CN117829562A - 一种基于标识解析的排产计划生成方法及相关设备 - Google Patents

一种基于标识解析的排产计划生成方法及相关设备 Download PDF

Info

Publication number
CN117829562A
CN117829562A CN202410255225.5A CN202410255225A CN117829562A CN 117829562 A CN117829562 A CN 117829562A CN 202410255225 A CN202410255225 A CN 202410255225A CN 117829562 A CN117829562 A CN 117829562A
Authority
CN
China
Prior art keywords
determining
processing nodes
attribute data
scheduling plan
scheduling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202410255225.5A
Other languages
English (en)
Other versions
CN117829562B (zh
Inventor
蒋剑
王飞
陈辰
施宏志
时宗胜
向哲
薛驰
蔡泽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangsu Zhongtian Internet Technology Co ltd
Original Assignee
Jiangsu Zhongtian Internet Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangsu Zhongtian Internet Technology Co ltd filed Critical Jiangsu Zhongtian Internet Technology Co ltd
Priority to CN202410255225.5A priority Critical patent/CN117829562B/zh
Publication of CN117829562A publication Critical patent/CN117829562A/zh
Application granted granted Critical
Publication of CN117829562B publication Critical patent/CN117829562B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/06Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
    • G06Q10/063Operations research, analysis or management
    • G06Q10/0631Resource planning, allocation, distributing or scheduling for enterprises or organisations
    • G06Q10/06316Sequencing of tasks or work
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/06Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
    • G06Q10/063Operations research, analysis or management
    • G06Q10/0631Resource planning, allocation, distributing or scheduling for enterprises or organisations

Landscapes

  • Business, Economics & Management (AREA)
  • Human Resources & Organizations (AREA)
  • Engineering & Computer Science (AREA)
  • Strategic Management (AREA)
  • Entrepreneurship & Innovation (AREA)
  • Economics (AREA)
  • Operations Research (AREA)
  • Game Theory and Decision Science (AREA)
  • Development Economics (AREA)
  • Marketing (AREA)
  • Educational Administration (AREA)
  • Quality & Reliability (AREA)
  • Tourism & Hospitality (AREA)
  • Physics & Mathematics (AREA)
  • General Business, Economics & Management (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

本申请提出一种基于标识解析的排产计划生成方法及相关设备,一种基于标识解析的排产计划生成方法包括:获取多个加工节点的属性数据;获取多个历史排产计划以及每个加工节点的历史属性数据;根据历史属性数据确定每个加工节点的稳定性;根据稳定性和历史属性数据确定加工节点之间的相关系数;根据相关系数和属性数据构建多个有向图,计算每个有向图中的每个排产计划的第一优先级,确定第一优先级最高的排产计划为候选排产计划;根据属性数据以及稳定性确定每个有向图对应的候选排产计划的第二优先级,确定最高的第二优先级对应的候选排产计划为目标排产计划。本申请涉及智能排产技术领域,能够提升制定排产计划的准确度。

Description

一种基于标识解析的排产计划生成方法及相关设备
技术领域
本申请涉及智能制造技术领域,具体涉及排产计划筛选技术领域,尤其涉及一种基于标识解析的排产计划生成方法、装置及电子设备。
背景技术
目前,线缆的生产工艺较复杂,一般包含配料、摇料、压胚、推挤绝缘烧结、并丝、编织、浸锡、护套、分割、包装等。生产过程中也会流转多个中间件,包括根据配料、摇料、压胚、推挤绝缘烧结等工艺生成的绝缘铜丝件,根据并丝等工艺生成的镀锡铜并丝件,根据编织、浸锡等工艺生成的浸锡线芯件,根据护套、分割、包装等工艺生成的最终产品件。
由于在生成的过程中生产的中间件较多,为了保障交付质量,通常需要生产人员及时管控生产流程,这类管控方式较为机械且需要耗费大量的人工成本,导致生产设备的投入产出比较低、生产过程等待时间长和生产效率低等问题。
发明内容
鉴于以上内容,有必要提出一种基于标识解析的排产计划生成方法及相关设备,以解决制定排产计划的准确度低的技术问题。其中,相关设备包括一种基于标识解析的排产计划生成装置及电子设备。
本申请提供一种基于标识解析的排产计划生成方法,应用于电子设备,所述电子设备通信连接于服务器,所述方法包括:通过解析第一工业标识发送第一数据查询指令至所述服务器;接收所述服务器发送的多个加工节点的属性数据,其中,所述属性数据包括每个加工节点的额定工时、额定良率以及当前工作状态;通过解析第二工业标识发送第二数据查询指令至所述服务器;接收所述服务器发送的所述多个加工节点对应的多个历史排产计划,其中,每个历史排产计划包括所述多个加工节点的组合,每个加工节点对应于历史属性数据;根据所述历史属性数据确定每个加工节点在所述多个历史排产计划中的稳定性;根据所述稳定性和所述历史属性数据确定所述多个历史排产计划中每两个相邻的加工节点之间的相关系数;根据所述相关系数和所述属性数据构建多个有向图,其中,每个有向图对应于多个排产计划,所述每两个相邻的加工节点之间的相关系数为所述有向图的边权;根据所述属性数据和所述相关系数计算所述每个有向图中的每个排产计划的第一优先级,确定所述第一优先级最高的排产计划为候选排产计划,其中,所述候选排产计划代表多个加工结点对应的属性数据的组合;根据所述属性数据以及所述稳定性确定所述每个有向图对应的所述候选排产计划的第二优先级,确定最高的所述第二优先级对应的所述候选排产计划为目标排产计划。
在一些实施例中,所述根据所述历史属性数据确定每个加工节点在所述多个历史排产计划中的稳定性包括:确定每个加工节点在所述多个历史排产计划中对应的所述历史工时的第一离散系数和第一极差,确定所述第一离散系数和所述第一极差的乘积为所述每个加工节点的工时稳定性;确定每个加工节点在所述多个历史排产计划中对应的所述历史良率的第二离散系数和第二极差,确定所述第二离散系数和所述第二极差的乘积为所述每个加工节点的良率稳定性;确定所述工时稳定性和所述良率稳定性为所述每个加工节点的稳定性。
在一些实施例中,所述根据所述稳定性和所述历史属性数据确定所述多个历史排产计划中每两个相邻的加工节点之间的相关系数包括:确定两个相邻的加工节点在所述多个历史排产计划中对应的工时序列,根据所述工时序列确定所述两个相邻的加工节点之间的工时相关系数;确定两个相邻的加工节点在所述多个历史排产计划中对应的良率序列,根据所述良率序列确定所述两个相邻的加工节点之间的良率相关系数;根据所述稳定性、所述工时相关系数和所述良率相关系数确定所述两个相邻的加工节点之间的相关系数。
在一些实施例中,所述确定两个相邻的加工节点在所述多个历史排产计划中对应的工时序列,根据所述工时序列确定所述两个相邻的加工节点之间的工时相关系数包括:根据历史排产计划的完成时间由早至晚的顺序排列所述加工节点的工时,得到加工节点的工时序列;确定所述两个相邻的加工节点对应的工时序列之间的余弦相似度为所述两个相邻的加工节点之间的工时相关系数。
在一些实施例中,所述确定两个相邻的加工节点在所述多个历史排产计划中对应的良率序列,根据所述良率序列确定所述两个相邻的加工节点之间的良率相关系数包括:根据历史排产计划的完成时间由早至晚的顺序排列所述加工节点的良率,得到加工节点的良率序列;确定所述两个相邻的加工节点对应的良率序列之间的余弦相似度为所述两个相邻的加工节点之间的良率相关系数。
在一些实施例中,所述每个排产计划对应于多个加工节点的组合,所述根据所述属性数据和所述相关系数计算所述每个有向图中的每个排产计划的第一优先级包括:确定所述两个相邻的加工节点之间的距离,根据所述距离和所述属性数据计算所述两个相邻的加工节点之间的启发值;所述第一优先级的计算方式满足以下关系式:
其中,N代表所述多个排产计划中的任意一个排产计划;代表所述排产计划的第一优先级;g(N)代表所述排产计划中每两个相邻的加工节点的相关系数之和;h(N)代表所述排产计划中每两个相邻的加工节点之间的启发值之和。
在一些实施例中,所述根据所述距离和所述属性数据计算所述两个相邻的加工节点之间的启发值包括:对所述距离进行归一化处理,得到归一化距离;根据所述属性数据确定所述两个相邻的加工节点的工时均值以及良率均值;确定所述启发值的方法满足以下关系式:
其中,h代表所述两个相邻的加工节点之间的所述启发值;T代表所述工时均值;S代表所述良率均值;L代表所述归一化距离。
在一些实施例中,所述根据所述属性数据以及所述稳定性确定所述每个候选排产计划的第二优先级包括:根据所述属性数据确定所述每个排产计划中的加工节点对应的平均工时;根据所述属性数据确定所述每个排产计划中的加工节点对应的平均良率;根据所述稳定性、所述平均工时和所述平均良率确定所述每个排产计划的第二优先级,其中,确定所述第二优先级的方法满足以下关系式:
其中,P代表所述第二优先级;t代表所述平均工时;r代表所述平均良率;a代表所述候选排产计划中的加工节点的工时稳定性的均值;b代表所述候选排产计划中的加工节点的良率稳定性的均值。
本申请实施例还提供一种基于标识解析的排产计划生成装置,所述装置包括:解析模块,用于通过解析第一工业标识发送第一数据查询指令至所述服务器;获取模块,用于接收所述服务器发送的与所述第一数据查询指令对应的多个加工节点的属性数据,其中,所述属性数据包括每个加工节点的额定工时、额定良率以及当前工作状态;所述解析模块,还用于通过解析第二工业标识发送第二数据查询指令至所述服务器;所述获取模块,还用于接收所述服务器发送的与所述第二工业标识对应的多个历史排产计划,其中,每个历史排产计划包括所述多个加工节点的组合,每个加工节点对应于历史属性数据;确定模块,用于根据所述历史属性数据确定每个加工节点在所述多个历史排产计划中的稳定性;所述确定模块,还用于根据所述稳定性和所述历史属性数据确定所述多个历史排产计划中每两个相邻的加工节点之间的相关系数;所述确定模块,还用于根据所述相关系数和所述属性数据构建多个有向图,其中,每个有向图对应于多个排产计划,所述每两个相邻的加工节点之间的相关系数为所述有向图的边权;所述确定模块,还用于根据所述属性数据和所述相关系数计算所述每个有向图中的每个排产计划的第一优先级,确定所述第一优先级最高的排产计划为候选排产计划,其中,所述候选排产计划代表多个加工结点对应的属性数据的组合;所述确定模块,还用于根据所述属性数据以及所述稳定性确定所述每个有向图对应的所述候选排产计划的第二优先级,确定最高的所述第二优先级对应的所述候选排产计划为目标排产计划。
本申请实施例还提供一种电子设备,所述电子设备包括:存储器,存储至少一个指令;处理器,执行所述存储器中存储的指令以实现所述的一种基于标识解析的排产计划生成方法。
本申请实施例还提供一种计算机可读存储介质,所述计算机可读存储介质中存储有至少一个指令,所述至少一个指令被电子设备中的处理器执行以实现所述的一种基于标识解析的排产计划生成方法。
由以上技术方案可以看出,本申请实施例通过解析第一工业标识和第二工业标识确定加工节点的属性数据以及加工节点对应的历史排产计划。其中,每个历史排产计划包括所述多个加工节点的组合,每个加工节点对应于历史属性数据,能够为后续对排产计划进行量化评估提供数据支撑。并根据历史属性数据确定每个加工节点的稳定性,从而利用量化数据表征每个加工节点的性能的稳定程度。再根据每两个相邻节点的相关系数和属性数据构建多个有向图,并确定每个有向图中第一优先级最高的排产计划为候选排产计划,从而扩充排产计划的筛选范围,确保后续获得目标排产计划的准确度。最终根据稳定性和属性数据确定候选排产计划对应的第二优先级,并确定最高的第二优先级对应的候选排产计划为目标排产计划,能够以量化的数据对排产计划的性能进行评估,从而提升确定目标排产计划的准确度。
附图说明
图1是本申请一实施例提供的一种基于标识解析的排产计划生成方法的应用场景图。
图2是本申请一实施例提供的一种基于标识解析的排产计划生成方法的流程图。
图3是本申请一实施例提供的一种基于标识解析的排产计划生成装置的功能模块图。
图4是本申请实施例提供的一种电子设备的结构示意图。
具体实施方式
为了能够更清楚地理解本申请的目的、特征和优点,下面结合附图和具体实施例对本申请进行详细描述。需要说明的是,在不冲突的情况下,本申请的实施例及实施例中的特征可以相互结合。在下面的描述中阐述了很多具体细节以便于充分理解本申请,所述描述的实施例仅是本申请一部分实施例,而不是全部的实施例。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个所述特征。在本申请的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。
除非另有定义,本文所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同。本文中在本申请的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本申请。本文所使用的术语“和/或”包括一个或多个相关的所列项目的任意的和所有的组合。
本申请实施例提供一种基于标识解析的排产计划生成方法,可应用于一个或者多个电子设备中,电子设备是一种能够按照事先设定或存储的指令,自动进行数值计算和/或信息处理的设备,其硬件包括但不限于微处理器、专用集成电路(Application SpecificIntegrated Circuit,ASIC)、可编程门阵列(Field-Programmable Gate Array,FPGA)、数字处理器(Digital Signal Processor,DSP)、嵌入式设备等。
电子设备可以是任何一种可与客户进行人机交互的电子产品,例如,个人计算机、平板电脑、智能手机、个人数字助理(Personal Digital Assistant,PDA)、游戏机、交互式网络电视(Internet Protocol Television,IPTV)、智能式穿戴式设备等。
电子设备还可以包括网络设备和/或客户设备。其中,所述网络设备包括,但不限于单个网络服务器、多个网络服务器组成的服务器组或基于云计算(Cloud Computing)的由大量主机或网络服务器构成的云。
电子设备所处的网络包括但不限于互联网、广域网、城域网、局域网、虚拟专用网络(Virtual Private Network,VPN)等。
如图1所示,本申请提供的一种基于标识解析的排产计划生成方法可应用于电子设备100,电子设备100与服务器200通信连接。电子设备100用于从服务器200中获取第一工业标识对应的加工节点的属性数据,以及第二工业标识对应的历史排产计划。电子设备100通过解析第一工业标识发送第一数据查询指令至所述服务器;接收所述服务器发送的多个加工节点的属性数据,其中,所述属性数据包括每个加工节点的额定工时、额定良率以及当前工作状态;通过解析第二工业标识发送第二数据查询指令至所述服务器;接收所述服务器发送的所述多个加工节点对应的多个历史排产计划,其中,每个历史排产计划包括所述多个加工节点的组合,每个加工节点对应于历史属性数据;根据所述历史属性数据确定每个加工节点在所述多个历史排产计划中的稳定性;根据所述稳定性和所述历史属性数据确定所述多个历史排产计划中每两个相邻的加工节点之间的相关系数;根据所述相关系数和所述属性数据构建多个有向图,其中,每个有向图对应于多个排产计划,所述每两个相邻的加工节点之间的相关系数为所述有向图的边权;根据所述属性数据和所述相关系数计算所述每个有向图中的每个排产计划的第一优先级,确定所述第一优先级最高的排产计划为候选排产计划,其中,所述候选排产计划代表多个加工结点对应的属性数据的组合;根据所述属性数据以及所述稳定性确定所述每个有向图对应的所述候选排产计划的第二优先级,确定最高的所述第二优先级对应的所述候选排产计划为目标排产计划。
如图2所示,是本申请一实施例提供的一种基于标识解析的排产计划生成方法的流程图。根据不同的需求,该流程图中步骤的顺序可以改变,某些步骤可以省略。本申请实施例提供的一种基于标识解析的排产计划生成方法包括如下步骤。
S20,通过解析第一工业标识发送第一数据查询指令至所述服务器,接收所述服务器发送的多个加工节点的属性数据,其中,所述属性数据包括每个加工节点的额定工时、额定良率以及当前工作状态。
在本申请一实施例中,智能生产场景中通常包括多种加工节点,例如,在线缆加工场景中,多个加工节点按照一定的先后顺序组合形成排产计划,从而对排产计划进行加工节点的排配。
在本申请一实施例中,第一工业标识用于关联每个加工节点对应的属性数据,其中,属性数据包括加工节点对应的额定工时、额定良率以及工作状态。其中,额定工时用于表征加工节点接收到原材料到加工完原材料所需的时间,额定良率用于表征加工节点实施加工工艺的成功率,工作状态用于表征加工节点当前是否正在执行工艺流程。
在本申请一实施例中,生产场景可以是线缆加工场景,其中,加工节点包括:熔炼节点、拉丝节点、退火节点、绞线节点、绝缘节点、成缆节点、铠装节点、检测节点。
S21,通过解析第二工业标识发送第二数据查询指令至所述服务器,接收所述服务器发送的所述多个加工节点对应的多个历史排产计划,其中,每个历史排产计划包括所述多个加工节点的组合,每个加工节点对应于历史属性数据。
在本申请一实施例中,第二工业标识用于关联多个加工节点对应的历史排产计划。
在本申请一实施例中,每个历史排产计划包括多个加工节点的组合。每个加工节点对应于历史属性数据,其中,历史属性数据用于表征加工节点在实施历史排产计划时对应的属性数据。其中,历史属性数据包括历史工时和历史良率。
示例性的,当历史排产计划包括历史排产计划A和历史排产计划B时,历史排产计划A中的多个加工节点的排列顺序可以是:熔炼节点、拉丝节点、退火节点、绞线节点、绝缘节点;历史排产计划B中的多个加工节点的排列顺序可以是:退火节点、绞线节点、绝缘节点、成缆节点。其中,熔炼节点在历史排产计划A中对应的历史属性数据可以是[40,0.8],用于表征历史排产计划A中的熔炼节点完成加工工艺耗费的工时为40分钟,且良率为0.8;成缆节点在历史排产计划B中对应的历史属性数据可以是[30,0.9]。
S22,根据所述历史属性数据确定每个加工节点在所述多个历史排产计划中的稳定性。
在本申请一实施例中,所述根据所述历史属性数据确定每个加工节点在所述多个历史排产计划中的稳定性包括:确定每个加工节点在所述多个历史排产计划中对应的所述历史工时的第一离散系数和第一极差,确定所述第一离散系数和所述第一极差的乘积为所述每个加工节点的工时稳定性;确定每个加工节点在所述多个历史排产计划中对应的所述历史良率的第二离散系数和第二极差,确定所述第二离散系数和所述第二极差的乘积为所述每个加工节点的良率稳定性;确定所述工时稳定性和所述良率稳定性为所述每个加工节点的稳定性。
S23,根据所述稳定性和所述历史属性数据确定所述多个历史排产计划中每两个相邻的加工节点之间的相关系数。
在本申请一实施例中,为了确定在排产计划的作业过程中,两个相邻的加工节点之间互相影响的程度,可根据加工节点的历史属性数据确定历史排产计划中每两个相邻的加工节点之间的相关系数,从而利用量化数据表征每两个相邻的加工节点之间相互影响的程度,进而提升后续确定排产计划的准确性。
在本申请一实施例中,所述根据所述稳定性和所述历史属性数据确定所述多个历史排产计划中每两个相邻的加工节点之间的相关系数包括:确定两个相邻的加工节点在所述多个历史排产计划中对应的工时序列,根据所述工时序列确定所述两个相邻的加工节点之间的工时相关系数;确定两个相邻的加工节点在所述多个历史排产计划中对应的良率序列,根据所述良率序列确定所述两个相邻的加工节点之间的良率相关系数;根据所述稳定性、所述工时相关系数和所述良率相关系数确定所述两个相邻的加工节点之间的相关系数。
在本申请一实施例中,所述确定两个相邻的加工节点在所述多个历史排产计划中对应的工时序列,根据所述工时序列确定所述两个相邻的加工节点之间的工时相关系数包括:根据历史排产计划的完成时间由早至晚的顺序排列所述加工节点的工时,得到加工节点的工时序列;确定所述两个相邻的加工节点对应的工时序列之间的余弦相似度为所述两个相邻的加工节点之间的工时相关系数。其中,工时相关系数的计算方式满足以下关系式:
其中,代表任意一个历史排产计划对应的工时相关系数;/>代表其中一个加工节点的工时序列;B代表另一个加工节点的工时序列;/>代表两个相邻的加工节点对应的工时序列的点积;/>其中一个加工节点的工时序列的模长;/>另一个加工节点的工时序列的模长。
在本申请一实施例中,所述确定两个相邻的加工节点在所述多个历史排产计划中对应的良率序列,根据所述良率序列确定所述两个相邻的加工节点之间的良率相关系数包括:根据历史排产计划的完成时间由早至晚的顺序排列所述加工节点的良率,得到加工节点的良率序列;确定所述两个相邻的加工节点对应的良率序列之间的余弦相似度为所述两个相邻的加工节点之间的良率相关系数。其中,良率相关系数的计算方式与工时相关系数的计算方式相同,此处不再赘述。
S24,根据所述相关系数和所述属性数据构建多个有向图,其中,每个有向图对应于多个排产计划,所述每两个相邻的加工节点之间的相关系数为所述有向图的边权。
在本申请一实施例中,为了从多种排产计划中确定目标排产计划,从而提升制定的排产计划的性能,可根据多个加工节点对应的属性数据和每两个加工节点之间的相关系数确定多个有向图。具体的,可随机对多个加工节点对应的属性数据进行随机排序,从而得到多个加工节点的有序组合,并确定每两个相邻的加工节点之间具备一条边,且确定两个相邻的加工节点的相关系数为该边的边权。其中,边权用于表征两个相邻的加工节点之间的关联程度。如此,每个有向图对应于多个加工节点的组合,从而利用量化的有向图表征多种排产计划,为后续提升确定目标排产计划的性能提供了数据支撑。
S25,根据所述属性数据和所述相关系数计算所述每个有向图中的每个排产计划的第一优先级,确定所述第一优先级最高的排产计划为候选排产计划,其中,所述候选排产计划代表多个加工结点对应的属性数据的组合。
在本申请一实施例中,为了提升确定每个有向图对应的候选排产计划的准确度,可利用量化数据衡量每个排产计划的优劣程度,可根据加工节点对应的属性数据及相关系数计算每个排产计划的第一优先级,其中,第一优先级用于表征每个排产计划的性能优劣,当第一优先级越高时表明排产计划的性能越优化,当第一优先级越小时表明排产计划的性能越差。具体的,所述根据所述属性数据和所述相关系数计算所述每个有向图中的每个排产计划的第一优先级包括:确定所述两个相邻的加工节点之间的距离,根据所述距离和所述属性数据计算所述两个相邻的加工节点之间的启发值;其中,第一优先级的计算方式满足以下关系式:
其中,N代表所述多个排产计划中的任意一个排产计划;代表所述排产计划的第一优先级;g(N)代表所述排产计划中每两个相邻的加工节点的相关系数之和;h(N)代表所述排产计划中每两个相邻的加工节点之间的启发值之和。
在本申请一实施例中,可确定最高的第一优先对应的排产计划为候选排产计划。第一优先级越高则表明该排产计划中每两个相邻的节点的互相关联的程度较低,能够避免相邻的加工节点之间相互影响,而对排产计划造成消极影响。
如此,利用量化的第一优先级对排产计划的性能进行评估,从而能够提升获的排产计划的准确度。
S26,根据所述属性数据以及所述稳定性确定所述每个有向图对应的所述候选排产计划的第二优先级,确定最高的所述第二优先级对应的所述候选排产计划为目标排产计划。
在本申请一实施例中,为了从候选排产计划中筛选中性能较为优化的排产计划,可根据属性数据确定每个候选排产计划对应的平均工时以及平均良率,从而根据稳定性、平均工时和平均良率确定每个候选排产计划的第二优先级,利用第二优先级以量化表征每个排产计划的性能。其中,第二优先级越高则表明排产计划的性能越优化,第二优先级越小则表明排产计划的性能较为低。
在本申请一实施例中,所述根据所述属性数据以及所述稳定性确定所述每个候选排产计划的第二优先级包括:根据所述属性数据确定所述每个排产计划中的加工节点对应的平均工时;根据所述属性数据确定所述每个排产计划中的加工节点对应的平均良率;根据所述稳定性、所述平均工时和所述平均良率确定所述每个排产计划的第二优先级,其中,确定所述第二优先级的方法满足以下关系式:
其中,P代表所述第二优先级;t代表所述平均工时;r代表所述平均良率;a代表所述候选排产计划中的加工节点的工时稳定性的均值;b代表所述候选排产计划中的加工节点的良率稳定性的均值。
示例性的,当某一个候选排产计划对应的平均工时为40小时,且该排产计划中各个加工节点对应的平均良率为0.8,且工时稳定性的均值为0.8,良率稳定性的均值为0.7,则该排产计划的第二优先级为0.58。
如此,根据每个候选排产计划中的加工节点对应的属性数据以及稳定性确定排产计划的第二优先级,从而以量化数据表征排产计划的性能,能够提升确定目标排产计划的准确度。
在本申请一实施例中,当候选排产计划对应的第二优先级较高时,表明实施该排产计划进行生产加工时,能够以较低的工时和较高的良率完成生产订单,且该候选排产计划中工时和良率的波动性较小,生产过程中各个加工节点的性能较为稳定,因此可确定最高的第二优先级对应的排产计划为目标排产计划。
由以上技术方案可以看出,本申请实施例通过解析第一工业标识和第二工业标识确定加工节点的属性数据以及加工节点对应的历史排产计划。其中,每个历史排产计划包括所述多个加工节点的组合,每个加工节点对应于历史属性数据,能够为后续对排产计划进行量化评估提供数据支撑。并根据历史属性数据确定每个加工节点的稳定性,从而利用量化数据表征每个加工节点的性能的稳定程度。再根据每两个相邻节点的相关系数和属性数据构建多个有向图,并确定每个有向图中第一优先级最高的排产计划为候选排产计划,从而扩充排产计划的筛选范围,确保后续获得目标排产计划的准确度。最终根据稳定性和属性数据确定候选排产计划对应的第二优先级,并确定最高的第二优先级对应的候选排产计划为目标排产计划,能够以量化的数据对排产计划的性能进行评估,从而提升确定目标排产计划的准确度。
请参见图3,图3是本申请一实施例提供的一种基于标识解析的排产计划生成装置的功能模块图。一种基于标识解析的排产计划生成装置31包括解析模块310、获取模块311和确定模块312。本申请所称的模块/单元是指一种能够被处理器13所执行,并且能够完成固定功能的一系列计算机可读指令段,其存储在存储器12中。在本实施例中,关于各模块/单元的功能将在后续的实施例中详述。
所述解析模块310,用于通过解析第一工业标识发送第一数据查询指令至所述服务器。
所述获取模块311,用于接收所述服务器发送的与所述第一数据查询指令对应的多个加工节点的属性数据,其中,所述属性数据包括每个加工节点的额定工时、额定良率以及当前工作状态。
所述解析模块310,还用于通过解析第二工业标识发送第二数据查询指令至所述服务器。
所述获取模块311,还用于接收所述服务器发送的与所述第二工业标识对应的多个历史排产计划,其中,每个历史排产计划包括所述多个加工节点的组合,每个加工节点对应于历史属性数据。
所述确定模块312,用于根据所述历史属性数据确定每个加工节点在所述多个历史排产计划中的稳定性。
所述确定模块311,还用于根据所述稳定性和所述历史属性数据确定所述多个历史排产计划中每两个相邻的加工节点之间的相关系数。
所述确定模块311,还用于根据所述相关系数和所述属性数据构建多个有向图,其中,每个有向图对应于多个排产计划,所述每两个相邻的加工节点之间的相关系数为所述有向图的边权。
所述确定模块311,还用于根据所述属性数据和所述相关系数计算所述每个有向图中的每个排产计划的第一优先级,确定所述第一优先级最高的排产计划为候选排产计划,其中,所述候选排产计划代表多个加工结点对应的属性数据的组合。
所述确定模块311,还用于根据所述属性数据以及所述稳定性确定所述每个有向图对应的所述候选排产计划的第二优先级,确定最高的所述第二优先级对应的所述候选排产计划为目标排产计划。
请参见图4,是本申请实施例提供的一种电子设备的结构示意图。电子设备100包括存储器12和处理器13。存储器12用于存储计算机可读指令,处理器13用执行所述储器中存储的计算机可读指令以实现上述任一实施例所述的一种基于标识解析的排产计划生成方法。
在本申请一实施例中,电子设备100还包括总线、存储在所述存储器12中并可在所述处理器13上运行的计算机程序,例如一种基于标识解析的排产计划生成程序。
图4仅示出了具有存储器12和处理器13的电子设备100,本领域技术人员可以理解的是,图4示出的结构并不构成对电子设备100的限定,可以包括比图示更少或者更多的部件,或者组合某些部件,或者不同的部件布置。
结合图2,电子设备100中的所述存储器12存储多个计算机可读指令以实现一种基于标识解析的排产计划生成方法,所述处理器13可执行所述多个指令从而实现:通过解析第一工业标识发送第一数据查询指令至所述服务器;接收所述服务器发送的多个加工节点的属性数据,其中,所述属性数据包括每个加工节点的额定工时、额定良率以及当前工作状态;通过解析第二工业标识发送第二数据查询指令至所述服务器;接收所述服务器发送的所述多个加工节点对应的多个历史排产计划,其中,每个历史排产计划包括所述多个加工节点的组合,每个加工节点对应于历史属性数据;根据所述历史属性数据确定每个加工节点在所述多个历史排产计划中的稳定性;根据所述稳定性和所述历史属性数据确定所述多个历史排产计划中每两个相邻的加工节点之间的相关系数;根据所述相关系数和所述属性数据构建多个有向图,其中,每个有向图对应于多个排产计划,所述每两个相邻的加工节点之间的相关系数为所述有向图的边权;根据所述属性数据和所述相关系数计算所述每个有向图中的每个排产计划的第一优先级,确定所述第一优先级最高的排产计划为候选排产计划,其中,所述候选排产计划代表多个加工结点对应的属性数据的组合;根据所述属性数据以及所述稳定性确定所述每个有向图对应的所述候选排产计划的第二优先级,确定最高的所述第二优先级对应的所述候选排产计划为目标排产计划。
具体地,所述处理器13对上述指令的具体实现方法可参考图2对应实施例中相关步骤的描述,在此不赘述。
本领域技术人员可以理解,所述示意图仅仅是电子设备100的示例,并不构成对电子设备100的限定,电子设备100可以是总线型结构,也可以是星形结构,电子设备100还可以包括比图示更多或更少的其他硬件或者软件,或者不同的部件布置,例如电子设备100还可以包括输入输出设备、网络接入设备等。
需要说明的是,电子设备100仅为举例,其他现有的或今后可能出现的电子产品如可适应于本申请,也应包含在本申请的保护范围以内,并以引用方式包含于此。
其中,存储器12至少包括一种类型的可读存储介质,所述可读存储介质可以是非易失性的,也可以是易失性的。所述可读存储介质包括闪存、移动硬盘、多媒体卡、卡型存储器(例如:SD或DX存储器等)、磁性存储器、磁盘、光盘等。存储器12在一些实施例中可以是电子设备100的内部存储单元,例如该电子设备100的移动硬盘。存储器12在另一些实施例中也可以是电子设备100的外部存储设备,例如电子设备100上配备的插接式移动硬盘、智能存储卡(Smart Media Card, SMC)、安全数字(Secure Digital, SD)卡、闪存卡(FlashCard)等。存储器12不仅可以用于存储安装于电子设备100的应用软件及各类数据,例如一种基于标识解析的排产计划生成程序的代码等,还可以用于暂时地存储已经输出或者将要输出的数据。
处理器13在一些实施例中可以由集成电路组成,例如可以由单个封装的集成电路所组成,也可以是由多个相同功能或不同功能封装的集成电路所组成,包括一个或者多个中央处理器(Central Processing unit,CPU)、微处理器、数字处理芯片、图形处理器及各种控制芯片的组合等。处理器13是电子设备100的控制核心(Control Unit),利用各种接口和线路连接整个电子设备100的各个部件,通过运行或执行存储在所述存储器12内的程序或者模块(例如执行一种基于标识解析的排产计划生成程序等),以及调用存储在所述存储器12内的数据,以执行电子设备100的各种功能和处理数据。
所述处理器13执行所述电子设备100的操作系统以及安装的各类应用程序。所述处理器13执行所述应用程序以实现上述各个一种基于标识解析的排产计划生成方法实施例中的步骤,例如图2所示的步骤。
示例性的,所述计算机程序可以被分割成一个或多个模块/单元,所述一个或者多个模块/单元被存储在所述存储器12中,并由所述处理器13执行,以完成本申请。所述一个或多个模块/单元可以是能够完成特定功能的一系列计算机可读指令段,该指令段用于描述所述计算机程序在电子设备100中的执行过程。例如,所述计算机程序可以被分割成解析模块310、获取模块311和确定模块312。
上述以软件功能模块的形式实现的集成的单元,可以存储在一个计算机可读取存储介质中。上述软件功能模块存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机、计算机设备,或者网络设备等)或处理器(Processor)执行本申请各个实施例所述的一种基于标识解析的排产计划生成方法的部分。
电子设备100集成的模块/单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请实现上述实施例方法中的全部或部分流程,也可以通过计算机程序来指示相关的硬件设备来完成,所述的计算机程序可存储于一计算机可读存储介质中,该计算机程序在被处理器执行时,可实现上述各个方法实施例的步骤。
其中,所述计算机程序包括计算机程序代码,所述计算机程序代码可以为源代码形式、对象代码形式、可执行文件或某些中间形式等。所述计算机可读介质可以包括:能够携带所述计算机程序代码的任何实体或装置、记录介质、U盘、移动硬盘、磁碟、光盘、计算机存储器、只读存储器(ROM,Read-Only Memory)、随机存储器及其他存储器等。
进一步地,计算机可读存储介质可主要包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需的应用程序等;存储数据区可存储根据区块链节点的使用所创建的数据等。
总线可以是外设部件互连标准(Peripheral Component Interconnect,简称PCI)总线或扩展工业标准结构(Extended Industry Standard Architecture,简称EISA)总线等。该总线可以分为地址总线、数据总线、控制总线等。为便于表示,在图4中仅用一根箭头表示,但并不表示仅有一根总线或一种类型的总线。所述总线被设置为实现所述存储器12以及至少一个处理器13等之间的连接通信。
本申请实施例还提供一种计算机可读存储介质(图未示),计算机可读存储介质中存储有计算机可读指令,计算机可读指令被电子设备中的处理器执行以实现上述任一实施例所述的一种基于标识解析的排产计划生成方法。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统,装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述模块的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。
所述作为分离部件说明的模块可以是或者也可以不是物理上分开的,作为模块显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能模块可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用硬件加软件功能模块的形式实现。
此外,显然“包括”一词不排除其他单元或步骤,单数不排除复数。说明书陈述的多个单元或装置也可以由一个单元或装置通过软件或者硬件来实现。第一、第二等词语用来表示名称,而并不表示任何特定的顺序。
最后应说明的是,以上实施例仅用以说明本申请的技术方案而非限制,尽管参照较佳实施例对本申请进行了详细说明,本领域的普通技术人员应当理解,可以对本申请的技术方案进行修改或等同替换,而不脱离本申请技术方案的精神和范围。

Claims (10)

1.一种基于标识解析的排产计划生成方法,应用于电子设备,所述电子设备通信连接于服务器,其特征在于,所述方法包括:
通过解析第一工业标识发送第一数据查询指令至所述服务器;
接收所述服务器发送的多个加工节点的属性数据,其中,所述属性数据包括每个加工节点的额定工时、额定良率以及当前工作状态;
通过解析第二工业标识发送第二数据查询指令至所述服务器;
接收所述服务器发送的所述多个加工节点对应的多个历史排产计划,其中,每个历史排产计划包括所述多个加工节点的组合,每个加工节点对应于历史属性数据;
根据所述历史属性数据确定每个加工节点的稳定性;
根据所述稳定性和所述历史属性数据确定所述多个历史排产计划中每两个相邻的加工节点之间的相关系数;
根据所述相关系数和所述属性数据构建多个有向图,其中,每个有向图对应于多个排产计划,所述每两个相邻的加工节点之间的相关系数为所述有向图的边权;
根据所述属性数据和所述相关系数计算所述每个有向图中的每个排产计划的第一优先级,确定所述第一优先级最高的排产计划为候选排产计划,其中,所述候选排产计划代表多个加工结点对应的属性数据的组合;
根据所述属性数据以及所述稳定性确定所述每个有向图对应的所述候选排产计划的第二优先级,确定最高的所述第二优先级对应的所述候选排产计划为目标排产计划。
2.如权利要求1所述的一种基于标识解析的排产计划生成方法,其特征在于,所述根据所述历史属性数据确定每个加工节点在所述多个历史排产计划中的稳定性包括:
确定每个加工节点在所述多个历史排产计划中对应的所述历史工时的第一离散系数和第一极差,确定所述第一离散系数和所述第一极差的乘积为所述每个加工节点的工时稳定性;
确定每个加工节点在所述多个历史排产计划中对应的所述历史良率的第二离散系数和第二极差,确定所述第二离散系数和所述第二极差的乘积为所述每个加工节点的良率稳定性;
确定所述工时稳定性和所述良率稳定性为所述每个加工节点的稳定性。
3.如权利要求2所述的一种基于标识解析的排产计划生成方法,其特征在于,所述根据所述稳定性和所述历史属性数据确定所述多个历史排产计划中每两个相邻的加工节点之间的相关系数包括:
确定两个相邻的加工节点在所述多个历史排产计划中对应的工时序列,根据所述工时序列确定所述两个相邻的加工节点之间的工时相关系数;
确定两个相邻的加工节点在所述多个历史排产计划中对应的良率序列,根据所述良率序列确定所述两个相邻的加工节点之间的良率相关系数;
根据所述稳定性、所述工时相关系数和所述良率相关系数确定所述两个相邻的加工节点之间的相关系数。
4.如权利要求3所述的一种基于标识解析的排产计划生成方法,其特征在于,所述确定两个相邻的加工节点在所述多个历史排产计划中对应的工时序列,根据所述工时序列确定所述两个相邻的加工节点之间的工时相关系数包括:
根据历史排产计划的完成时间由早至晚的顺序排列所述加工节点的工时,得到加工节点的工时序列;
确定所述两个相邻的加工节点对应的工时序列之间的余弦相似度为所述两个相邻的加工节点之间的工时相关系数。
5.如权利要求3所述的一种基于标识解析的排产计划生成方法,其特征在于,所述确定两个相邻的加工节点在所述多个历史排产计划中对应的良率序列,根据所述良率序列确定所述两个相邻的加工节点之间的良率相关系数包括:
根据历史排产计划的完成时间由早至晚的顺序排列所述加工节点的良率,得到加工节点的良率序列;
确定所述两个相邻的加工节点对应的良率序列之间的余弦相似度为所述两个相邻的加工节点之间的良率相关系数。
6.如权利要求1所述的一种基于标识解析的排产计划生成方法,其特征在于,所述每个排产计划对应于多个加工节点的组合,所述根据所述属性数据和所述相关系数计算所述每个有向图中的每个排产计划的第一优先级包括:
确定所述两个相邻的加工节点之间的距离,根据所述距离和所述属性数据计算所述两个相邻的加工节点之间的启发值;
所述第一优先级的计算方式满足以下关系式:
其中,N代表所述多个排产计划中的任意一个排产计划;代表所述排产计划的第一优先级;g(N)代表所述排产计划中每两个相邻的加工节点的相关系数之和;h(N)代表所述排产计划中每两个相邻的加工节点之间的启发值之和。
7.如权利要求6所述的一种基于标识解析的排产计划生成方法,其特征在于,所述根据所述距离和所述属性数据计算所述两个相邻的加工节点之间的启发值包括:
对所述距离进行归一化处理,得到归一化距离;
根据所述属性数据确定所述两个相邻的加工节点的工时均值以及良率均值;
确定所述启发值的方法满足以下关系式:
其中,h代表所述两个相邻的加工节点之间的所述启发值;T代表所述工时均值;S代表所述良率均值;L代表所述归一化距离。
8.如权利要求2所述的一种基于标识解析的排产计划生成方法,其特征在于,所述根据所述属性数据以及所述稳定性确定所述每个候选排产计划的第二优先级包括:
根据所述属性数据确定所述每个排产计划中的加工节点对应的平均工时;
根据所述属性数据确定所述每个排产计划中的加工节点对应的平均良率;
根据所述稳定性、所述平均工时和所述平均良率确定所述每个排产计划的第二优先级,其中,确定所述第二优先级的方法满足以下关系式:
其中,P代表所述第二优先级;t代表所述平均工时;r代表所述平均良率;a代表所述候选排产计划中的加工节点的工时稳定性的均值;b代表所述候选排产计划中的加工节点的良率稳定性的均值。
9.一种基于标识解析的排产计划生成装置,其特征在于,所述装置包括实现如权利要求1至8中任意一项所述的一种基于标识解析的排产计划生成方法的模块,所述装置包括:
解析模块,用于通过解析第一工业标识发送第一数据查询指令至所述服务器;
获取模块,用于接收所述服务器发送的与所述第一数据查询指令对应的多个加工节点的属性数据,其中,所述属性数据包括每个加工节点的额定工时、额定良率以及当前工作状态;
所述解析模块,还用于通过解析第二工业标识发送第二数据查询指令至所述服务器;
所述获取模块,还用于接收所述服务器发送的与所述第二工业标识对应的多个历史排产计划,其中,每个历史排产计划包括所述多个加工节点的组合,每个加工节点对应于历史属性数据;
确定模块,用于根据所述历史属性数据确定每个加工节点在所述多个历史排产计划中的稳定性;
所述确定模块,还用于根据所述稳定性和所述历史属性数据确定所述多个历史排产计划中每两个相邻的加工节点之间的相关系数;
所述确定模块,还用于根据所述相关系数和所述属性数据构建多个有向图,其中,每个有向图对应于多个排产计划,所述每两个相邻的加工节点之间的相关系数为所述有向图的边权;
所述确定模块,还用于根据所述属性数据和所述相关系数计算所述每个有向图中的每个排产计划的第一优先级,确定所述第一优先级最高的排产计划为候选排产计划,其中,所述候选排产计划代表多个加工结点对应的属性数据的组合;
所述确定模块,还用于根据所述属性数据以及所述稳定性确定所述每个有向图对应的所述候选排产计划的第二优先级,确定最高的所述第二优先级对应的所述候选排产计划为目标排产计划。
10.一种电子设备,其特征在于,所述电子设备包括处理器和存储器,所述处理器用于执行存储器中存储的计算机程序时实现如权利要求1至8中任意一项所述的一种基于标识解析的排产计划生成方法。
CN202410255225.5A 2024-03-06 2024-03-06 一种基于标识解析的排产计划生成方法及相关设备 Active CN117829562B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202410255225.5A CN117829562B (zh) 2024-03-06 2024-03-06 一种基于标识解析的排产计划生成方法及相关设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202410255225.5A CN117829562B (zh) 2024-03-06 2024-03-06 一种基于标识解析的排产计划生成方法及相关设备

Publications (2)

Publication Number Publication Date
CN117829562A true CN117829562A (zh) 2024-04-05
CN117829562B CN117829562B (zh) 2024-05-17

Family

ID=90515678

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202410255225.5A Active CN117829562B (zh) 2024-03-06 2024-03-06 一种基于标识解析的排产计划生成方法及相关设备

Country Status (1)

Country Link
CN (1) CN117829562B (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114693157A (zh) * 2022-04-18 2022-07-01 浙江伟星实业发展股份有限公司 排产计划系统、方法、设备及存储介质
CN114707875A (zh) * 2022-04-13 2022-07-05 成都星云智联科技有限公司 排产结果生成方法、装置、电子设备及可读存储介质
WO2023005395A1 (zh) * 2021-07-30 2023-02-02 华为技术有限公司 工业规划的方法、装置、设备、存储介质和程序产品
CN116468218A (zh) * 2023-03-13 2023-07-21 明度智云(浙江)科技有限公司 用于生产计划排程的数据处理方法和系统

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023005395A1 (zh) * 2021-07-30 2023-02-02 华为技术有限公司 工业规划的方法、装置、设备、存储介质和程序产品
CN114707875A (zh) * 2022-04-13 2022-07-05 成都星云智联科技有限公司 排产结果生成方法、装置、电子设备及可读存储介质
CN114693157A (zh) * 2022-04-18 2022-07-01 浙江伟星实业发展股份有限公司 排产计划系统、方法、设备及存储介质
CN116468218A (zh) * 2023-03-13 2023-07-21 明度智云(浙江)科技有限公司 用于生产计划排程的数据处理方法和系统

Also Published As

Publication number Publication date
CN117829562B (zh) 2024-05-17

Similar Documents

Publication Publication Date Title
CN109918382A (zh) 数据处理方法、装置、终端及存储介质
CN110309142B (zh) 规则管理的方法和装置
CN109388626A (zh) 用于向业务分配编号的方法和装置
CN111198961A (zh) 商品搜索方法、装置及服务器
CN112162859A (zh) 数据处理方法、装置、计算机可读介质及电子设备
CN110119429B (zh) 数据处理方法、装置、计算机设备和存储介质
CN113672375A (zh) 资源分配预测方法、装置、设备及存储介质
CN111813517A (zh) 任务队列的分配方法、装置、计算机设备及介质
CN110389817B (zh) 多云系统的调度方法、装置和计算机可读介质
CN117707737A (zh) 一种任务调度优化方法、装置、设备及其存储介质
CN117829562B (zh) 一种基于标识解析的排产计划生成方法及相关设备
CN112182107A (zh) 名单数据获取方法、装置、计算机设备及存储介质
CN117094729A (zh) 请求处理方法、装置、计算机设备及存储介质
CN117689186B (zh) 一种基于标识解析的排产计划筛选方法及相关设备
CN117745721B (zh) 一种基于标识解析的排产计划优化方法及相关设备
CN117744954B (zh) 一种基于标识解析的智能排产方法及相关设备
CN115629853A (zh) 一种任务调度的方法和装置
CN114764713A (zh) 商户巡检任务的生成方法、装置、电子设备和存储介质
CN113656046A (zh) 一种应用部署方法和装置
CN114282968A (zh) 一种流水号的获取方法、装置、服务器和存储介质
CN112579280A (zh) 云资源的调度方法、装置及计算机存储介质
CN112183799A (zh) 用于合成任务单的任务分配方法及装置
CN113781237B (zh) 基于分布式人工智能系统的产品订购单消费方法
CN112463257B (zh) 应用模式确定方法、计算设备及计算机存储介质
CN110244902A (zh) 数据路由的方法和装置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant