或特性。此外,这样的短语不一定指的是同一实施方式。此外,在结合实施方式描述特定特征、结构或特性时,认为无论是否明确描述,结合其他实施方式影响这样的特征、结构或特性在本领域技术人员的知识范围内。

Claims (18)

1.一种被配置成接收第一电压和第二电压并且生成大于所述第一电压和所述第二电压二者的输出电压的电路,所述电路包括:
第一电容器,所述第一电容器被配置成充电至等于所述第一电压与所述输出电压之间的差的电压;
第二电容器,所述第二电容器被配置成充电至等于所述第一电压与所述第二电压之间的差的电压;以及
多个导电路径,所述多个导电路径耦接至所述第一电容器和所述第二电容器并且具有两种状态,其中,在第一状态下,所述多个导电路径被配置成使所述第二电容器充电至等于所述第一电压与所述第二电压之间的差的电压,并且其中,在第二状态下,所述多个导电路径被配置成使所述第二电容器与所述第一电容器并联连接,以使所述第一电容器充电至等于所述第一电压与所述输出电压之间的差的电压。
2.根据权利要求1所述的电路,其中,所述输出电压等于所述第一电压加上所述第一电压与所述第二电压之间的差。
3.根据权利要求1或2所述的电路,其中,对所述输出电压进行滤波、调节或者对所述输出电压进行滤波和调节,以产生经滤波和/或经调节的输出电压。
4.根据权利要求3所述的电路,其中,将所述经滤波和/或经调节的输出电压施加至被配置成为NMOS晶体管的栅极供电的驱动器电路系统。
5.根据权利要求4所述的电路,其中,所述第一电压和所述第二电压均太小而不能为所述NMOS晶体管的栅极供电。
6.一种系统,包括:
根据前述权利要求中任一项所述的电路;
电源发生器,所述电源发生器被配置成向所述电路提供所述第一电压和所述第二电压;以及
电源调制器,所述电源调制器被配置成接收所述第一电压和所述第二电压并且提供调制器电压。
7.根据权利要求6所述的系统,其中,所述电源调制器包括具有由所述输出电压供电的栅极的NMOS晶体管。
8.根据权利要求6或7所述的系统,还包括滤波器电路系统,所述滤波器电路系统被配置成接收所述调制器电压并且对所述调制器电压进行滤波以提供经滤波的调制器电压。
9.根据权利要求8所述的系统,其中,所述滤波器电路系统包括具有由所述输出电压供电的栅极的NMOS晶体管。
10.根据权利要求8或9所述的系统,其中,所述调制器电压或所述经滤波的调制器电压用于为所述系统的放大器供电。
11.一种被配置成接收第一电压和第二电压并且生成大于所述第一电压和所述第二电压的输出电压的电路,所述电路包括:
第一电容器,所述第一电容器被配置成充电至等于所述第一电压与所述输出电压之间的差的电压;以及
第二电容器,所述第二电容器被配置成充电至等于所述第一电压与所述第二电压之间的差的电压,
其中,当所述第一电容器和所述第二电容器并联连接时,所述第一电容器充电至等于所述第一电压与所述输出电压之间的差的电压。
12.根据权利要求11所述的电路,其中,一旦所述第二电容器被充电,与所述第一电容器并联连接的所述第二电容器使所述第一电容器充电至等于所述第一电压与所述第二电压之间的差的电压。
13.根据权利要求11或12所述的电路,还包括开关网络,所述开关网络被配置成以不同的配置将所述第一电容器和所述第二电容器连接至所述电路。
14.根据权利要求11至13中任一项所述的电路,其中,所述输出电压等于所述第一电压加上所述第一电压与所述第二电压之间的差。
15.根据权利要求11至14中任一项所述的电路,其中,对所述输出电压进行滤波、调节或者对所述输出电压进行滤波和调节,以产生经滤波和/或经调节的输出电压。
16.根据权利要求15所述的电路,其中,将所述经滤波和/或经调节的输出电压施加至被配置成为NMOS晶体管的栅极供电的驱动器电路系统。
17.根据权利要求16所述的电路,其中,所述第一电压和所述第二电压均太小而不能为所述NMOS晶体管的栅极供电。
18.一种被配置成至少接收第一电压和第二电压并且生成输出电压的电路,所述电路包括:
开关网络,所述开关网络包括第一对开关和第二对开关;
第一电容器,所述第一电容器被配置成接收所述第一电压并且耦接至所述开关网络;以及
第二电容器,所述第二电容器耦接至所述开关网络,
其中,当所述第一对开关断开并且所述第二对开关闭合时,所述第二电容器被配置成充电至等于所述第一电压与所述第二电压之间的差的电压,并且其中,当所述第一对开关闭合并且所述第二对开关断开时,所述第二电容器与所述第一电容器并联连接以生成所述输出电压,并且
其中,所述输出电压大于所述第一电压和所述第二电压二者。
CN202280056637.5A 2021-08-20 2022-08-19 具有开关电容器驱动电源的电源发生器/电源调制器 Pending CN117859260A (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US202163235389P 2021-08-20 2021-08-20
US63/235,389 2021-08-20
PCT/US2022/040856 WO2023023306A1 (en) 2021-08-20 2022-08-19 Supply generator / supply modulator with switched-capacitor drive supply

Publications (1)

Publication Number Publication Date
CN117859260A true CN117859260A (zh) 2024-04-09

Family

ID=85229317

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202280056637.5A Pending CN117859260A (zh) 2021-08-20 2022-08-19 具有开关电容器驱动电源的电源发生器/电源调制器

Country Status (3)

Country Link
US (1) US20230057037A1 (zh)
CN (1) CN117859260A (zh)
WO (1) WO2023023306A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11637531B1 (en) 2019-09-05 2023-04-25 Murata Manufacturing Co., Ltd. Supply generator and associated control methods
US11909358B1 (en) 2020-01-22 2024-02-20 Murata Manufacturing Co., Ltd. Multilevel amplifier systems and related techniques

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9900204B2 (en) * 2010-04-20 2018-02-20 Qorvo Us, Inc. Multiple functional equivalence digital communications interface
US9136756B2 (en) * 2013-03-14 2015-09-15 Maxim Integrated Products, Inc. System and methods for two-stage buck boost converters with fast transient response
US9203299B2 (en) * 2013-03-15 2015-12-01 Artic Sand Technologies, Inc. Controller-driven reconfiguration of switched-capacitor power converter
US10333477B2 (en) * 2016-09-08 2019-06-25 The Regents Of The University Of California Switched capacitor house of cards power amplifier
US10236765B2 (en) * 2017-01-31 2019-03-19 Infineon Technologies Ag Switched-capacitor circuit and method of operating a switched-capacitor circuit
US10707840B2 (en) * 2018-09-26 2020-07-07 Infineon Technologies Ag Power stage with sequential power transistor gate charging
WO2021061855A1 (en) * 2019-09-27 2021-04-01 Skyworks Solutions, Inc. Multi-level envelope tracking systems with adjusted voltage steps

Also Published As

Publication number Publication date
US20230057037A1 (en) 2023-02-23
WO2023023306A1 (en) 2023-02-23

Similar Documents

Publication Publication Date Title
US11736010B2 (en) Power converter with capacitive energy transfer and fast dynamic response
CN108028600B (zh) 开关电容器电力转换器
US11368086B2 (en) Selectable conversion ratio DC-DC converter
KR102435623B1 (ko) 재구성 가능한 스위치드 커패시터 전력 컨버터 기술들
US20150084701A1 (en) Integrated Power Supply And Modulator For Radio Frequency Power Amplifiers
CN117859260A (zh) 具有开关电容器驱动电源的电源发生器/电源调制器
US9634577B2 (en) Inverter/power amplifier with capacitive energy transfer and related techniques
US8854019B1 (en) Hybrid DC/DC power converter with charge-pump and buck converter
US20230378921A1 (en) Rf power amplifier system having a multi-output supply generator and low-frequency turn off switch
CN114498866B (zh) 双电池充电装置、方法及其控制器
EP3105852A1 (en) Integrated power supply and modulator for radio frequency power amplifiers
TWI805988B (zh) 輔助電路、電源轉換器、閘驅動器電路、轉換器電路、選擇子電路的方法以及提供電源的方法
WO2024030722A1 (en) Multi-mode power converters with shared components
CN102457167B (zh) 多电平并联功率变换器
US6879135B2 (en) Switching-type, inductive DC-DC converter with improved efficiency
TW202425495A (zh) 電源轉換器電路、電池管理系統和轉換電壓的方法
CN115694170A (zh) 开关电容器转换器、对应方法、电源系统和电子设备

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination