CN117855339A - 一种完全去除衬底的超晶格红外探测器制备方法 - Google Patents

一种完全去除衬底的超晶格红外探测器制备方法 Download PDF

Info

Publication number
CN117855339A
CN117855339A CN202410249117.7A CN202410249117A CN117855339A CN 117855339 A CN117855339 A CN 117855339A CN 202410249117 A CN202410249117 A CN 202410249117A CN 117855339 A CN117855339 A CN 117855339A
Authority
CN
China
Prior art keywords
layer
substrate
infrared detector
polishing
etching
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202410249117.7A
Other languages
English (en)
Other versions
CN117855339B (zh
Inventor
冯伟
文晋
苏莹
薛建凯
李斌
史鹏程
韩润宇
陈龙华
张培峰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanxi Chuangxin Photoelectric Technology Co ltd
Original Assignee
Shanxi Chuangxin Photoelectric Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanxi Chuangxin Photoelectric Technology Co ltd filed Critical Shanxi Chuangxin Photoelectric Technology Co ltd
Priority to CN202410249117.7A priority Critical patent/CN117855339B/zh
Publication of CN117855339A publication Critical patent/CN117855339A/zh
Application granted granted Critical
Publication of CN117855339B publication Critical patent/CN117855339B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1892Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof methods involving the use of temporary, removable substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0304Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035236Superlattices; Multiple quantum well structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/184Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Light Receiving Elements (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)

Abstract

本发明提供了一种完全去除衬底的超晶格红外探测器制备方法,属于红外探测器技术领域;解决了采用机械化学抛光红外探测器芯片存在的加工损伤影像成像效果的问题;包括以下步骤:首先生长具有蚀刻停止层的外延片,外延片包括自底向上生长的衬底层、蚀刻停止层、缓冲层、P型欧姆接触层、长波通道吸收区、M型势垒层、N型欧姆接触层和N型盖层,其中衬底层与蚀刻停止层之间的蚀刻选择比的范围为50:1‑100:1;制备红外探测器芯片;红外探测器芯片完全去除衬底工艺由机械化学研磨抛光和ICP干法刻蚀两个过程完成;通过机械化学研磨抛光将衬底层的厚度减薄至50μm,再使用ICP干法刻蚀去除剩余衬底;本发明应用于红外探测器衬底去除。

Description

一种完全去除衬底的超晶格红外探测器制备方法
技术领域
本发明提供了一种完全去除衬底的超晶格红外探测器制备方法,属于红外探测器技术领域。
背景技术
InAs/GaSb超晶格光敏芯片与读出电路采用倒装互连的形式构成红外探测器芯片。红外光透过GaSb衬底后,被InAs/GaSb光敏材料吸收而转换为电信号;经互连电路的读出、转换、放大和除噪声处理后实现光电信号输出。因此,入射到光敏芯片上的红外光越强,探测器输出的电信号也越强,探测器成像效果就越好。但是,探测器正常工作时要降温到77K。在此温度下,较厚GaSb衬底的红外光透过率低,透过的红外光少,影响探测器的成像质量。红外探测器芯片背减薄的主要方式为机械化学抛光,在探测器制备过程中衬底表面会留下明显的加工损伤,这些损伤也会影响器件的成像效果。同时,由于背减薄工艺过程中长时间受外加压力作用,对探测器芯片的结构稳定性有一定影响,在成品率提升方面还有优化空间。因此迫切需要开发高表面质量的探测器背减薄技术。
发明内容
本发明为了解决采用机械化学抛光红外探测器芯片存在的加工损伤影像成像效果的问题,提出了一种完全去除衬底的超晶格红外探测器制备方法。
为了解决上述技术问题,本发明采用的技术方案为:一种完全去除衬底的超晶格红外探测器制备方法,包括以下步骤:
步骤一:首先生长具有蚀刻停止层的外延片,所述外延片包括自底向上生长的衬底层、蚀刻停止层、缓冲层、P型欧姆接触层、长波通道吸收区、M型势垒层、N型欧姆接触层和N型盖层,其中衬底层与蚀刻停止层的蚀刻选择比的范围为50:1-100:1;
步骤二:在步骤一得到的外延片上,通过刻蚀工艺确定单个像素形成的焦平面阵列,然后在P型欧姆接触层、N型欧姆接触层上分别沉积接触金属,在接触金属上沉积铟层,将样品切成单个焦平面阵列,焦平面阵列通过倒装焊与ROIC结合,并在焦平面阵列和ROIC之间填充环氧树脂,形成具有一定机械强度的红外探测器芯片;
步骤三:去除红外探测器芯片的衬底:红外探测器芯片完全去除衬底工艺由机械化学研磨抛光和ICP干法刻蚀两个过程完成;
其中机械化学研磨抛光由研磨和抛光两个过程实现,通过机械化学研磨抛光将衬底层的厚度减薄至50-70μm,再使用ICP干法刻蚀去除剩余衬底。
所述衬底层采用GaSb材料,所述蚀刻停止层采用InAs和GaSb胶体生长形成的应变超晶格材料。
所述缓冲层的整体掺杂浓度≥1018cm-3;所述P型欧姆接触层的整体掺杂浓度≥1018cm-3;在P型欧姆接触层表面形成厚度为2~3μm的长波通道吸收区,掺杂剂是Be,整体掺杂浓度≥1016cm-3;所述M型势垒层的整体掺杂浓度≥1014cm-3;所述N型欧姆接触层的整体掺杂浓度≥1018cm-3;所述N型盖层的整体掺杂浓度≥1018cm-3
所述接触金属由20-50nm厚度的Ti、50-60nm厚度的Pt、300-500nm厚度的Au组成,其中Ti、Pt、Au三者的比例为1:1:6-1:1:10。
步骤三中研磨时选择粒径为3~9μm氧化铝颗粒作为机械抛光磨料,在机械作用下快速去除衬底,研磨后预留60~80μm厚的衬底进行抛光;
抛光是通过由次氯酸钠和0.3μm粒径的氧化铝磨料构成的机械化学抛光液消除研磨时带来的机械损伤。
制备好的外延片在研磨和抛光工艺过程后,利用接触式测厚仪测量减薄后的红外探测器芯片高度及TTV,保证减薄后的衬底层厚度在50-70μm之间,同时TTV控制在3μm以下。
ICP干法刻蚀采用Cl2、BCl3和Ar的混合气体作为刻蚀气体,设置ICP功率、RF功率、腔压和Table温度,实现GaSb衬底层与蚀刻停止层处于设定范围的蚀刻选择比。
本发明相对于现有技术具备的有益效果为:本发明提供的完全去除衬底的超晶格红外探测器制备方法采用机械化学研磨抛光将衬底抛光至50μm左右,剩余厚度的衬底利用GaSb衬底和蚀刻停止层的巨大选择比通过干法刻蚀完全去除衬底,释放机械化学研磨抛光过程中产生的应力,减小因应力堆积导致的裂片问题,增强了红外光吸收强度,提高了红外探测器的响应率。
附图说明
下面结合附图对本发明做进一步说明:
图1为外延结构示意图;
图2为红外探测器芯片的结构示意图;
图3为本发明制备方法的流程图。
具体实施方式
如图1至图3所示,本发明提供了一种完全去除衬底的超晶格红外探测器制备方法,主要包括以下步骤:
步骤一:首先生长具有蚀刻停止层的外延片,如图1所示:在500-600μm厚的GaSb衬底上生长与之具有巨大蚀刻选择比的蚀刻停止层,其中巨大蚀刻选择比一般为大于50:1的选择比,选择比越大,刻蚀过程更加可控,因此,可以选择50:1-100:1范围的蚀刻选择比。蚀刻停止层由14个单层(ML)InAs和7个单层(ML)GaSb交替生长形成,总厚度为50~200nm;在蚀刻停止层表面形成厚度为1-3μm的缓冲层,整体掺杂浓度≥1018cm-3;在缓冲层表面形成厚度为200-500nm的P型欧姆接触层,整体掺杂浓度≥1018cm-3;在P型欧姆接触层表面形成厚度为2~3μm的长波通道吸收区,掺杂剂是Be,整体掺杂浓度≥1016cm-3;在长波通道吸收区表面形成厚度为400-600nm的M型势垒层,整体掺杂浓度≥1014cm-3;在M型势垒层表面形成厚度为200-500nm的N型欧姆接触层,整体掺杂浓度≥1018cm-3;在N型欧姆接触层表面形成厚度为20~50nm的N型盖层,整体掺杂浓度≥1018cm-3
步骤二:在步骤一得到的外延片结构上,通过光刻、ICP干法刻蚀等工艺,确定单个像素形成的焦平面阵列,然后在P型欧姆接触层和N型欧姆接触层上分别沉积由20-50nm厚度的Ti、50-60nm厚度的Pt、300-500nm厚度的Au组成的接触金属,其中Ti、Pt、Au三者的比例为1:1:6-1:1:10,在接触金属上沉积5-8μm厚的铟层,将制备好的圆形的外延片切成单个焦平面阵列。焦平面阵列通过倒装焊与ROIC结合,其中ROIC表示Read-Out IntegratedCircuit(读出集成电路),并在样品和ROIC之间填充环氧树脂,形成具有一定机械强度的如图2所示的红外探测器芯片。
步骤三:去除红外探测器芯片的衬底:红外探测器芯片完全去除衬底工艺由机械化学研磨抛光和ICP干法刻蚀两个过程完成。
其中机械化学研磨抛光由研磨和抛光两个过程实现,研磨时选择粒径为3~9μm氧化铝颗粒作为机械抛光磨料,在机械作用下快速去除衬底。考虑到GaSb材料硬而脆,机械加工难度高,单一机械减薄不仅在衬底表面留下划痕,甚至会造成裂片,所以研磨后要预留60~80μm厚的衬底进行抛光。抛光是通过机械化学抛光方式消除研磨时带来的机械损伤。机械化学抛光液由次氯酸钠和0.3μm粒径的氧化铝磨料构成。
外延片在研磨和抛光工艺过程后,利用接触式测厚仪测量减薄后的红外探测器芯片高度及TTV(Total Thickness Variation),TTV表示硅片的最大厚度和最小厚度之间的差异,保证减薄后的衬底厚度剩余50-70μm,同时TTV控制在3μm以下。
再使用ICP干法刻蚀去除剩余衬底,采用1:1:2的Cl2、BCl3和Ar的混合气体作为刻蚀气体,设置ICP功率为500W,RF功率为150W,腔压为0.532Pa(4mTorr),Table温度为60℃,使GaSb衬底的刻蚀速率最大化,实现衬底层与蚀刻停止层50:1的蚀刻选择比。如图3所示为一种完全去除衬底的超晶格红外探测器制备方法的流程图。
本发明通过在GaSb衬底上生长InAs/GaSb应变层超晶格结构作为蚀刻停止层更容易。与AlGaSb不同,InAs/GaSb应变层超晶格结构不受临界厚度的限制,因此它可以生长更厚且不出现晶格失配。InAsSb是一种强中波红外吸收剂,会降低探测器的外部量子效率。而InAs/GaSb应变层超晶格结构的带隙灵活调整为与吸收体的带隙相比更短的波长,不会影响到器件性能。
本发明通过采用机械化学研磨抛光和ICP干法刻蚀结合的方式,解决了传统机械化学研磨抛光无法完成去除衬底的工艺难点;此外,由于在选择性蚀刻过程中没有用湿法溶液,刻蚀过程更加可控,降低操作时接触危化品的概率。
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims (7)

1.一种完全去除衬底的超晶格红外探测器制备方法,其特征在于:包括以下步骤:
步骤一:首先生长具有蚀刻停止层的外延片,所述外延片包括自底向上生长的衬底层、蚀刻停止层、缓冲层、P型欧姆接触层、长波通道吸收区、M型势垒层、N型欧姆接触层和N型盖层,其中衬底层与蚀刻停止层的蚀刻选择比的范围为50:1-100:1;
步骤二:在步骤一得到的外延片上,通过刻蚀工艺确定单个像素形成的焦平面阵列,然后在P型欧姆接触层、N型欧姆接触层上分别沉积接触金属,在接触金属上沉积铟层,将样品切成单个焦平面阵列,焦平面阵列通过倒装焊与ROIC结合,并在焦平面阵列和ROIC之间填充环氧树脂,形成具有一定机械强度的红外探测器芯片;
步骤三:去除红外探测器芯片的衬底:红外探测器芯片完全去除衬底工艺由机械化学研磨抛光和ICP干法刻蚀两个过程完成;
其中机械化学研磨抛光由研磨和抛光两个过程实现,通过机械化学研磨抛光将衬底层的厚度减薄至50-70μm,再使用ICP干法刻蚀去除剩余衬底。
2.根据权利要求1所述的一种完全去除衬底的超晶格红外探测器制备方法,其特征在于:所述衬底层采用GaSb材料,所述蚀刻停止层采用InAs和GaSb胶体生长形成的应变超晶格材料。
3.根据权利要求1所述的一种完全去除衬底的超晶格红外探测器制备方法,其特征在于:所述缓冲层的整体掺杂浓度≥1018cm-3;所述P型欧姆接触层的整体掺杂浓度≥1018cm-3;在P型欧姆接触层表面形成厚度为2~3μm的长波通道吸收区,掺杂剂是Be,整体掺杂浓度≥1016cm-3;所述M型势垒层的整体掺杂浓度≥1014cm-3;所述N型欧姆接触层的整体掺杂浓度≥1018cm-3;所述N型盖层的整体掺杂浓度≥1018cm-3
4.根据权利要求1所述的一种完全去除衬底的超晶格红外探测器制备方法,其特征在于:所述接触金属由20-50nm厚度的Ti、50-60nm厚度的Pt、300-500nm厚度的Au组成,其中Ti、Pt、Au三者的比例为1:1:6-1:1:10。
5.根据权利要求1所述的一种完全去除衬底的超晶格红外探测器制备方法,其特征在于:步骤三中研磨时选择粒径为3~9μm氧化铝颗粒作为机械抛光磨料,在机械作用下快速去除衬底,研磨后预留60~80μm厚的衬底进行抛光;
抛光是通过由次氯酸钠和0.3μm粒径的氧化铝磨料构成的机械化学抛光液消除研磨时带来的机械损伤。
6.根据权利要求5所述的一种完全去除衬底的超晶格红外探测器制备方法,其特征在于:制备好的外延片在研磨和抛光工艺过程后,利用接触式测厚仪测量减薄后的红外探测器芯片高度及TTV,保证减薄后的衬底层厚度在50-70μm之间,同时TTV控制在3μm以下。
7.根据权利要求5所述的一种完全去除衬底的超晶格红外探测器制备方法,其特征在于:ICP干法刻蚀采用Cl2、BCl3和Ar的混合气体作为刻蚀气体,设置ICP功率、RF功率、腔压和Table温度,实现GaSb衬底层与蚀刻停止层出于设定范围的蚀刻选择比。
CN202410249117.7A 2024-03-05 2024-03-05 一种完全去除衬底的超晶格红外探测器制备方法 Active CN117855339B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202410249117.7A CN117855339B (zh) 2024-03-05 2024-03-05 一种完全去除衬底的超晶格红外探测器制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202410249117.7A CN117855339B (zh) 2024-03-05 2024-03-05 一种完全去除衬底的超晶格红外探测器制备方法

Publications (2)

Publication Number Publication Date
CN117855339A true CN117855339A (zh) 2024-04-09
CN117855339B CN117855339B (zh) 2024-05-14

Family

ID=90540345

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202410249117.7A Active CN117855339B (zh) 2024-03-05 2024-03-05 一种完全去除衬底的超晶格红外探测器制备方法

Country Status (1)

Country Link
CN (1) CN117855339B (zh)

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5518934A (en) * 1994-07-21 1996-05-21 Trustees Of Princeton University Method of fabricating multiwavelength infrared focal plane array detector
EP1635383A2 (en) * 2004-09-09 2006-03-15 Sharp Kabushiki Kaisha Compound semiconductor device epitaxial growth substrate, semiconductor device, and manufacturing method thereof
JP2006173261A (ja) * 2004-12-14 2006-06-29 Seiko Epson Corp 光電子集積素子及びその製造方法
CN101816072A (zh) * 2007-10-04 2010-08-25 佳能株式会社 用于制造发光器件的方法
US20110079869A1 (en) * 2009-10-02 2011-04-07 Stmicroelectronics S.R.L. Multiplexed output two terminal photodiode array for imaging applications and related fabrication process
CN102280456A (zh) * 2011-05-11 2011-12-14 北京大学 一种红外焦平面阵列探测器集成结构及制作方法
CN102569521A (zh) * 2012-02-02 2012-07-11 中国科学院半导体研究所 钝化InAs/GaSb二类超晶格红外探测器制作方法
CN103887360A (zh) * 2014-04-16 2014-06-25 中国科学院半导体研究所 InAs/GaSb超晶格红外光电探测器及其制备方法
CN103887371A (zh) * 2014-03-24 2014-06-25 北京工业大学 一种InP基面阵器件均匀刻蚀的工艺方法
CN104218119A (zh) * 2013-05-31 2014-12-17 住友电气工业株式会社 半导体元件及其制造方法
CN105161551A (zh) * 2015-08-14 2015-12-16 哈尔滨工业大学 一种可以降低InAs/GaSb超晶格长波红外探测器暗电流的表面钝化方法
CN108231926A (zh) * 2016-12-15 2018-06-29 中国科学院苏州纳米技术与纳米仿生研究所 一种红外探测器及其制备方法
JP2020017672A (ja) * 2018-07-26 2020-01-30 富士通株式会社 赤外線検出器、これを用いた撮像装置、及び赤外線検出器の製造方法
CN112117345A (zh) * 2020-09-25 2020-12-22 中国科学院半导体研究所 一种衍射环结构ii类超晶格红外探测器及其制备方法
CN112864015A (zh) * 2021-01-27 2021-05-28 浙江集迈科微电子有限公司 GaN器件及制备方法

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5518934A (en) * 1994-07-21 1996-05-21 Trustees Of Princeton University Method of fabricating multiwavelength infrared focal plane array detector
EP1635383A2 (en) * 2004-09-09 2006-03-15 Sharp Kabushiki Kaisha Compound semiconductor device epitaxial growth substrate, semiconductor device, and manufacturing method thereof
JP2006173261A (ja) * 2004-12-14 2006-06-29 Seiko Epson Corp 光電子集積素子及びその製造方法
CN101816072A (zh) * 2007-10-04 2010-08-25 佳能株式会社 用于制造发光器件的方法
US20110079869A1 (en) * 2009-10-02 2011-04-07 Stmicroelectronics S.R.L. Multiplexed output two terminal photodiode array for imaging applications and related fabrication process
CN102280456A (zh) * 2011-05-11 2011-12-14 北京大学 一种红外焦平面阵列探测器集成结构及制作方法
CN102569521A (zh) * 2012-02-02 2012-07-11 中国科学院半导体研究所 钝化InAs/GaSb二类超晶格红外探测器制作方法
CN104218119A (zh) * 2013-05-31 2014-12-17 住友电气工业株式会社 半导体元件及其制造方法
CN103887371A (zh) * 2014-03-24 2014-06-25 北京工业大学 一种InP基面阵器件均匀刻蚀的工艺方法
CN103887360A (zh) * 2014-04-16 2014-06-25 中国科学院半导体研究所 InAs/GaSb超晶格红外光电探测器及其制备方法
CN105161551A (zh) * 2015-08-14 2015-12-16 哈尔滨工业大学 一种可以降低InAs/GaSb超晶格长波红外探测器暗电流的表面钝化方法
CN108231926A (zh) * 2016-12-15 2018-06-29 中国科学院苏州纳米技术与纳米仿生研究所 一种红外探测器及其制备方法
JP2020017672A (ja) * 2018-07-26 2020-01-30 富士通株式会社 赤外線検出器、これを用いた撮像装置、及び赤外線検出器の製造方法
CN112117345A (zh) * 2020-09-25 2020-12-22 中国科学院半导体研究所 一种衍射环结构ii类超晶格红外探测器及其制备方法
CN112864015A (zh) * 2021-01-27 2021-05-28 浙江集迈科微电子有限公司 GaN器件及制备方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
RAZEGHI, M: "Quantum sensing using Type II InAS/GaSb superlattice for infrared detection", MICROELECTRONICS JOURNAL, vol. 34, no. 5, 1 May 2003 (2003-05-01), pages 405 - 410, XP004429896, DOI: 10.1016/S0026-2692(03)00035-1 *
周朋;温涛;邢伟荣;刘铭;: "nBn型InAsSb探测器的材料及器件研究", 红外, vol. 40, no. 11, 25 November 2019 (2019-11-25), pages 9 - 14 *
温涛: "InAs/GaSb Ⅱ类超晶格长波红外焦平面探测器研究", 红外, vol. 42, no. 5, 31 May 2021 (2021-05-31), pages 1 - 6 *

Also Published As

Publication number Publication date
CN117855339B (zh) 2024-05-14

Similar Documents

Publication Publication Date Title
US11335725B2 (en) High efficiency wide spectrum sensor
US8865507B2 (en) Integrated visible and infrared imager devices and associated methods
US9076702B2 (en) Frontside-illuminated barrier infrared photodetector device and methods of fabricating the same
US10008627B2 (en) Photovoltaic cell and photovoltaic cell manufacturing method
US7977637B1 (en) Honeycomb infrared detector
US20130168792A1 (en) Three Dimensional Architecture Semiconductor Devices and Associated Methods
US7001794B2 (en) Focal plane arrays in type II-superlattices
US8946839B1 (en) Reduced volume infrared detector
JP2012191130A (ja) 受光デバイス、半導体エピタキシャルウエハ、これらの製造方法、および検出装置
Malinowski et al. 10 µm pixel-to-pixel pitch hybrid backside illuminated AlGaN-on-Si imagers for solar blind EUV radiation detection
JP2016066682A (ja) 赤外線受光装置、半導体受光素子
CN117855339B (zh) 一种完全去除衬底的超晶格红外探测器制备方法
CN114582907A (zh) 基于多层石墨烯/半导体的辐射探测器阵列及其制备方法
Wang et al. Review of quantum dot-in-a-well infrared photodetectors and prospect of new structures
TW202209654A (zh) 影像感測器及形成影像感測器之方法及半導體元件
CN116544315A (zh) 一种蓝宝石衬底分子束外延红外探测器材料制备方法
CN110690235A (zh) 一种探测器阵列芯片及其制备方法
WO2013056249A1 (en) Three dimensional architecture semiconductor devices and associated methods
CN114597226B (zh) 一种基于锗p-i-n光电二极管的图像传感器的制造方法
CN217158193U (zh) 一种图像传感器
CN217158211U (zh) 一种基于锗p-i-n光电二极管的图像传感器
CN217158212U (zh) 一种基于锗p-i-n光电二极管的图像传感器
CN217158210U (zh) 一种基于锗p-i-n光电二极管制造的图像传感器
CN110265492B (zh) 一种同时模式双波段碲镉汞探测器
CN114709233A (zh) 一种将锗p-i-n光电二极管集成到图像传感器结构中的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant