CN117836028A - 借助推送喷射的液滴输送装置 - Google Patents

借助推送喷射的液滴输送装置 Download PDF

Info

Publication number
CN117836028A
CN117836028A CN202280056993.7A CN202280056993A CN117836028A CN 117836028 A CN117836028 A CN 117836028A CN 202280056993 A CN202280056993 A CN 202280056993A CN 117836028 A CN117836028 A CN 117836028A
Authority
CN
China
Prior art keywords
mesh
membrane
delivery device
droplet delivery
vibrating member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202280056993.7A
Other languages
English (en)
Inventor
C·E·亨特
M·斯科金
J·米勒
J·萨拉扎
B·比奇
C·莫德林
M·卡佩珀
李建强
李成杰
王世波
李肇平
G·拉普
J·S·克莱门茨
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pneuma Respiratory Inc
Original Assignee
Pneuma Respiratory Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pneuma Respiratory Inc filed Critical Pneuma Respiratory Inc
Priority claimed from PCT/US2022/034552 external-priority patent/WO2022271848A1/en
Publication of CN117836028A publication Critical patent/CN117836028A/zh
Pending legal-status Critical Current

Links

Landscapes

  • Special Spraying Apparatus (AREA)

Abstract

本发明涉及一种液滴输送装置,所述液滴输送装置包括壳体、流体贮器和喷射器支架,所述壳体具有来自鼻装置的衔口端口或出口以用于释放液滴,所述喷射器支架具有膜,所述膜被定位在具有多个开口的网状物与联接到诸如超声换能器的电子换能器的振动构件之间。换能器使振动构件振动,这促使膜推送由贮器供应的流体通过网状物,以在通过出口释放的喷射流中产生液滴。

Description

借助推送喷射的液滴输送装置
相关申请的交叉引用
本申请要求享有于2021年11月18日提交的美国临时专利申请No.63/280,643、于2021年10月16日提交的美国临时专利申请No.63/256,546、于2021年10月15日提交的美国临时专利申请No.63/256,245以及于2021年6月22日提交的美国临时专利申请No.63/213,634的优先权的权益,所有这些文献通过引用整体并入本文。
技术领域
本公开涉及具有喷射器机构的液滴输送装置,并且更具体地,涉及用于输送被吸入口腔、喉咙、鼻子和/或肺部中的流体的液滴输送装置。
背景技术
使用液滴生成装置将物质输送到呼吸系统是备受人们关注的领域。一个主要的挑战是提供一种用于输送准确的、一致的和可验证的量的物质的装置,其中液滴大小适合于将物质成功地输送到呼吸系统的目标区域。
当前,大多数的吸入器类型的系统(例如,定量吸入器(MDI)、加压定量吸入器(p-MDI)或气动和超声波驱动装置)通常产生具有较高速率和较宽液滴尺寸范围的液滴,其包括具有较高动量和动能的较大液滴。具有较大尺寸分布和较高动量的液滴羽流不会到达呼吸系统中的目标区域,而是遍布肺部通路、口腔和喉咙沉积。由于许多原因,这种非靶向的沉积会是不期望的,包括不适当的剂量和不希望的副作用。
由当前的液滴输送系统生成的液滴羽流,由于其较高的喷射速率和携带推进剂的物质的快速膨胀,也会导致局部冷却以及随后出现的物质到装置表面上的冷凝、沉积和结晶。由所沉积的物质残留物对装置表面的阻塞也是有问题的。
此外,用于输送尼古丁的传统液滴输送装置(包括笔式电子烟和类似物)典型地需要将吸入的流体加热到对正雾化的液体产生负面影响的温度。具体地,正如在新闻和文献中已经记载的那样,这种加热水平可以产生不期望的有毒副产物。
因此,需要一种改进的液滴输送装置,所述液滴输送装置输送具有合适尺寸范围的液滴,避免表面流体沉积和孔隙堵塞,避免通过加热产生不期望的化学副产物,并且输送的量是一致的和可重复的。
发明内容
在推送模式发明的一个实施例中,一种“推送模式”液滴输送装置不包括会导致不期望的副产物的加热要求,并且包括:容器组件,所述容器组件具有衔口端口;贮器,所述贮器被设置在所述容器组件内或与所述容器组件流体连通以供应一定体积的流体;喷射器支架,所述喷射器支架与所述贮器流体连通,所述喷射器支架包括网状物,所述网状物具有可操作地联接到电子换能器的膜,所述膜介于所述换能器与所述网状物之间,其中,所述网状物包括穿过所述网状物的厚度形成的多个开口,并且其中,所述换能器被联接到电源并且可操作成使所述膜振荡并且生成通过所述网状物喷射的液滴流;以及在所述容器组件内的喷射通道,所述喷射通道被配置为将所述喷射的液滴流从所述网状物导引到所述出口。振动的膜“推送”液体通过网状物在本文中被称为“推送模式”喷射,并且在推送模式发明的实施例中的装置可以被称为推送模式装置。
在推送模式发明的另一个实施例中,一种具有与网状物协作的膜的液滴输送装置还包括作为电子换能器的超声换能器,并且优选地包括含有压电材料的超声换能器。
在推送模式发明的又一个实施例中,一种具有与网状物协作的膜的液滴输送装置还包括具有流体贮器的所述容器组件。
在推送模式发明的又一个实施例中,一种具有与网状物协作的膜的液滴输送装置还包括喷射器支架,所述喷射器支架被配置为用于可释放地联接到所述容器组件,并且所述喷射器支架进一步被配置为用于可释放地联接到封壳系统,所述封壳系统包括电子换能器和电源。
在推送模式发明的又一个实施例中,一种具有与网状物协作的膜的液滴输送装置还包括磁体,所述磁体被配置为可释放地联接所述喷射器支架和所述封壳系统。
在推送模式发明的又一个实施例中,一种具有与网状物协作的膜的液滴输送装置还包括卡扣机构和/或磁体,所述卡扣机构和/或磁体被配置为可释放地联接所述喷射器支架和所述容器组件。
在推送模式发明的又一个实施例中,一种具有与网状物协作的膜的液滴输送装置还包括具有自密封配合机构的流体贮器,所述自密封配合机构被配置为联接到所述喷射器支架的流体释放配合机构。
在推送模式发明的又一个实施例中,一种具有与网状物协作的膜的液滴输送装置还包括流体释放配合机构,所述流体释放配合机构具有流体导管,所述流体导管被配置为用于插入所述自密封配合机构中。在优选实施例中,流体释放配合机构包括具有中空内部的尖刺状(spike-shaped)结构,所述中空内部被配置为在所述贮器与所述膜之间提供流体连通。
在推送模式发明的又一个实施例中,一种具有与网状物协作的膜的液滴输送装置被配置为使得所述膜不接触所述网状物并且将待作为液滴喷射的流体从所述液滴输送装置推送穿过所述网状物中的开口。
在推送模式发明的又一个实施例中,一种具有与网状物协作的膜的液滴输送装置还包括具有倾斜上表面的所述膜,所述倾斜上表面被配置为接触从所述贮器供应的流体。
在推送模式发明的又一个实施例中,一种具有与网状物协作的膜的液滴输送装置还包括振动构件,所述振动构件具有倾斜尖端(slanted tip),所述倾斜尖端接触与所述膜的倾斜上表面相对的下表面。
在推送模式发明的又一些实施例中,电子换能器含有压电材料,所述压电材料借助圈形(ring-shaped)斜切尖端(beveled tip)、杆状斜切尖端、杆状尖端或圈形非斜切尖端联接到振动构件。
在推送模式发明的又一个实施例中,一种具有与网状物协作的膜的液滴输送装置还包括网状物,所述网状物具有与所述膜的上表面平行配置的底表面。
在推送模式发明的又一个实施例中,一种具有与网状物协作的膜的液滴输送装置还包括所述网状物,所述网状物包括与所述膜的上表面非平行配置即以一角度倾斜配置的底表面。
在推送模式发明的又一个实施例中,一种具有与网状物协作的膜的液滴输送装置还包括所述液滴输送装置的穿过所述喷射通道和所述膜的中心轴线,并且其中,所述换能器被联接到振动构件,所述振动构件在从所述中心轴线偏离的位置处联接到所述膜。
在推送模式发明的又一个实施例中,一种具有与网状物协作的膜的液滴输送装置还包括在所述贮器中的流体,所述流体包含有非治疗性物质、尼古丁或大麻素中的至少一种。
在推送模式发明的又一个实施例中,一种具有与网状物协作的膜的液滴输送装置还包括在所述贮器中的流体,所述流体包含有治疗或预防疾病或损伤状况的治疗性物质。
在推送模式发明的又一个实施例中,一种具有与网状物协作的膜的液滴输送装置还包括层流元件,所述层流元件被定位在所述输送装置的衔口端口之前的容器组件的喷射通道中。在优选实施例中,所述层流元件包括多个蜂窝状孔口。在一些实施例中,层流元件包括限定所述多个蜂窝状孔口的刀片形壁。在又一些实施例中,所述多个蜂窝状孔口中的一个或多个包括三角棱柱形状、四角棱柱形状、五角棱柱形状、六角棱柱形状、七角棱柱形状或八角棱柱形状。
在推送模式发明的又一个实施例中,一种具有与网状物协作的膜的液滴输送装置还包括可操作地联接到所述电源的呼吸致动传感器,例如,压力传感器,其中,所述呼吸致动传感器被配置为在感测所述喷射通道内或所述液滴输送装置的与所述喷射通道流体连通的通路内的预定压力变化时激活所述电子换能器。
在推送模式发明的又一个实施例中,一种具有与网状物协作的膜的液滴输送装置还包括由钯镍、聚四氟乙烯和聚酰亚胺中的至少一种材料制成的所述网状物。
在推送模式发明的又一个实施例中,一种具有与网状物协作的膜的液滴输送装置还包括由聚醚酮、聚醚酰亚胺、聚偏氟乙烯、超高分子量聚乙烯、Ni、NiCo、Pd、Pt、NiPd和金属合金中的至少一种材料制成的所述网状物。
在其它实施例中,网状物可以由诸如硅、碳化硅、氮化铝或锗的单晶或多晶材料制成,其中使用诸如光蚀刻和各向同性和各向异性蚀刻的半导体工艺形成孔结构。借助光蚀刻和各向同性和/或各向异性蚀刻,可以在单晶晶片中以非常高的精度形成不同的孔形状。使用溅射,可以在表面上以不同的接触角沉积薄膜。在某些实施例中,在表面上形成的或沉积的薄层将比在通过电沉积所形成的金属网状物上或在通过激光烧蚀所形成的聚合物网状物上沉积的薄膜具有明显更好的粘附性。这种更好的粘附性是因为单晶晶片“切片”上的表面是原子级的光滑的,并且可以被蚀刻以产生精确的表面粗糙度,从而促进借助胶或其它材料的机械结合。碳化硅将由于其较高的强度和韧度而是优选的材料。在推送模式发明的实施例的网状物中使用半导体工艺从单晶晶片“切片”制造孔结构的一个重要优点在于,孔和表面的接触角将是精确的,而没有我们在使用由电沉积或激光烧蚀制成的网状物的传统喷射器板中所看到的变体。
在推送模式发明的又一个实施例中,一种具有与网状物协作的膜的液滴输送装置还包括由聚萘二甲酸乙二醇酯、聚乙烯亚胺和聚醚酮中的至少一种材料制成的所述膜。
在推送模式发明的又一个实施例中,一种具有与网状物协作的膜的液滴输送装置还包括由以下材料中的至少一种材料制成的所述膜,即,金属膜,金属化聚合物,螺纹聚合物,螺纹尼龙,用聚合物或金属涂覆的螺纹聚合物,用聚合物或金属涂覆的螺纹尼龙,螺纹金属,螺纹SiC,螺纹石墨复合材料,金属化石墨复合材料,用聚合物涂覆的石墨复合材料,用碳纤维填充的聚合物片材,用碳纤维填充的聚醚酮,用SiC纤维填充的聚合物片材,用陶瓷或金属纤维填充的聚合物片材,ULPA过滤介质,日东电工泰密克(Nitto-Denko Temic)级过滤介质,日东电工聚合物片材,与聚合物片材结合的螺纹聚合物,与聚醚酮或聚酰亚胺结合的尼龙编织物,与聚合物片材结合的石墨复合物,具有金属化涂层的聚合物纤维编织物,以及具有溅射Al或气相沉积Al的尼龙。
在推送模式发明的又一个实施例中,一种具有与网状物协作的膜的液滴输送装置还包括基于PZT的超声换能器,所述超声换能器被联接到振动构件,所述振动构件具有由5级钛合金、23级钛合金和约99%或更高纯度的钛中的至少一种制成的尖端部分。在某些实施例中,所述振动构件的尖端包括溅射在外层上的约99%或更高纯度的钛,所述钛提供平滑的尖端表面,所述平滑的尖端表面被配置为接触所述膜的底部下表面,所述底部下表面与最靠近所述网状物定位的所述膜的顶部外表面相对,从而帮助降低所述膜的磨损和提高所述膜(以及可能的所述振动构件的尖端部分)的寿命和操作一致性。
在推送模式发明的又一个实施例中,一种具有与网状物协作的膜的液滴输送装置还包括所述膜的外表面,所述膜的所述外表面与接触所述振动构件的所述膜的下表面相对,所述膜的所述外表面具有疏水性涂层。
在推送模式发明的又一个实施例中,一种具有与网状物协作的膜的液滴输送装置还包括所述膜的外表面,所述膜的所述外表面与接触所述振动构件的所述膜的下表面相对,所述膜的所述外表面具有亲水性涂层。
在推送模式发明的又一个实施例中,一种具有与网状物协作的膜的液滴输送装置还包括在所述网状物的一个或多个表面上的亲水性涂层。
在推送模式发明的又一个实施例中,一种具有与网状物协作的膜的液滴输送装置还包括网状物,所述网状物包括在所述网状物的一个或多个表面上的疏水性涂层。
在推送模式发明的又一个实施例中,一种具有与网状物协作的膜的液滴输送装置还包括在所述网状物的第一表面上的疏水性涂层和在所述网状物的第二表面上的亲水性涂层。
在推送模式发明的又一个实施例中,一种具有与网状物协作的膜的液滴输送装置还包括具有超过55000次气溶胶生成激活次数的可操作使用寿命的所述膜,所述气溶胶生成激活次数是由所述换能器激活的气溶胶生成激活次数。
在推送模式发明的又一个实施例中,一种具有与网状物协作的膜的液滴输送装置还包括与所述贮器流体连通的至少一个超疏水性通气口,所述至少一个超疏水性通气口在储存期间用可移除的镀铝聚合物翼片(tab)覆盖。
在推送模式发明的又一个实施例中,一种具有与网状物协作的膜的液滴输送装置还包括可移除的镀铝聚合物翼片,所述可移除的镀铝聚合物翼片在储存期间被联接到与所述网状物相邻的所述膜的外表面。
在推送模式发明的又一个实施例中,一种具有与网状物协作的膜的液滴输送装置包括预组装步骤,所述预组装步骤移除包含铝和/或铝涂层的密封包装,所述密封包装容纳具有流体的所述贮器,优选地其中,所述贮器被包括在所述容器组件中,所述容器组件也被包装成用于储存在所述密封包装中。在一些实施例中,所述密封包装可以包括干燥的氮气、氩气或其它不含氧气的气体。
在本发明的各种实施例中,一种具有与网状物协作的膜的液滴输送装置可以用于嘴吸入或鼻吸入。衔口端口可以被设定尺寸和被设定形状,并且包含有更适于特定的嘴吸入或鼻吸入用途和目的的材料。
附图说明
推送模式发明将从以下由示例方式所给出的描述被更清楚地理解,其中:
图1A是根据本公开的实施例的液滴输送装置的主要部件的分解图。
图1B是根据本公开的实施例的液滴输送装置的主要部件的剖视图。
图2是根据本公开的被称为推送模式II的实施例的液滴输送装置的网状物的示意图,所述网状物被结合到不锈钢圈,所述不锈钢圈支撑弹性密封圈。
图3是根据本公开的被称为推送模式I的实施例的液滴输送装置的网状物的示意图,所述网状物由弹性密封圈以及内部和外部凸片(tablet)圈支撑。
图4示出根据本公开的一个实施例的液滴输送装置的喷射端口和衔口端口的某些尺寸的剖视图。
图5示出根据本公开的一个实施例的具有两件式筒的液滴输送装置的流体流动路径的剖视图。
图6A和图6B示出根据本公开的实施例的具有两件式筒的液滴输送装置的气流。
图7A和图7B示出本公开的实施例中的推送模式I液滴输送装置(利用图3所示的网状物支撑件)的主要部件的拆卸的透视图。
图8示出本公开的实施例中的推送模式I液滴输送装置(利用图3所示的网状物支撑件)的分解图。
图9示出包括本公开的实施例中的推送模式I液滴输送装置(利用图3所示的网状物支撑件)的网状物(22)的COC(环烯烃共聚物)圈的孤立的透视图。
图10示出本公开的实施例中的推送模式I液滴输送装置网状物悬置系统(对于图3而言冗余)的示意图。
图11示出本公开的实施例中的推送模式I液滴输送装置(利用图3所示的网状物支撑件)的下部喷射器支架的透视图,所述下部喷射器支架包括位于所述支架的每个窄侧上的通气口。
图12A和图12B示出本公开的实施例中的推送模式II液滴输送装置(利用图2所示的网状物支撑件)的主要部件的拆卸的透视图。
图13示出本公开的实施例中的推送模式II液滴输送装置(利用图2所示的网状物支撑件)的分解图。
图14示出本公开的实施例中的推送模式II液滴输送装置网状物悬置系统(也如图2所示)的示意图。
图15示出本公开的实施例中的推送模式II液滴输送装置(利用图2所示的网状物支撑件)的下部喷射器支架的透视图,所述下部喷射器支架包括位于所述支架的每个宽侧上的通气口。
图16示出本公开的实施例中的推送模式II液滴输送装置(利用图2所示的网状物支撑件)的下部容器。
图17示出本公开的实施例中的推送模式I液滴输送装置(利用图3所示的网状物支撑件)的下部容器。
图18示出根据本公开的一个实施例的液滴输送装置的用于振动构件的杆尖端设计的透视图。
图19示出根据本公开的一个实施例的液滴输送装置的用于振动构件的圈尖端设计的透视图。
图20示出根据本公开的一个实施例的液滴输送装置中的、具有长振动构件的单件式筒设计的剖视图。
图21A和图21B示出根据本公开的一个实施例的液滴输送装置中的、具有短振动构件的单件式筒设计的剖视图。
图22A和图22B示出根据本公开的一个实施例的液滴输送装置中的、具有长振动构件的单件式筒可替代设计的剖视图。
图23A和图23B示出根据本公开的一个实施例的液滴输送装置中的、具有短振动构件的单件式筒可替代设计的剖视图。
图24示出根据本公开的一个实施例的液滴输送装置中的两件式筒设计的剖视图和分离视图。
图25示出根据本公开的一个实施例的、适用于药物用途(但在其它实施例中可以是其它用途)且利用膜驱动雾化(即,“推送模式功能”)的液滴输送装置的透视图。
图26示出根据本公开的一个实施例的、适用于药物用途(但在其它实施例中可以是其它用途)且利用膜驱动雾化(即,“推送模式功能”)的液滴输送装置的分解图。
图27A至图27D示出根据本公开的一个实施例的、适用于药物用途(但在其它实施例中可以是其它用途)且利用膜驱动雾化(即,“推送模式功能”)的液滴输送装置的主要部件的视图。
图28A至图28D示出根据本公开的一个实施例的、适用于药物用途(但在其它实施例中可以是其它用途)且利用膜驱动雾化(即,“推送模式功能”)的液滴输送装置的主要部件的组装图。
图29示出根据本公开的一个实施例的、适用于药物用途(但在其它实施例中可以是其它用途)且利用膜驱动雾化(即,“推送模式功能”)的液滴输送装置的帽的分解图。
图30A和图30B分别示出根据本公开的一个实施例的、适用于药物用途(但在其它实施例中可以是其它用途)且利用膜驱动雾化(即,“推送模式功能”)的液滴输送装置的流体筒的前剖视图和侧剖视图。
图31示出根据本公开的一个实施例的、适用于药物用途(但在其它实施例中可以是其它用途)且利用膜驱动雾化(即,“推送模式功能”)的液滴输送装置的振动构件封壳的剖视图。
图32示出根据本公开的一个实施例的、适用于药物用途(但在其它实施例中可以是其它用途)且利用网状物悬置系统的喷射器支架的剖视图,所述网状物悬置系统遵循图14所示的网状物支撑件的结构和功能。
图33示出根据本公开的一个实施例的、适用于药物用途(但在其它实施例中可以是其它用途)且利用网状物悬置系统的喷射器支架的剖视图,所述网状物悬置系统遵循图10所示的网状物支撑件的结构和功能。
图34A和图34B分别示出根据本公开的一个实施例的、适用于药物用途(但在其它实施例中可以是其它用途)且利用膜驱动雾化(即,“推送模式功能”)的液滴输送装置的侧剖视图和前剖视图,所述液滴输送装置具有两个加热元件,所述两个加热元件在喷射器支架任一侧上被定位在振动构件的下方。
图35A至图35C示出用于根据本公开的一个实施例的液滴输送装置的气流路径的剖视图,所述液滴输送装置在单件式筒设计下具有底部加热元件。
图36示出根据本公开的一个实施例的液滴输送装置的剖视图,所述液滴输送装置在单件式筒设计下具有底部加热元件和扬声器。
图37示出用于根据本公开的一个实施例的液滴输送装置的气流路径的剖视图,所述液滴输送装置在两件式筒设计下具有内部加热元件。
图38示出用于根据本公开的一个实施例的液滴输送装置的气流路径的剖视图,所述液滴输送装置在单件式筒设计下具有内部加热元件。
图39示出用于根据本公开的一个实施例的液滴输送装置的气流路径的剖视图,所述液滴输送装置在单件式筒设计下具有外部加热元件。
图40示出根据本公开的一个实施例的具有加热气流的液滴输送装置的剖视图,所述液滴输送装置包括温度传感器,所述温度传感器与闭环系统协同使用以保持气流温度恒定并且还避免过热和使用者受伤。
图41A和图41B示出根据本公开的一个实施例的液滴输送装置的视图,所述液滴输送装置具有经由滑动套管和相关联的通气口可调节的空气阻力。
图42示出根据本公开的一个实施例的、适用于鼻吸入且利用膜驱动雾化(即,“推送模式功能”)的液滴输送装置的细长且狭窄的吸入端口。
图43示出根据本公开的一个实施例的、适用于鼻吸入且利用膜驱动雾化(即,“推送模式功能”)的液滴输送装置的较短版本的吸入端口。
图44A和图44B示出根据本公开的一个实施例的、适用于鼻吸入且利用膜驱动雾化(即,“推送模式功能”)的液滴输送装置的移除帽。
图45示出根据本公开的一个实施例的利用膜驱动雾化(即,“推送模式功能”)的液滴输送装置中使用的网状物,所述网状物具有附接板,所述附接板具有用于供液体进入的多个开口。
图46示出根据本公开的一个实施例的利用膜驱动雾化(即,“推送模式功能”)的液滴输送装置中的电容筒的剖视图,所述电容筒具有两个平行板,所述两个平行板横过液体放置到网状物膜区域的旁边。
图47A至图47C示出根据本公开的一个实施例的利用膜驱动雾化(即,“推送模式功能”)的液滴输送装置中的矩形振动构件尖端的透视图(图47A)、前平面图(图47B)和侧平面图(图47C)。
图48A至图48C示出根据本公开的一个实施例的利用膜驱动雾化(即,“推送模式功能”)的液滴输送装置中的本征型(eigenmode)振动构件尖端在没有狭槽或调谐的情况下的透视图(图48A)、透视振动幅度图(图48B)和俯视振动幅度平面图(图48C)以及由此产生的振动幅度图。
图49A至图49C示出根据本公开的一个实施例的利用膜驱动雾化(即,“推送模式功能”)的液滴输送装置中的本征型振动构件尖端在具有狭槽的情况下的透视图(图49A)、透视振动幅度图(图49B)和俯视振动幅度平面图(图49C)以及由此产生的振动幅度图。
图50示出根据本公开的一个实施例的利用膜驱动雾化(即,“推送模式功能”)的液滴输送装置中的异形(contoured)振动构件。
图51示出根据本公开的一个实施例的利用膜驱动雾化(即,“推送模式功能”)的液滴输送装置中的柱塞振动构件。
图52示出根据本公开的一个实施例的利用膜驱动雾化(即,“推送模式功能”)的液滴输送装置中的传感器载体振动构件。
图53A和图53B示出根据本公开的一个实施例的利用膜驱动雾化(即,“推送模式功能”)的液滴输送装置中的线轴振动构件以及由此产生的振动幅度图。
图54A和图54B示出根据本公开的一个实施例的利用膜驱动雾化(即,“推送模式功能”)的液滴输送装置中的优化的圆柱形振动构件以及由此产生的振动幅度图。
图55A和图55B示出根据本公开的一个实施例的利用膜驱动雾化(即,“推送模式功能”)的液滴输送装置中的未优化的带槽圆柱形振动构件以及由此产生的振动幅度图。
图56A和图56B示出根据本公开的一个实施例的利用膜驱动雾化(即,“推送模式功能”)的液滴输送装置中的优化的棒振动构件以及由此产生的振动幅度图。
图57A和图57B示出根据本公开的一个实施例的利用膜驱动雾化(即,“推送模式功能”)的液滴输送装置中的未优化的棒振动构件以及由此产生的振动幅度图。
图58A和图58B示出根据本公开的一个实施例的利用膜驱动雾化(即,“推送模式功能”)的液滴输送装置中的助推器(booster)振动构件的透视图(图58A)和剖视振动幅度图(58B)以及由此产生的振动幅度图。
图59A至图59C示出根据本公开的实施例的液滴输送装置的与换能器联接的可替代振动构件的透视图(图59A)、俯视平面图(图59B)和前平面图(图59C)。
图60A至图60C示出根据本公开的实施例的液滴输送装置的与换能器联接的可替代振动构件的透视图(图60A)、俯视平面图(图60C)和前平面图(图60C)。
图61A至图61C示出根据本公开的实施例的液滴输送装置的与换能器联接的可替代振动构件的透视图(图61A)、俯视平面图(图61B)和前平面图(图61C)。
图62A至图62C示出根据本公开的实施例的液滴输送装置的与换能器联接的可替代振动构件的透视图(图62A)、俯视平面图(图62B)和前平面图(图62C)。
图63A至图63C示出根据本公开的实施例的液滴输送装置的与换能器联接的可替代振动构件的透视图(图63A)、俯视平面图(图63B)和前平面图(图63C)。
图64A至图64C示出根据本公开的实施例的液滴输送装置的与换能器联接的可替代振动构件的透视图(图64A)、俯视平面图(图64B)和前平面图(图64C)。
图65A至图65D示出根据本公开的实施例的液滴输送装置的与换能器联接的可替代振动构件的透视图(图65A)、俯视平面图(图65B)、前平面图(图65C)和沿着图65B的线A-A截取的剖视图(图65D)。
图66A至图66C示出根据本公开的实施例的液滴输送装置的与换能器联接的可替代振动构件的透视图(图66A)、俯视平面图(图66%)和前平面图(图66C)。
图67A至图67C示出根据本公开的实施例的液滴输送装置的与换能器联接的可替代振动构件的透视图(图67A)、俯视平面图(图67%)和前平面图(图67C)。
图68A至图68D示出根据本公开的实施例的液滴输送装置的与换能器联接的可替代振动构件的透视图(图68A)、俯视平面图(图66B)、前平面图(图66C)和侧平面图(66D)。
图69A和图69B示出根据本公开的实施例的液滴输送装置的与换能器联接的可替代振动构件的透视图(图69A)和侧平面图(图69B)。
图70A至图70C示出根据本公开的实施例的液滴输送装置的与换能器联接的可替代振动构件的透视图(图70A)、俯视平面图(图70B)和前平面图(图70C)。
图71A至图71C示出根据本公开的实施例的液滴输送装置的与换能器联接的可替代振动构件的透视图(图71A)、俯视平面图(图71%)和前平面图(图71C)。
图72A至图72C示出根据本公开的实施例的液滴输送装置的与换能器联接的可替代振动构件的透视图(图72A)、俯视平面图(图72B)和前平面图(图72C)。
图73A至图73C示出根据本公开的实施例的液滴输送装置的与换能器联接的可替代振动构件的透视图(图73A)、俯视平面图(图73B)和前平面图(图73C)。
图74A至图74C示出根据本公开的实施例的液滴输送装置的与换能器联接的可替代振动构件的透视图(图74A)、俯视平面图(图74B)和前平面图(图74C)。
图75A至图75C示出根据本公开的实施例的液滴输送装置的与换能器联接的可替代振动构件的透视图(图75A)、俯视平面图(图75B)和前平面图(图75C)。
图76A至图76C示出根据本公开的实施例的液滴输送装置的与换能器联接的可替代振动构件的透视图(图76A)、俯视平面图(图76B)和前平面图(图76C)。
图77A至图77C示出根据本公开的实施例的液滴输送装置的与换能器联接的可替代振动构件的透视图(图77A)、俯视平面图(图77B)、前平面图(图77C)和侧平面图(图77D)。
图78A至图78C示出根据本公开的实施例的液滴输送装置的与换能器联接的可替代振动构件的透视图(图78A)、俯视平面图(图78B)和前平面图(图78C)。
图79A至图79C示出根据本公开的实施例的液滴输送装置的与换能器联接的可替代振动构件的透视图(图79A)、俯视平面图(图79B)和前平面图(图79C)。
图80A至图80D示出根据本公开的实施例的液滴输送装置的与换能器联接的可替代振动构件的透视图(图80A)、俯视平面图(图80B)、前平面图(图80C)和侧平面图(图80D)。
图81A至图81D示出根据本公开的实施例的液滴输送装置的与换能器联接的可替代振动构件的透视图(图81A)、俯视平面图(图81B)、前平面图(图81C)和侧平面图(图81D)。
图82A至图82D示出根据本公开的实施例的液滴输送装置的与换能器联接的可替代振动构件的透视图(图82A)、俯视平面图(图82B)、前平面图(图82C)和侧平面图(图82D)。
图83A至图83C示出根据本公开的实施例的液滴输送装置的与换能器联接的可替代振动构件的透视图(图83A)、俯视平面图(图83B)和前平面图(图83C)。
图84A至图84Q示出根据本公开的实施例的液滴输送装置的容器组件的层流元件的可替代结构。
图85A示出根据本公开的实施例的液滴输送装置中的包括振动构件尖端部分的超声换能器。
图85B是图85A的超声换能器的局部剖视俯视图,所述超声换能器联接到根据本公开的实施例的液滴输送装置中的膜。
图85C和85D是根据本公开的可替代实施例的液滴输送装置中的图85B的超声换能器和膜的示意图,其中网状物包括图85C中的第一固定机构和图85D中的第二固定机构。
图86A是根据本公开的实施例的液滴输送装置中的与膜联接的超声换能器的局部剖视俯视图。
图86B和图86C是根据本公开的可替代实施例的液滴输送装置中的图86A的超声换能器和膜的示意图,其中网状物包括图86B中的第一固定机构和图86C中的第二固定机构。
图87是根据本公开的实施例的包括超声换能器的液滴输送装置的局部剖视俯视图,所述超声换能器具有从所述液滴输送装置的穿过倾斜膜和网状物的中心轴线偏移的振动构件尖端部分。
图88A是根据本公开的实施例的液滴输送装置中的超声换能器的局部剖视俯视图,所述超声换能器具有与斜面网状物联接的非斜切圈形振动构件尖端部分。
图88B是根据本公开的实施例的液滴输送装置中的图88A的超声换能器和膜的示意图。
图89A是根据本公开的实施例的液滴输送装置中的超声换能器的局部剖视俯视图,所述超声换能器具有与倾斜膜联接的斜切圈形振动构件尖端部分。
图89B示出与图89A所示的超声换能器和网状物协作的倾斜膜。
图89C和89D是根据本公开的可替代实施例的液滴输送装置中的图89A的超声换能器和膜的示意图,其中网状物包括图89C中的第一固定机构和图89D中的第二固定机构。
图89E示出具有图89A的斜切圈形振动构件尖端部分的超声换能器。
图90A是根据本公开的实施例的液滴输送装置中的超声换能器的局部剖视俯视图,所述超声换能器具有与膜联接且与网状物碰触的非斜切圈形振动构件尖端部分。
图90B是根据本公开的实施例的液滴输送装置中的图90A的超声换能器和膜的示意图。该实施例可以与推送模式I或II的网状物载体一起使用。
图91A是根据本公开的实施例的液滴输送装置中的超声换能器的局部剖视俯视图,所述超声换能器具有与倾斜膜联接的斜切圈形振动构件尖端部分,其中在网状物与膜之间有空间。
图91B是根据本公开的实施例的液滴输送装置中的图91A的超声换能器和膜的示意图。该实施例可以与推送模式I或II的网状物载体一起使用。
图92是根据本公开的实施例的液滴输送装置中的超声换能器的示意图,所述超声换能器具有与膜联接的非斜切圈形振动构件尖端部分,其中在网状物与膜之间有空间。该实施例可以与推送模式I或II的网状物载体一起使用。
图93A和图93B是根据本公开的实施例的液滴输送装置的超声换能器的示意图,其中示出具有较宽且平坦的振动构件尖端部分的超声换能器连同膜和网状物一起的孤立图(图93A)和沿着图93A的线A-A截取的剖视图(图93B)。
图94A至图94D是根据本公开的实施例的液滴输送装置的示意图(图94),其中示出具有较宽的圈形尖端部分的超声换能器连同膜和网状物一起的、沿着图94A的线B-B截取的剖视孤立图(图94B)、孤立图(图94C)和沿着图94C的线A-A截取的剖视图(图94D)。
图95是本公开的实施例中的镀铝聚合物翼片的示意性框图。
图96A至图96D是根据本公开的实施例的液滴输送装置的膜的透视图。
图97A和图97B示出根据本公开的实施例的液滴输送装置中的聚合物网状物的剖视图(图97A)和放大图(图97B),所述聚合物网状物由不锈钢环相对于膜和换能器被支撑在升高位置中,所述换能器与具有尖端部分的振动构件联接。
图98A和图98B示出根据本公开的实施例的液滴输送装置中的聚合物网状物的剖视图(图98A)和放大图(图98B),所述聚合物网状物由不锈钢环相对于膜和换能器被支撑在降低位置中,所述换能器与具有尖端部分的振动构件联接。
图99A和图99B示出根据本公开的实施例的液滴输送装置中的聚合物网状物的剖视图(图99A)和放大图(图99B),所述聚合物网状物由第一不锈钢环相对于膜和换能器被支撑在升高位置中并且具有作为加强件的第二不锈钢环,所述第二不锈钢环例如通过用胶或粘合剂结合而被联接在第一环的顶部上,所述换能器与具有尖端部分的振动构件联接。
图100A和图100B示出根据本公开的实施例的液滴输送装置中的聚合物网状物的剖视图(图100A)和放大图(图100B),所述聚合物网状物由第一不锈钢环相对于膜和换能器被支撑在降低位置中并且具有作为加强件的第二不锈钢环,所述第二不锈钢环例如通过用胶或粘合剂结合而被联接在第一环下方,所述换能器与具有尖端部分的振动构件联接。
图101A至图101C示出根据本公开的实施例的液滴输送装置中的聚合物网状物相对于膜和换能器被支撑在升高位置中的剖视图(图101A)、相对于膜和换能器被支撑在降低位置中的剖视图(图101B)以及经由锯齿状支撑件被支撑的剖视图(图101C),所述锯齿状支撑件具有圈形支撑件的塑料元件(并且在没有金属环的情况下),所述换能器与振动构件联接。
图102A至图102C示出图101A的放大图(图102A)、图101B的放大图(图102B)和图101C的放大图(图102C)。
图103A和图103B示出根据本公开的实施例的液滴输送装置中的聚合物网状物和不锈钢毛细管板的剖视图(图103A)和放大图(图103B),所述不锈钢毛细管板在板中具有开口,并且所述板在覆盖振动构件尖端部分的膜与聚合物网状物之间处于聚合物网状物下方。
图103C是图103A和图103B所示的聚合物网状物的示意性俯视平面图。
图103D是图103A和图103B所示的不锈钢毛细管板的示意性俯视平面图。
图104示出根据本公开的实施例的液滴输送装置中的聚合物网状物和毛细管板的示意图,其中毛细管板由PEN材料制成,类似于覆盖振动构件的膜(其也由PEN材料制成),并且所述毛细管板还包括在毛细管板与网状物之间的间隔物(例如,金属、陶瓷或塑料)。
图105A和图105B示出根据本公开的实施例的液滴输送装置中的聚合物网状物的剖视图(图105A)和放大图(图105B),所述聚合物网状物具有塑料或硅酮圈形类型的支架(d),所述支架被联接到不锈钢环,所述不锈钢环被向下并且继而被向上朝向环的中心部分成形,所述环的中心部分相对于膜和换能器联接到聚合物网状物,所述换能器与具有尖端部分的振动构件联接。
图106A和图106B示出根据本公开的实施例的液滴输送装置中的聚合物网状物的剖视图(图106A)和放大图(图106B),所述聚合物网状物具有塑料或硅酮圈形类型的支架,所述支架被联接到环的中心部分,所述环的中心部分相对于膜和换能器联接到聚合物网状物,所述换能器与具有尖端部分的振动构件联接。
图107A至图107B示出根据本公开的实施例的液滴输送装置中的聚合物网状物的剖视图,所述聚合物网状物具有塑料或硅酮圈形类型的支架,所述支架被联接到双加强的不锈钢环(类似于图99和图100),其中,相对于膜和换能器,聚合物网状物通过进一步延伸顶部加强件而升高(图107A),聚合物网状物通过延伸顶部加强件而升高(图107B),聚合物通过延伸下方加强件而降低(图107C),聚合物通过进一步延伸下方加强件而降低(图107D),所述换能器与具有尖端部分的振动构件联接。
图108A至图108D示出图107A的放大图(图108A)、图107B的放大图(图108B)、图107C的放大图(图108C)和图107D的放大图(图108D)。
图109A至图109D示出根据本公开的实施例的液滴输送装置中的网状物中的晶体硅或碳化硅“晶片”型网状物的剖视图(图109A)、透视图(图109B)、俯视平面图(图109C)和沿着(图109C)的线C-C的截取的剖视放大图(图109D),所述网状物位于圈形结构的支撑件之间并且用半导体技术处理以提供平滑开口的精确制造,例如,假球形(图109D的放大剖视图,其旨在示出完全穿过网状物的开口)。
图110示出根据本公开的实施例的液滴输送装置中的网状物中的具有阱型开口的晶体硅或碳化硅“晶片”型网状物的剖视放大图,其中所述阱型开口在开始时穿过网状物的厚度较大,并且继而在终止或结束时在开口中具有较小的孔口(并且其相对于半导体技术工艺而言也可以是成角度的)。
图111A至图111C示出根据本公开的实施例的具有翅片的挡板和吸收器的第一端部的透视图(图111A)、具有翅片的挡板的相对的第二端部的透视图(图111B)以及具有网状物(其包括具有翅片的挡板)的喷射器板和液滴输送装置气道的局部剖视示意图。
图112是根据本公开的实施例的液滴输送装置的气流路径的流线速度场图解,所述液滴输送装置包括气流导引器但没有挡板。
图113是根据本公开的实施例的液滴输送装置的气流路径的流线速度场图解,所述液滴输送装置包括具有芯吸材料的挡板但没有气流导引器。
图114是根据本公开的实施例的液滴输送装置的气流路径的流线速度场图解,所述液滴输送装置包括具有芯吸材料的挡板并且还包括气流导引器。
具体实施方式
推送模式概述
推送模式已经被开发为一种降低风险的产品,用于输送(i)尼古丁、大麻素和其它非治疗性物质(本文中被描述为“BlueSky”的装置优选为与此类物质一起使用)以及(ii)治疗性和处方性药物产品(本文中被描述为“Norway”的装置优选为与此类产品一起使用)。推送模式装置被设计为向用户输送安全且可控的剂量。推送模式液滴输送装置10能够在室温下输送水溶液和非水溶液以及悬浮液。大分子制剂,无论是否为水溶性,也可以通过这项技术输送。针对加热的尼古丁和其它物质常见的有害化学副产物在推送模式装置中被消除,使该推送模式装置成为用于气溶胶输送的更为安全的选择。
推送模式利用振动构件1708和换能器26,所述振动构件1708和换能器26与膜25和网状物2协同工作以使流体901雾化,所述流体901被保持在贮器1200中并且使用各种方法(例如,芯吸材料、亲水性涂层、毛细管作用等)供应到网状物22。优选地,振动构件例如通过粘结(例如,粘合剂等)、焊接、胶合、物理连接(例如,支架和其它机械连接器)和类似方法被联接到换能器。换能器和振动构件与膜相互作用以推送流体通过网状物。如在各种实施例中所示的和描述的,在一些情况下,膜可以接触网状物,同时也“推送”流体通过网状物中的孔,并且在其它情况下,膜可以在不接触网状物的情况下被分离以推送液体通过网状物中的孔。换能器可以包括多种材料中的一种或多种(例如,PZT等)。在某些实施例中,换能器由无铅压电材料制成,以避免在意欲用于人类吸入的液滴输送装置中产生不需要的或有毒的材料。振动构件可以由多种材料中的一种或多种(如,钛等)制成。网状物可以是多种材料中的一种或多种(例如,钯镍、聚酰亚胺等)。在流体被推送通过网状物之后,液滴喷雾被形成,并且由夹带的空气通过衔口端口喷射。
该装置是可调谐的且精确的。该装置可以针对个人用户偏好或需求而被优化。气溶胶质量喷射和质量中值空气动力学直径(MMAD)可以经由网孔尺寸、网孔处理、膜设计、振动构件设计、气流、换能器功率的操纵等被调谐到期望的参数。该设计产生由具有高可呼吸分数的液滴构成的气溶胶,使得肺部可以最高效地吸收气溶胶。
振动构件和换能器两者均与筒分离并且由膜隔离。这不仅创造了更安全的产品,而且简化了可制造性。振动构件和换能器两者均是典型的昂贵部件。将这些部件保留在封壳系统中而非筒中降低了商品销售成本(COGS)。
元件编号表
提供了物质、特征和零件编号,用于方便参考本文在表1中提供的描述和数字:
表1:元素编号
“BlueSky”实施例
参照图1A和图1B,BlueSky推送模式装置10包括容器组件12、喷射器支架15和封壳系统17在内的主要部件。当前,BlueSky推送模式的两个实施例I和II已经被原型化和被测试。参照图2,在液滴输送装置10中包括的由不锈钢圈和弹性密封圈支撑的网状物在本文中被称为“推送模式II”。参照图3,在液滴输送装置10中包括的由上部网状物载体和下部网状物载体以及弹性密封圈支撑的网状物在本文中被称为“推送模式I”。
推送模式I和II实施例具有由锆钛酸铅(PZT)盘构成的换能器,所述锆钛酸铅(PZT)盘被结合到由钛合金制成的振动构件的底部。振动构件和换能器由封壳系统17中的塑料盖封装。喷射器支架15中的由聚萘二甲酸乙二醇酯(PEN)制成的膜将换能器和振动构件与从容器组件12中的贮器供应的流体隔离。膜可以被热成型为振动构件尖端的形状。该装置上的嵌入式系统由换能器、压力传感器和锂离子电池构成,所有换能器、压力传感器和锂离子电池全部都被连接在单板微控制器上。容纳嵌入式系统的铝制封壳包括按钮,所述按钮可以兼作指纹传感器以用于与受控物质一起使用。该装置通过USB-C充电端口充电。磁体用于将筒保持在封壳中。
实施例使用两部件的筒系统来防止流体在储存过程中接触网状物。这种设计在筒的一个零件即喷射器支架上包括两个尖刺,所述两个尖刺中的一个尖刺包含芯吸材料。筒的另一个零件即容器容纳流体贮器和两个隔膜。使用者将喷射器支架和容器推到一起,并且尖刺刺穿隔膜,为流体流到网状物创造了路径。在一个尖刺中的芯吸材料有助于将流体供应到网状物。另一个不包括芯吸材料的尖刺允许空气进入容器以用于压力均衡。用通气材料覆盖的通气口位于流体贮器的每一侧的顶部处,并且经由气流出口连接到开放的大气,以允许用于压力均衡。
参照图4,存在有具有25mm的长度的喷射端口42和具有10mm的长度的衔口端口。喷射端口的优选长度为0mm至50mm。优选的衔口端口的长度为0mm至50mm。图5示出在原型实施例中的通过尖刺28的流体900和通气部100的流动路径。图6A和图6B示出原型实施例的夹带空气路径。
BlueSky I推送模式
图7A和图7B分别示出推送模式I实施例的渲染概图和CAD概图。图7A和图7B中的概图从左到右示出容器组件12、喷射器支架15和封壳系统17。
图8提供了来自推送模式I实施例的部件的分解图。
参照图9,推送模式I实施例包括网状物载体,所述网状物载体包括两个COC圈1506、1508,所述两个COC圈经超声波地被焊接以保持网状物22和悬置垫片1512。如图10所示,COC圈将网状物和悬置垫片夹在中间。垫片被放置在上部喷射器支架与下部喷射器支架之间。
参照图11,在推送模式I实施例中,两个通气口位于下部喷射器支架1504的窄侧上。尖刺位于上部喷射器支架1502上。容纳流体贮器1200的容器包括三个COC件。两个隔膜1210被保持在中间容器件与下部容器件之间。容器圈被结合到上部容器件1206和中部容器件1208上,并且衔口1202卡扣到上部容器件1206上。
BlueSky II推送模式
图12A和图12B分别示出推送模式II实施例的渲染概图和图解概图。图12A和图12B中的概图从左到右示出容器组件12、喷射器支架15和封壳组件17。
图13示出推送模式II实施例的部件的分解图。
在推送模式II实施例中,不锈钢环载体1518被结合到网状物22。垫片1513在上部喷射器支架1502与下部喷射器支架1504之间被放置在网状物和网状物载体上方。图14示出推送模式II实施例的网状物载体1518和垫片1513。
如图15所示,两个通气口位于下部喷射器支架1504的宽侧上。尖刺位于上部喷射器支架1502上。
与推送模式I一样,容纳流体贮器的容器包括三个COC件。用于推送模式II实施例的下部容器比在推送模式I中的下部容器延伸得更远,其中管状部分延伸到上部喷射器支架中。
图16(推送模式II)和图17(推送模式I)示出每个实施例的下部容器的比较。由于不锈钢网状物载体比实施例I的COC载体薄,所以与实施例I相比网状物就位更低,因此有必要进行延伸。两个隔膜被保持在中间容器与下部容器之间。容器圈被结合到上部容器件和中部容器件上,并且衔口卡扣到上部容器件上。
BlueSky振动构件和膜
推送模式具有多个振动构件和膜设计。表2和表3分别包含已经被原型化和被测试的振动构件和膜设计的描述。参照图18和图19,当前,对于振动构件杆尖端和圈尖端而言,分别具有两个不同的尖端。
表2:振动构件的描述
表3:膜的描述
换能器在装置的致动过程中需要大量的电力。随着电力使用的增加,由印刷电路板组件(PCBA)产生的热量增加。通过PCBA中的若干设计特征,可以减轻热量的影响。四层的PCBA增强了抗干扰性和散热能力。PCBA还包含大量的铜箔,使其有利于散热。驱动换能器的MOSFET采用大电流封装,避免了在长期连续操作中因加热而造成的损坏。为了增加电压输出,自动变压器被悬置以使其与PCBA的其余部分绝缘。这些特征允许装置运行数天,而不必担心过热或受到电噪声的影响。
BlueSky寿命测试
原型BlueSky推送模式实施例I和II已经通过寿命测试。寿命测试包括在几天内以1秒的休息时间间隔重复给剂量三秒。质量喷射是在寿命测试之前和之后进行的。质量喷射被定义为由装置在一次三秒的给剂量内雾化的质量。表3列出了在寿命测试之前的质量喷射数据,并且表4列出了在寿命测试之后的数据。一个实施例的质量喷射在55000次给剂量之前和之后保持一致,并且可能超过预期。该实施例(即,具有H4和M11的II推送模式)具有不锈钢网状物载体。第二实施例(I推送模式)具有COC塑料网状物载体。由于由极端给剂量循环产生的热量,塑料网状物载体在测试过程中发生扭曲。这导致寿命测试之后的质量喷射减小。然而,处于II推送模式中的不锈钢载体没有因热量而扭曲,这允许其在测试之后保持一致。在实施例I和实施例II两者中,通过四层的PCBA、大于标准量的铜箔和大电流MOSFET驱动器来改善热管理。测试的条件并不代表正常的消费者使用。在不发生极端加热的正常日常使用期间,实施例I和II两者均示出一致的质量喷射。表2和表3分别提供了参考的振动构件和膜的细节。
表4:在寿命测试之前的用于推送模式装置的质量喷射数据
表5:在寿命测试之后的用于推送模式装置的质量喷射数据
推送模式与现有技术的圈形模式的比较
如在随后描述的实施例1中所阐述的,对BlueSky I和II推送模式的原型进行测试,并且将其与被称为BlueSky圈形模式的现有技术(例如,在WO 2020/264501中由用于该技术的相应测试数据所描述的和所示出的)进行比较,提供如下:
示例1
在每个装置中都对具有2.0μm的孔径尺寸的喷射器进行测试。测试的喷射器中的一半具有亲水性入口和疏水性出口(R)。测试的喷射器中的另一半具有疏水性入口和出口(W)。使用TSIMini-MOUDI Model 135和Thermo Fisher Vanquish UHPLC执行测试。用BlueSky I和II测试了八种不同的设计组合(振动构件、膜、喷射器处理)。基于测试结果,推送模式I看似是用于推送模式的优选实施例。与实施例II对比,推送模式I的设计引起更一致的质量喷射和MMAD值。八种设计组合中的七种引起可比较的质量喷射和MMAD。一个异常值(具有M12的H5和R处理的喷射器)具有明显高于其它喷射器的质量喷射。在将I推送模式与BlueSky圈形模式进行比较后,I推送模式提供了更高且更一致的质量喷射和更低的MMAD。表6、表7和表8分别提供了从圈形模式、I推送模式和II推送模式获得的数据。这些表中的数据包括在mini-MOUDI的阶段1和阶段2中的喷射的尼古丁微克数、MMAD、几何标准偏差(GSD)以及喷射的溶液的百分比。在表7中发现,用I推送模式测试的所有振动构件和膜组合在两种喷射器处理中都表现良好。如在表8中可见,在II推送模式下的最佳性能组合是具有M11的H4和具有M12的H5,两者均使用W处理的喷射器。
表6:圈形模式Mini-MOUDI结果:
在表7中示出从推送模式I装置获得的结果。表2和表3分别提供了参考的振动构件和膜的细节。
表7:推送模式I Mini-MOUDI结果:
在表8中示出从推送模式II装置获得的结果。表2和表3分别提供了参考的振动构件和膜的细节。
表8:推送模式II Mini-MOUDI结果:
基于测试的结果,当与II推送模式相比时,I推送模式是优选的实施例。
BlueSky单件式筒和低成本的商品销售设计
推送模式的另一个实施例将两件式筒系统合并到单一的部件中。一件式的筒简化了用于用户的设置,并且提高了可制造性,同时降低了成本。图20、图21A和图21B示出两个单件式筒实施例。图20所示的实施例包括长振动构件,其中流体贮器置于网状物下方。在这种设计中,容器是在制造过程中被组装起来的两个零件。
在又一个实施例中,存在有短振动构件,其中流体贮器位于网状物上方(参见图21A和图21B)。在这种设计中,容器由三个件构成,所述三个件在制造过程中被组装起来。在流体贮器被填充之后,衔口卡扣到容器上,在所述衔口与所述容器之间具有容器圈。
振动构件和换能器与膜和网状物协同工作,如先前所述的BlueSky推送模式的实施例。膜还用于将振动构件和换能器与流体隔离。两种设计都使用了网状物载体。在容器的底部上的磁体将筒保持在封壳中。
如图22A和图22B所示,单件式筒的又一些实施例包括更简单的设计,通过减少注塑零件和结合点的数量来减少制造中的COGS。图22A示出图21A中的设计的简化版本,但是具有长振动构件。图22A中的设计减少了超声波焊接点和注塑零件的数量。图22B进一步简化了来自图21A的设计,其具有更少的超声波焊接点和注塑零件。
图23A和图23B所示的较低COGS设计是图21B所示的设计的简化。这种设计是一种可以插入封壳中的单件式筒。在衔口的密封件与上部容器之间进行空气交换。图22A至图22B和图24所示的筒已经移除了喷射端口,留下了10mm的衔口端口。优选的喷射端口长度和衔口端口长度与如先前阐述的长度相同,即,0mm至50mm。
BlueSky两件式筒
图24示出用于长振动构件的两件式筒设计。容器和喷射器支架被调换,其中喷射器支架被连接到衔口并且容器在喷射器支架下方。喷射器支架上的尖刺向下面对容器上的隔膜。
制药性/治疗性(Norway)实施例
推送模式的又一个实施例Norway在大多数方面中与BlueSky对应物类似,只是Norway专为处方和医疗用途而定制。与BlueSky非常相似,Norway以可释放的筒为特征,所述可释放的筒包含流体贮器和喷射器支架。该装置还可以用于使用肺量测定法评估肺部健康状况。图25示出Norway推送模式的一个实施例。
被诊断为肺部疾病的患者可以使用Norway装置来跟踪其药物剂量,并且进行肺功能测试,以便可以评估其治疗进展。患者可以经由借助Bluetooth来与Norway装置配对的手机应用程序执行肺功能测试和查看剂量历史。该装置保存每次给药剂量的压力传感器测量值。吸气流量测量值可以从压力传感器测量值中得出,以确保使用者以最高效地输送溶液的流速吸入其药物。该装置还可以执行肺功能测试,以测量患者在1秒内的用力呼气量、用力肺活量、呼气流量峰值和其它肺活量测量值。来自剂量跟踪和肺功能测试的数据被上传到云端,使得患者和医生可以查看患者的病情进展。
喷射器支架已经被设计为接受许多不同尺寸的容器,其中流体贮器容积改变。这使得该装置能够与生物制品一起使用,或者一次性地使用喷射。可能的流体贮器容积的范围是从1μL到20mL。
用于Norway实施例的衔口具有15mm的优选长度。在衔口的两侧上具有两个狭缝,其尺寸为9mm×3mm并且面积为27mm2。衔口的长度可以是介于5mm至30mm之间的任何值。用于衔口的面积可以介于1mm2至100mm2之间。衔口开口具有14mm×24mm的尺寸以及336mm2的面积。衔口开口的面积可以是介于10mm2至500mm2之间的任何值。
筒可以被插入装置的主体中。筒的前部可以通过O型圈被密封,所述O型圈被附接到帽,所述O型圈当帽被关闭时围绕网状物加压在不锈钢环上,以阻止通过网状物的任何蒸发,这就是面密封。该装置以语音辅导和LED灯为特征,以便引导使用者通过喷射吸入。存在有LCD屏幕来显示剂量计数以及其它必要的信息。图26示出Norway推送模式的一个实施例的分解图。
参照图27A至图27D,筒组件(图27A)由三个零件组成:容器(图27B)、筒间隔物(图27C)和喷射器支架(图27D)。筒间隔物保持喷射器支架与容器分离,以防止流体在储存过程中在推送模式初始使用之前接触网状物。
可以移除筒间隔物,从而可以将容器向下推到喷射器支架上,使得尖刺刺穿隔膜,使筒成为一件式的。然后,可以将筒推入该装置的主体中以完成该装置。在图28中示出该过程。
Norway实施例的帽被设计为在每次使用之后在筒的周围创造牢固的密封。O型圈被落座在弹簧加载的塑料件上,所述塑料件当帽被关闭时轻轻地压缩到筒组件上,从而在筒与开放的大气之间产生密封。如图29所示,帽的部件被孤立示出。
喷射器支架的用以产生精确气溶胶的关键部件包括网状物、垫片、膜、通气材料和衔口。膜被定位成使得膜面被保持为与网状物面平行或与网状物面成较小的精确角度。喷射器支架还具有从顶部突出的两个尖刺,所述两个尖刺用于刺穿容器。一个尖刺用于流体供应,并且另一个尖刺为通过喷射产生的空气提供通气路径。在带有空气通气尖刺的喷射器支架的一侧上,存在有由通气材料覆盖的开口,以帮助释放压力和积聚空气。衔口被定位成遵循网状物的面。
容器的用以维持一致性的气溶胶的关键部件是通气材料、螺旋部、隔膜和隔膜帽。通气材料被定位在流体与螺旋部之间。螺旋部由上部容器和通气口间隔物创建,所述通气口间隔物将流体通过通气材料的蒸发降到最低。通气间隔物被结合到上部容器的顶部上,以创建密封的螺旋部,所述密封的螺旋部具有通向容器组件内部的推送模式的开口以及通向大气的另一个开口。隔膜处于容器的底部处。隔膜被放置到下部容器的腔体中,并且用结合到下部容器上的隔膜帽被保持到位。在图30A和图30B中可以看到喷射器支架和容器两者的关键部件。
Norway的主体容纳振动构件和换能器组件。在一个实施例中,如图31所示,振动构件和换能器组件由振动构件前盖和振动构件后盖封装。这些盖由被称为前振动构件盖保持器和后振动构件盖保持器的圆形帽保持在一起。然后,封装的振动构件被放入振动构件封壳中,随后被放入振动构件组件弹簧中,并且最后被落座到振动构件装置支架中。振动构件封壳允许弹簧将振动构件和换能器组件压到膜上。
Norway推送模式的额外实施例包括不同的悬置系统,以将网状物保持在筒中,类似于BlueSky推送模式中的那些悬置系统。对于在图32和图33中看到的悬置系统,振动构件和换能器组件不再具有弹簧;因此,悬置系统既不再需要处于振动构件封壳中,也不需要振动构件装置支架。
Norway推送模式装置的又一额外实施例包括加热元件,所述加热元件将推送模式吸入的空气的温度提高到大约50℃,使得剂量更舒适。与包括加热元件的BlueSky设计一样,加热的空气温度被保持在热降解水平以下,使得维持配方的推送模式完整性,并且不产生有害的副产物。这是可以实现的,这是因为与BlueSky一样,该装置不依赖热量来雾化。图34A和图34B示出这样一种设计,即,所述设计包括两个加热元件,所述两个加热元件在喷射器支架的任一侧上被定位在振动构件下方。如图34A和图34B所示,空气通过喷射器支架的底部中的开口进入,穿过加热元件,并且离开而进入衔口中。此外,较暖的空气将引起雾化的流体的最小蒸发,从而引起MMAD的减小。
生物相容性
在推送模式设计中,振动构件和换能器通过膜来与推送模式吸入溶液完全地隔离。典型地含有重金属的换能器位于振动构件后方,使得所述换能器从喷射区域和流体贮器完全地移除。膜将流体贮器与振动构件分离而呈现为化学惰性屏障,其允许非常少的扩散或几乎没有扩散并且随后蒸发。在一个实施例中,钯镍合金网状物用于使流体雾化。聚酰亚胺网状物也已经被测试,并且被示出为是一种可行的选择。使用聚合物网状物将显著地降低制造成本,并且潜在地改善装置的可提取/可浸出的轮廓。原型实施例中的非金属组分主要由环烯烃共聚物(COC)和硅酮构成,这两种材料均是在医疗器械行业中使用的被广泛接受的材料。
加热的空气设计
图35A至图35C直至图38示出包括加热元件的实施例,所述加热元件将推送模式I吸入的空气的温度提高到大约50℃,使得剂量更舒适。空气垂直地穿过加热元件以被最高效地加热。由于加热的空气温度被保持在热降解水平以下,所以维持了配方的推送模式完整性,并且不产生有害的副产物。此外,流体的比热比空气的比热大得多;因此,雾化的流体的温度将最低限度地加热。这是可以实现的,这是因为该装置不依赖热量来雾化。这里,热量仅用于优化使用者体验。此外,较暖的空气将引起雾化的流体的最小蒸发,从而引起MMAD的减小。最后,加热元件将被绝缘材料包围,以保持装置的所有部件隔热。
加热元件是被呼吸致动的,使得加热元件仅在使用者吸气时加热空气。这允许电池具有明显更久的寿命。加热元件还创造了明显更安全的装置,原因在于加热元件并不总是打开的。这可以通过并入小规格线材的推送模式来实现。该线材非常快速地加热,所以使用者一吸气,加热元件就做出反应。
在图35A至图35C所示的实施例中,在空气进入装置之后,空气通路通过气流加速器变窄以增大速度。然后,空气穿过定位在热交换区域中的加热元件。最后,加热的空气流入衔口中。图35A至图35C以该实施例的三个视图为特征。这种设计允许在补充加热元件的装置中安装更大的电池。
参照图36,在加热的空气BlueSky实施例中的任一个中也可以并入扬声器。这将允许为使用者提供额外的感官体验(即,在吸入时发出的爆裂声/加热声)。
在图37和图38所示的实施例中,加热元件在封壳内的独立室中被定位在振动构件下方。空气通过气流入口进入,穿过加热元件并且在喷射器上方离开。这种设计可以在两件式筒设计(图37)或单件式筒设计(图98)中使用。与图35A至图35C所示的实施例相比,这些实施例以电池寿命为代价提供更为紧凑的装置的优点。
又一个实施例的特征在于落座在封壳的外侧上的外部加热元件(图39)。空气穿过加热元件,进入网状物上方的衔口并且通过衔口的端部离开。在一些实施例中,这种设计可以提供可移除的加热元件。
在加热的空气推送模式装置的另一个实施例中,闭环控制用于调整输送到加热元件的功率。功率被调节以保持气流温度恒定且处于安全水平。参照图40,通过诸如RTD的温度传感器测量气流温度。输送到加热元件的功率变化,随之温度传感器的读数变化。
在加热的空气推送模式装置的又一个实施例中,开环控制用于调整输送到加热元件的功率。功率被调节以保持气流温度恒定。因吸入引起的压降被感测。由于压降的变化,对于供应加热元件以保持气流温度恒定而言所需的功率量是已知的。创建查找表以基于压力传感器值来确定对于供应加热元件以保持气流温度恒定而言所需的功率量。
在加热的空气推送模式装置的又一个实施例中,与加热的空气接触的推送模式内部装置部件中的一个或多个优选地由金属(即,铝、铬镍铁合金等)制成。这将隔离加热元件并且增强装置的生物相容性。
在加热的空气推送模式装置的又一个实施例中,可能被加热的空气损坏的任何部件优选地由金属(即,钛、铝、铬镍铁合金等)制成。这些部件包括但不限于衔口、加热室以及可能受加热的空气负面影响的类似部件。
在加热的空气推送模式装置的一个实施例中,与加热的空气接触的金属部件优选地由具有较低导热性的材料制成,例如,铬镍铁合金。
在加热的空气推送模式装置的一个实施例中,陶瓷用于隔离加热元件。
可调节的空气阻力设计
推送模式的又一个实施例包括用以调节气流入口的尺寸的机构。气流入口可以使用套管或可调节的孔口打开和关闭。通过这种方式,由使用者所经历的阻力可以根据个人偏好进行调节。图41A和图41B示出具有围绕封壳的滑动套管1732的BlueSky装置。套管可以被调节为部分地或完全地覆盖气流入口,增大了由使用者感受到的阻力。此外,衔口中的气流将随着套管的位置变化而变化。这也将由于气流流动中的变化而改变剂量的MMAD。
鼻装置实施例
BlueSky推送模式也已经适用于鼻吸入。图42至图44示出鼻BlueSky推送模式装置的若干实施例。如参见图42至图44,推送模式吸入端口具有多个变体。然而,与具有较短吸入端口的其它设计(图43)相比,鼻装置的优选实施例具有更长且更窄的吸入端口(图42),以用于最佳的鼻孔使用。如参见图44,可以添加帽以保护推送模式吸入端口和保持其清洁。优选的液滴尺寸的范围是介于1微米至110微米之间,但2微米至23微米是优选的。
额外的特征
亲水性/疏水性管
推送模式的又一个实施例包括具有亲水性内部的管,所述管将流体从流体贮器供应到网状物。亲水性管消除了对芯吸材料的需求,并且允许用于从装置输送更广泛种类的悬浮液和溶液。这些管之一的示例是BlueSky I和II上的尖刺。
推送模式的又一个实施例包括:具有亲水性内部的管,所述管将流体从流体贮器供应到网状物,而无需芯吸材料,从而允许用于从装置输送更广泛种类的悬浮液和溶液;以及相对的疏水性管,所述疏水性管鼓励气体从膜与网状物之间的流体供应区域迁移。
聚合物网孔
在又一个实施例中,如图45所示,使用聚合物网状物22,所述聚合物网状物22被附接有板45。已经发现,板上的2mm的孔最适合用于喷射。因此,又一个实施例是板具有多个2mm的开口以用于供液体进入。板上的孔的范围可以是介于0.1mm至20mm之间。
潮式呼吸
推送模式的又一个实施例使用可以用于儿科治疗的潮式呼吸系统。推送模式技术供应了气溶胶面罩,其类似于Aero Chamber Plus Z-Stat儿科面罩(摩纳根医疗)。这允许用于长期使用治疗。当使用者吸气时,该装置将开始喷射,并且当使用者呼气时,该装置停止喷射。由于推送模式的稳健性,这可以是一种非常高效的用于扩展治疗的装置。
电容筒
在又一个实施例中,两个平行的板1528包围着在网状物和膜区域旁边的流体。这两个平行板将测量流体的电容。所供应的流体的电容是已知的。如果测量的电容与已知的电容不同,则该装置将无法工作。这将防止篡改筒,并且将防止未经授权的流体插入筒中。在图46中示出平行板之一。
微流体泵
推送模式的又一个实施例利用振动构件和膜在它们的联接界面处的几何形状,以便在用于某些悬浮液、溶液和其它医疗、治疗和消费应用的优选实施例中未包含芯吸材料的应用中使振动构件和膜同时用作雾化器和微流体泵两者。振动构件的尖端被联接到与所需的几何形状相匹配的膜,从而允许流体进入网状物与膜之间,同时也鼓励任何气体自由地离开。这些膜可以通过先前提及的亲水性或疏水性的技术进行处理。
另一个实施例利用单独的微流体泵,以便当通电时、在呼吸致动时、在设定的间隔处等在网状物与膜之间导引适当量的流体和压力,从而确保给予适当的剂量。
振动构件几何优化
实施例的振动构件待由以适当的声学和机械性能为特征的材料制成。可以在振动构件尖端段上进行各种非反应金属(诸如钛、钯、金、银等)的薄膜溅射,以进一步增强生物相容性。根据行业领导者的说法,钛具有在高强度合金中的最好的声学性能,具有高疲劳强度,使其能够承受在高振幅下的高循环速率,并且具有比铝更高的硬度,使其更加坚固。必须选择正确的材料,必须平衡振动构件,所述振动构件被设计为用于所需的振幅并且被准确地调谐到特定的频率。调谐的一个方面是使振动构件具有正确的细长长度。调谐的另一个方面是使振动构件与网状物相匹配并且具有正确的增益比。不正确地调谐的振动构件会损坏电源,并且将在装置的优化频率下不共振,从而降低质量喷射和寿命。(另请参阅超声波振动构件目录-艾默生。目录-超声波振动构件(2014)。可在以下网址获取:https://www.emerson.com/documents/automation/catalog-ultrasonic-vibrating member-branson-en-us-160126.pdf.(访问日期:2021年11月2日)-通过引用并入本文。)
例如,钛7-4材料比钛6-4材料具有更均匀的、在一个方向(轴向)上的波传播。
实施例必须具有这样的振动构件,即,所述振动构件具有适当的弹性模量、声学性能、声速、机械性能、分子结构等,例如,Ti等级23、Ti等级5、Ti纯度>99.9%、302不锈钢、303不锈钢、304不锈钢、304L不锈钢、316不锈钢、347不锈钢、Al 6061、Al 6063、Al 3003等。
其它实施例具有这样的晶体振动构件,即,所述晶体振动构件具有适当的弹性模量、声学特性、声速、机械特性、分子结构等,例如:蓝宝石(Al2O3氧化铝)、单晶硅等。
在一个实施例中,振动构件设计是基于工业超声振动构件设计,例如,由随后提及的推送模式指示参考文献所公开的,但是被优化以用于在将流体输送到肺、鼻、耳、眼等时生成气溶胶的目的。
参照图47,振动构件在膜界面处是矩形的。该矩形尖端的特征在于,基于准周期性声子晶体结构的构件尖端的沿X方向的三个周期性狭槽和沿Y方向的两个周期性狭槽。
参照图48和图49,与圆锥形段和圆柱形段组合的矩形振动构件尖端可以高效地改进输出振幅增益,并且利用结构的带隙特性高效地抑制振动构件尖端的侧向振动,从而改进在膜界面处的振幅分布均匀性(另请参阅Lin,J.&Lin,S.的基于准周期声子晶体结构的大型三维超声塑性焊接振动系统的研究。MDPI(2020)。可在以下网址获取:https://www.mdpi.com/2073-4352/10/1/21/htm.(访问日期:2021年11月2日)-通过引用并入本文)。
在图50至图58所示的其它实施例中,振动构件1708的调谐和机械加工类似于工业超声振动构件设计(此类附图在所述参考文献中被公开),但在将流体输送到肺、鼻、耳、眼等时被优化以用于气溶胶的生成,例如,异形振动构件(图50)、柱塞振动构件(图51)、产品真实性传感器振动构件(图52)、线轴振动构件(图53)、带槽圆柱形振动构件(图54和图55)、棒振动构件(图例56和图57)和助推器振动构件(图58)。另请参阅工业谐振器。可在以下网址获取:http://www.krell-engineering.com/fea/industr/industrial_resonators.htm.(访问日期:2021年11月2日)-通过引用并入本文。
参照图50,振动构件的异形可以被设定为与膜几何形状紧密接触。
参照图51,柱塞构件具有节点安装的柱塞,所述节点安装的柱塞可以用于在由振动构件所接触的膜的给定表面上施加压力。
参照图52,传感器载体振动构件的特征在于,部分地或完全地包封节点安装的感测装置的内部腔体。感测装置与传感器控制单元联接,传感器控制单元向PCBA输出信号。当试图使用不合规的筒、不正确的筒、未经许可的筒等时,该信号可以用于禁止气溶胶生成。
参照图53,线轴振动构件是无槽圆柱形构件,其特征在于在面的后方的底切侧以形成线轴形状。该线轴形状改进了面振幅均匀性。因为线轴振动构件没有狭槽,所以线轴振动构件的应力比可比较的带槽圆柱形振动构件的应力低得多,使得机械加工成本低得多。使用腔体、狭槽和背部延伸部来优化轴向共振而横过构件面构建非常均匀的振幅。振动构件在轴向共振处为半波长的长度,如由通常与主振动方向成横向的单个节点所指示。线轴振动构件通常具有约1:1的增益,但是可能具有略微更高的增益。
参照图54(被优化)和图55(未被优化),带槽圆柱形振动构件的特征在于纵向狭槽,所述纵向狭槽用于降低由于泊松效应引起的横向联接。这样的狭槽通常是径向的,但是有时其它配置也是有用的。在没有这样的狭槽的情况下,振动构件将横过面具有非常不均匀的振幅,或者甚至可以以非轴向的方式共振。振动构件还具有面腔,所述面腔在振动构件内延伸得较深以增加其增益。振动构件在轴向共振处为半波长的长度,如由通常与主振动方向成横向的单个节点所指示。带槽圆柱形振动构件通常具有低至中等的增益(1:1至2:1)。
参照图56(被优化)和图57(未被优化),棒振动构件为矩形的并且未带槽或仅带穿过厚度的槽。特定的设计技术给出最佳的面振幅均匀性。为了提供合理的增益,振动构件的厚度已经在刀片段处减小。振动构件在轴向共振处为半波长的长度,如由通常与主振动方向成横向的单个节点所指示。棒振动构件通常具有低至中等的增益(1:1至4:1)。
参照图58,助推器是一种耦合谐振器,其被放置在换能器与振动构件之间,以改变构件的振幅和/或作为支撑谐振器堆的手段。助推器本体由结合到助推器节点的轴环刚性地支撑。因为刚性助推器仅由金属构造(没有顺应性弹性体),所以刚性助推器具有优异的轴向和侧向刚度。为了获得额外的刚度,可以将第二轴环并入全波设计中。轴环被调谐以将助推器本体的运动与支撑结构隔离。以下图像示出位移助推器,其中最冷的颜色指示最低的振幅。每个助推器都具有通常介于0.5:1至3.0:1之间的固定增益(输出幅度与输入幅度之比)。
进一步参照图59至图83,示出根据本公开的各种实施例的液滴输送装置10的振动构件1708的又一些可替代实施例,所述振动构件1708具有与换能器26联接的振动构件尖端170。
其它振动构件和膜对准和设计
在其它实施例中,振动构件1708可以包括其它形状,并且膜25也可以包括可替代形状。例如,图85A示出与杆状振动构件尖端部分170联接的超声换能器。图85示出与液滴输送装置10中的中心尖顶或尖头的膜25联接的图85A的振动构件。图85C和图85D示出可替代实施例中的图85B的超声换能器26和膜25,其中网状物22包括图85C中的第一固定机构(图2和附图说明)以及图85D中的第二固定机构(参见图3和附图描述)。
图86A进一步示出在另一个实施例中的液滴输送装置10中的超声换能器26,所述超声换能器26具有杆状尖端部分170,所述杆状尖端部分170与具有宽或圆顶/圆形外表面的膜25联接。图86B和图86C示出在可替代实施例中的图86A的超声换能器26和膜25,其中网状物22包括图86B中的第一固定机构(图2和附图说明)以及图86C中的第二固定机构(参见图3和附图描述)。
图87示出液滴输送服务的可替代实施例,所述液滴输送服务包括超声换能器26、倾斜/倾倒膜25和网状物22,所述超声换能器26具有杆状振动构件尖端部分170,所述杆状振动构件尖端部分170从液滴输送装置10的穿过喷射通道23的中心轴线220偏移,并且其中振动构件230的中心轴线不与装置10的中心轴线220对准。
在另一个实施例中,图88A和图88B示出液滴输送装置10中的超声换能器26,所述超声换能器26具有与斜面网状物22联接的非斜切圈形振动构件尖端部分170,所述斜面网状物22与膜25接触,所述膜25具有大致平坦的顶部外表面(最靠近网状物22)。
在图89A所示的又一个实施例中,具有斜切圈形振动构件尖端部分170的超声换能器26可以被联接到倾斜/倾倒膜25,所述倾斜/倾倒膜25与液滴输送装置10中的膜25接触。图89B示出图89A的倾斜膜25,并且图89E示出也如图89A所示的具有斜切圈形振动构件尖端部分170的超声换能器。图89C和89D示出根据本公开的可替代实施例的液滴输送装置中的图89A的超声换能器26和膜25,其中网状物22包括图89C中的第一固定机构(图2和附图说明)以及图89D中的第二固定机构(参见图3和附图描述)。
图90A和图90B示出超声换能器26,所述超声换能器26具有非斜切圈形振动构件尖端部分170,所述非斜切圈形振动构件尖端部分170与具有大致平坦的外表面的膜联接,所述大致平坦的外表面与网状物22的流体进入下表面的平面接触且处于与其平行的平面中。
图91A和图91B示出超声换能器26,所述超声换能器26具有斜切圈形振动构件尖端部分170,所述斜切圈形振动构件尖端部分170与倾斜/倾倒膜25联接,在膜25与网状物22之间有空间。
图90A和图92B示出在又一个实施例中的超声换能器26,所述超声换能器26具有非斜切圈形振动构件尖端部分170,所述非斜切圈形振动构件尖端部分170与膜25联接,所述膜25具有相对于网状物22的面向流体的平坦下表面且不与之接触的大致平坦的且平行的外表面。
图93A至图93D示出液滴输送装置10的可替代实施例,所述液滴输送装置10具有超声换能器26以及具有大致平坦的表面的膜25和大致平坦的网状物22,所述超声换能器26具有较宽且平坦的振动构件尖端部分170。图30C和图30D进一步示出用于网状物22的优选的悬置系统。
图94A至图94D示出又一个实施例,其具有超声换能器26以及具有大致平坦的表面的膜25和大致平坦的网状物22,所述超声换能器26具有较宽的圈形尖端部分170。图94C和图94D进一步示出用于网状物22的优选的悬置系统。
实施例的膜25由以坚固的且适当的声学和机械性能为特征的材料制成,例如,聚萘二甲酸乙二醇酯、聚乙烯亚胺、聚醚酮、聚酰胺、聚甲基丙烯酸甲酯、聚醚酰亚胺、聚偏二氟乙烯、超高分子量聚乙烯和类似物。
实施例的膜可以具有疏水性涂层、疏水性蚀刻、亲水性蚀刻、亲水性涂层、粗糙化蚀刻等。
在一些实施例中,如图96A至图96D所示,膜可以包括各种形状和表面纹理,在一个实施例中包括“凸起”。
网状物
实施例的网状物22由以坚固的且适当的声学和机械性能为特征的材料制成,例如,聚甲基丙烯酸甲酯、聚醚酮、聚醚酰亚胺、聚偏二氟乙烯、超高分子量聚乙烯、聚四氟乙烯(PTFE)、Ni、NiCo、Pd、Pt、NiPd和金属合金。
在一个实施例中,网状物由单晶或多晶材料制成,例如,硅、碳化硅、氮化铝、氮化硼、氮化硅或氧化铝。经由使用和不使用灰度掩模的高精度光蚀刻以及各向同性和/或各向异性蚀刻,可以在单晶晶片中形成不同的孔形状。可以在网状物上沉积溅射的薄膜以修改表面的润湿性。在某些实施例中,在表面上形成的或沉积的薄层将比在通过电沉积所形成的金属网状物上或在通过激光烧蚀所形成的聚合物网状物上沉积的薄膜具有明显更好的粘附性。单晶晶片“切片”上的表面是原子级的光滑的,并且可以被蚀刻以产生精确的表面粗糙度。精确的表面粗糙度可以用于借助胶或其它材料的机械结合的更好的粘附性。碳化硅由于其较高的强度和韧度而将是优选的材料。在推送模式发明的实施例的网状物中使用半导体工艺从单晶晶片“切片”制造孔结构的一个重要优点在于,孔和表面的接触角将是精确的,而没有我们在使用由电沉积或激光烧蚀制成的网状物的传统喷射器板中所看到的变体。如表9所示,该网状物可以如在实施例II中那样被固定,或者如在实施例I中那样被悬置,并且膜借助非反应金属(例如,钯或金)构件尖端段的薄膜溅射来与优化的振动构件联接,以进一步增强生物相容性。
其它实施例的孔结构是使用半导体工艺形成的,例如,光蚀刻和各向同性和各向异性蚀刻、激光烧蚀、飞秒激光烧蚀、电子束钻孔、EDM(放电加工)钻孔、金刚石浆研磨等。还参见图109和图110。
表9
网状物设计 实施例 简述
单晶晶片 II 与优化的振动构件联接的固定网状物
单晶晶片 I 与优化的振动构件联接的悬置网状物
实施例的网状物可以具有疏水性涂层、疏水性蚀刻、亲水性蚀刻、亲水性涂层、粗糙化蚀刻等或它们的组合。
在其它实施例中,图97至图108示出在推送模式I装置和II装置中使用的聚合物网状物的各种实施方式。
层流元件
在推送模式发明的实施例中,如图1B所示,层流元件1600被优选地固定在液滴输送装置的衔口端口之前的喷射端口中。在优选实施例中,层流元件包括多个蜂窝状孔口。在一些实施例中,层流元件包括限定多个蜂窝状孔口的刀片形壁。在又一些实施例中,多个蜂窝状孔口中的一个或多个包括三角棱柱形状、四角棱柱形状、五角棱柱形状、六角棱柱形状、七角棱柱形状或八角棱柱形状。图84A至图84Q示出层流元件的各种实施例。
防止氧扩散
参照图95,在喷射器支架和容器组件被集成为单个组件的实施例中的液滴输送装置包括与网状物协作的膜,所述液滴输送装置进一步优选地在这样的单个组件中包括至少一个超疏水性通气口,所述至少一个超疏水性通气口与贮器流体连通并且在储存期间用可移除的镀铝聚合物翼片3300覆盖以在这种储存过程中帮助防止氧扩散到贮器中的流体中。在推送模式发明的另一个实施例中,在喷射器支架和容器组件被集成为单个组件的实施例中的液滴输送装置包括与网状物协作的膜,并且所述液滴输送装置进一步优选地还包括可移除的镀铝聚合物翼片3300,所述可移除的镀铝聚合物翼片3300在储存期间联接到与网状物相邻的膜的外表面以在这种存储过程中帮助防止氧扩散到贮器中的流体中。
在推送模式发明的又一个实施例中,具有与网状物22协作的膜25的液滴输送装置10包括预组装步骤,所述预组装步骤移除包含铝和/或铝涂层的密封包装,所述密封包装容纳具有流体的贮器,优选地其中,所述贮器被包括在所述容器组件中,所述容器组件也被包装以用于储存在所述密封包装中。
减少气溶胶中的较大液滴
在推送模式发明的实施例中,期望的是减少较大液滴形成,并且鼓励较小尺寸的液滴在气溶胶流中从液滴输送装置输输送出来。
在一个实施例中,可以提供亲水性芯吸材料,以对液滴输送装置的衔口加衬底。在网状物出口的外周边上所形成的液滴被亲水性芯吸材料吸收,并且降低从网状物出口的表面推掉较大液滴的可能性。这种芯吸材料对较大液滴的吸收提高了MMAD的可重复性并且防止积水。
在又一个实施例中,一维的亲水性晶格(参见层流元件1600,但取自例如横截面)或者一系列一维的亲水性晶格可以用于吸收可能由于积水而“弹出”出网状物的较大液滴。
在推送模式液滴产生的测试中已经注意到,在吸入之后,气溶胶的雾会留在衔口管内。这种雾会导致沿着外周边拉动网状物。这种拉动是由于没有夹带的空气将气溶胶喷射的末端拉出。经由通过在液滴输送装置中集成或耦合的微控制器或微芯片进行电子编程和监测,液滴输送装置可以被可编程地控制以当空气流速达到阈值时开始喷雾,并且继而液滴输送装置检测控制器每2ms记录您的最大进气量。液滴输送装置被编程为当流速下降到在吸入过程中达到的最大流速百分比时停止喷射。在实施例中,被标记为“压力切断”的参数可以被添加到图形用户界面(GUI),用于液滴输送装置的控制/编程,从而使制造商或其它装置操作员改变用于喷雾的停止条件参数。
参照图111A至图111C,在又一个实施例中,挡板4000被插入气溶胶路径中。挡板4000可以包括具有翅片4050的塑料件,以将塑料件保持在液滴输送装置的气溶胶管中的适当位置中。塑料件具有圆柱形腔体,所述圆柱形腔体保持吸收剂塞4100(例如,多孔聚酯或其它芯吸材料)。塞4100被插入挡板腔体中并且是足够长的,以便使其延伸超出腔体的开口。吸收剂塞面向喷射器网状物22。在挡板的与网状物22相对的一侧上,塑料挡板4000具有泪滴形状以导引气流和防止涡流的形成。挡板4000被设计成通过在喷射时捕获吸收剂塞4100中的较大液滴来惰性地过滤气溶胶。在如下表中示出使用3个喷射器的初始数据。如参见表10,挡板4000使用于每个喷射器的MMAD降低了约0.1um至0.2um。这种惯性过滤引起刺激性更小的更平稳的吸入体验。挡板4000的塑料件和吸收剂塞4100可以是各种长度和/或直径。
表10:挡板惯性过滤
如前所述,重要的是将所有较小液滴从衔口中取出。较小液滴具有非常小的停止距离;因此,气流必须足够靠近喷射器板以携带较小液滴。测试了一种设计,其中使用气流导引器将气流远离网状物指向衔口的端部。如图112所示,具有气流导引器的气流路径引起向后的涡流,导致较小液滴通过喷射器板向下停留。取出气流导引器有助于气流捕获一些较小液滴;然而,气流仍然留在一些较小液滴的后方。用于喷射器板的保持器是倾倒的,以帮助将气流导向到喷射器板。这鼓励空气捕获较小液滴的大部分并且将液滴向下发送到衔口管的中部,但是喷射器仍然产生不需要的较大液滴。
图113示出当可插入挡板4000被放置在衔口管的中部中时的结果。该挡板保持芯吸材料。随着气流从衔口管的中部被向下牵引,空气围绕挡板流动。液滴跟随着气流;然而,较大液滴携带了太多的动量,并且不能拐弯绕过挡板流动。较大液滴碰撞到芯吸材料中。芯吸材料保持液体以防止液体落回到喷射器板上。然后,液体可以从芯吸材料蒸发。
图114示出当可插入挡板4000也与气流导引器一起使用时的额外结果。这种测试促使气流从气流导引器流动,并且从挡板的两侧喷下来。在衔口管的中部中任然形成涡流,并且所述涡流将较小液滴推回到喷射器板上。这些涡流还促使较大液滴在挡板周围流动并且没有引起惯性过滤。
虽然已经参考示例性实施例描述了本推送模式发明,但是本领域的技术人员将理解,在不脱离本推送模式发明的范围的情况下,可以进行各种改变并且可以用等同物代替其要素。另外,在不脱离本发明的实质范围的情况下,可以做出许多修改以使特定情况或材料适应于本教导。因此,意图在于,本推送模式发明不限于作为实现本发明所设想的最佳模式而公开的特定实施例,而是本推送模式发明将包括落入所附权利要求书的范围内的所有实施例。

Claims (46)

1.一种液滴输送装置,其包括:
容器组件,所述容器组件具有衔口端口;
贮器,所述贮器被设置在所述容器组件内或与所述容器组件流体连通,并且所述贮器被配置为供应一定体积的流体;
喷射器支架,所述喷射器支架与所述贮器流体连通,所述喷射器支架包括网状物,所述网状物具有可操作地联接到振动构件的膜,所述振动构件被联接到电子换能器,所述膜介于所述振动构件与所述网状物之间,其中,所述网状物包括穿过所述网状物的厚度形成的多个开口,并且其中,所述换能器被联接到电源并且能操作成使所述振动构件和所述膜振荡并且生成通过所述网状物喷射的液滴流;以及
在所述容器组件内的喷射通道,所述喷射通道被配置为将所述喷射的液滴流从所述网状物导引到所述出口。
2.根据权利要求1所述的液滴输送装置,其中,所述电子换能器是超声换能器。
3.根据权利要求2所述的液滴输送装置,其中,所述超声换能器包括压电材料。
4.根据权利要求1中任一项所述的液滴输送装置,其中,所述容器组件是能可释放地从所述喷射器支架拆卸的,或者所述容器组件相对于所述输送装置的一个或多个其它能拆卸的零件是能可释放地连同所述喷射器支架一起拆卸的。
5.根据权利要求4所述的液滴输送装置,其中,所述容器组件包括所述贮器。
6.根据权利要求5所述的液滴输送装置,还包括所述喷射器支架,所述喷射器支架被配置为用于可释放地联接到所述容器组件,并且所述喷射器支架进一步被配置为用于可释放地联接到封壳系统,所述封壳系统包括所述振动构件、所述换能器和所述电源。
7.根据权利要求6所述的液滴输送装置,还包括磁体,所述磁体被配置为可释放地联接所述喷射器支架和封壳组件。
8.根据权利要求1所述的液滴输送装置,其中,所述贮器包括自密封配合机构,所述自密封配合机构被配置为联接到所述喷射器支架的流体释放配合机构。
9.根据权利要求8所述的液滴输送装置,其中,所述流体释放配合机构包括流体导管,所述流体导管被配置为用于插入所述自密封配合机构中。
10.根据权利要求9所述的液滴输送装置,其中,所述流体导管包括具有中空内部的尖刺状结构,所述中空内部被配置为在所述贮器与所述膜之间提供流体连通。
11.根据权利要求1所述的液滴输送装置,其中,所述膜被配置为不接触所述网状物。
12.根据权利要求1所述的液滴输送装置,其中,所述膜包括倾斜上表面,所述倾斜上表面被配置为接触从所述贮器供应的流体。
13.根据权利要求12所述的液滴输送装置,其中,所述振动构件包括倾斜尖端,所述倾斜尖端接触与所述膜的所述倾斜上表面相对的下表面。
14.根据权利要求1所述的液滴输送装置,其中,所述振动构件包括圈形斜切尖端。
15.根据权利要求1所述的液滴输送装置,其中,所述振动构件包括圈形非斜切尖端。
16.根据权利要求1所述的液滴输送装置,其中,所述网状物具有与所述振动构件的尖端的平坦表面平行配置的顶表面。
17.根据权利要求1所述的液滴输送装置,其中,所述振动构件包括杆状尖端。
18.根据权利要求1所述的液滴输送装置,其中,所述网状物具有与所述膜的上表面非平行配置的底表面。
19.根据权利要求18所述的液滴输送装置,其中,所述网状物具有相对于所述膜的所述上表面倾斜一角度的底表面。
20.根据权利要求1所述的液滴输送装置,还包括所述液滴输送装置的穿过所述喷射通道和所述膜的中心轴线,并且其中,所述振动构件包括在从所述中心轴线偏离的位置处联接到所述膜的尖端。
21.根据权利要求1所述的液滴输送装置,还包括在所述贮器中的流体,所述流体包含有非治疗性物质、尼古丁和大麻素中的至少一种。
22.根据权利要求1所述的液滴输送装置,还包括在所述贮器中的流体,所述流体包含有治疗或预防疾病或损伤状况的治疗性物质。
23.根据权利要求1所述的液滴输送装置,还包括层流元件,所述层流元件被定位在所述输送装置的所述衔口端口之前的所述容器组件的所述喷射端口中。
24.根据权利要求23所述的液滴输送装置,其中,所述层流元件包括多个蜂窝状孔口。
25.根据权利要求24所述的液滴输送装置,其中,所述层流元件包括限定所述多个蜂窝状孔口的刀片形壁。
26.根据权利要求25所述的液滴输送装置,其中,所述多个蜂窝状孔口中的一个或多个包括三角棱柱形状、四角棱柱形状、五角棱柱形状、六角棱柱形状、七角棱柱形状或八角棱柱形状。
27.根据权利要求1所述的液滴输送装置,还包括可操作地联接到所述电源的呼吸致动传感器,其中,所述呼吸致动传感器被配置为在感测所述喷射通道内或所述液滴输送装置的与所述喷射通道流体连通的通路内的预定压力变化时激活所述电子换能器。
28.根据权利要求1所述的液滴装置,其中,所述网状物包括钯镍、聚四氟乙烯和聚酰亚胺中的至少一种的材料。
29.根据权利要求1所述的液滴输送装置,其中,所述网状物包括聚醚酮、聚醚酰亚胺、聚偏氟乙烯、超高分子量聚乙烯、Ni、NiCo、Pd、Pt、NiPd和金属合金中的至少一种的材料。
30.根据权利要求1所述的液滴输送装置,其中,所述膜包括聚萘二甲酸乙二醇酯、聚乙烯亚胺和聚醚酮中的至少一种的材料。
31.根据权利要求1所述的液滴输送装置,其中,所述膜包括以下各项材料中的至少一种的材料,即,金属膜,金属化聚合物,螺纹聚合物,螺纹尼龙,用聚合物或金属涂覆的螺纹聚合物,用聚合物或金属涂覆的螺纹尼龙,螺纹金属,螺纹SiC,螺纹石墨复合材料,金属化石墨复合材料,用聚合物涂覆的石墨复合材料,用碳纤维填充的聚合物片材,用碳纤维填充的聚醚酮,用SiC纤维填充的聚合物片材,用陶瓷或金属纤维填充的聚合物片材,ULPA过滤介质,日东电工泰密克级过滤介质,日东电工聚合物片材,与聚合物片材结合的螺纹聚合物,与聚醚酮或聚酰亚胺结合的尼龙编织物,与聚合物片材结合的石墨复合物,具有金属化涂层的聚合物纤维编织物,以及具有溅射Al或气相沉积Al的尼龙。
32.根据权利要求1所述的液滴输送装置,其中,所述电子换能器被联接到振动构件,所述振动构件包括尖端部分,所述尖端部分由5级钛合金、23级钛合金和约99%或更高纯度的钛中的至少一种构成。
33.根据权利要求1所述的液滴输送装置,其中,所述电子换能器被联接到振动构件,所述振动构件包括溅射在外层上的约99%或更高纯度的钛的尖端部分,所述尖端部分提供平滑的尖端表面,所述平滑的尖端表面被配置为接触所述膜的底部下表面,所述底部下表面与最靠近所述网状物定位的所述膜的顶部外表面相对。
34.根据权利要求1所述的液滴输送装置,其中,所述膜的外表面包括疏水性涂层,所述膜的所述外表面与接触所述振动构件的所述膜的下表面相对。
35.根据权利要求1所述的液滴输送装置,其中,所述膜的外表面包括亲水性涂层,所述膜的所述外表面与接触所述振动构件的所述膜的下表面相对。
36.根据权利要求1所述的液滴输送装置,其中,所述网状物包括在所述网状物的一个或多个表面上的疏水性涂层。
37.根据权利要求1所述的液滴输送装置,其中,所述网状物包括在所述网状物的一个或多个表面上的亲水性涂层。
38.根据权利要求1所述的液滴输送装置,其中,所述网状物包括在所述网状物的第一表面上的疏水性涂层和在所述网状物的第二表面上的亲水性涂层。
39.根据权利要求1所述的液滴输送装置,其中,所述膜具有超过55000次由所述换能器激活的气溶胶生成激活次数的可操作使用寿命。
40.根据权利要求1所述的液滴输送装置,还包括与所述贮器流体连通的至少一个超疏水性通气口,所述至少一个超疏水性通气口用能移除的镀铝聚合物翼片覆盖。
41.根据权利要求1所述的液滴输送装置,还包括能移除的镀铝聚合物翼片,所述能移除的镀铝聚合物翼片被联接到与所述网状物相邻的所述膜的外表面。
42.一种用于组装根据权利要求1所述的液滴输送装置的方法,包括移除包含铝和/或铝涂层的密封包装,所述密封包装容纳所述贮器,在所述贮器中储存有流体,并且所述密封包装将所述容器组件联接到封壳系统,所述封壳系统包括所述电源。
43.根据权利要求42所述的方法,其中,所述贮器被设置在所述容器组件内。
44.根据权利要求1所述的液滴输送装置,还包括卡扣机构和/或磁体,所述卡扣机构和/或磁体被配置为可释放地联接所述喷射器支架和所述容器组件。
45.一种液滴输送装置,其包括:
膜,所述膜被支撑在所述装置中并且经由振动构件联接到电子换能器;以及
网状物,所述网状物在所述膜与衔口或鼻孔插入元件中的端口之间被支撑在所述装置中,其中,所述膜、所述网状物和所述端口全部彼此流体连通。
46.一种从流体产生液滴流的方法,包括在膜与网状物之间输送流体体积,经由振动构件电子地激活与所述膜联接的超声换能器,以及通过推送所述流体体积穿过所述网状物中的开口来产生液滴流。
CN202280056993.7A 2021-06-22 2022-06-22 借助推送喷射的液滴输送装置 Pending CN117836028A (zh)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
US63/213,634 2021-06-22
US63/256,245 2021-10-15
US63/256,546 2021-10-16
US202163280643P 2021-11-18 2021-11-18
US63/280,643 2021-11-18
PCT/US2022/034552 WO2022271848A1 (en) 2021-06-22 2022-06-22 Droplet delivery device with push ejection

Publications (1)

Publication Number Publication Date
CN117836028A true CN117836028A (zh) 2024-04-05

Family

ID=90504464

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202280056993.7A Pending CN117836028A (zh) 2021-06-22 2022-06-22 借助推送喷射的液滴输送装置

Country Status (1)

Country Link
CN (1) CN117836028A (zh)

Similar Documents

Publication Publication Date Title
CN113993631B (zh) 超声呼吸致动呼吸液滴输送装置和使用方法
US11793945B2 (en) Droplet delivery device with push ejection
US10525220B2 (en) Droplet delivery device for delivery of fluids to the pulmonary system and methods of use
US9962507B2 (en) Droplet delivery device for delivery of fluids to the pulmonary system and methods of use
EP3782680B1 (en) An aerosol-generating system comprising a vibratable element
US11285285B2 (en) Systems and methods comprising a droplet delivery device and a breathing assist device for therapeutic treatment
US11285284B2 (en) Methods for treatment of pulmonary lung diseases with improved therapeutic efficacy and improved dose efficiency
CN114206421A (zh) 小液滴经由电子呼吸致动液滴输送装置到呼吸系统的输送
US11285274B2 (en) Methods for the systemic delivery of therapeutic agents to the pulmonary system using a droplet delivery device
EP0923957A1 (en) Liquid droplet spray device for an inhaler suitable for respiratory therapies
US20210361889A1 (en) Aerosol delivery system with perforate membrane
CN117836028A (zh) 借助推送喷射的液滴输送装置
EP1005916A1 (en) Inhaler with ultrasonic wave nebuliser having nozzle openings superposed on peaks of a standing wave pattern
EP3628355A1 (en) Cartridge for an aerosol delivery system
EP1219313A1 (en) Liquid discharging apparatus and magneto-shape-memory type valve

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination